CN108531894A - 一种高强度超疏水薄膜的制备方法 - Google Patents

一种高强度超疏水薄膜的制备方法 Download PDF

Info

Publication number
CN108531894A
CN108531894A CN201810626532.4A CN201810626532A CN108531894A CN 108531894 A CN108531894 A CN 108531894A CN 201810626532 A CN201810626532 A CN 201810626532A CN 108531894 A CN108531894 A CN 108531894A
Authority
CN
China
Prior art keywords
film
thin films
high intensity
preparation
intensity based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810626532.4A
Other languages
English (en)
Inventor
裘友玖
蒋梦成
朱彩娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Ling Chao New Material Co Ltd
Original Assignee
Foshan Ling Chao New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Ling Chao New Material Co Ltd filed Critical Foshan Ling Chao New Material Co Ltd
Priority to CN201810626532.4A priority Critical patent/CN108531894A/zh
Publication of CN108531894A publication Critical patent/CN108531894A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本发明涉及一种高强度超疏水薄膜的制备方法,属于新材料制备技术领域。本发明以钛酸四丁酯为原料制得纳米二氧化钛薄膜材料,二氧化钛本身具有优异的力学强度,键能大,分子键作用力强,抗磨性抗冲击性好,本发明同时将纳米石墨烯引入二氧化钛纳米结构中,可以与纳米二氧化钛产生分子间作用力结合吸附,进一步提高薄膜的力学性能;本发明制得纳米二氧化钛超疏水薄膜材料,再将十七氟癸基三甲基硅氧烷浸泡薄膜,修饰薄膜表层表面能,使薄膜表层表面能更低,使水分子更容易滑落,从而提高疏水效果,纳米石墨烯分子的嵌入可以使薄膜表层微观结构中的粗糙程度增加,增加凸点之间的密集程度,从而进一步提高疏水效果,具有广阔的应用前景。

Description

一种高强度超疏水薄膜的制备方法
技术领域
本发明涉及一种高强度超疏水薄膜的制备方法,属于新材料制备技术领域。
背景技术
疏水材料表面的浸润性是材料的一项重要性能,很多物理化学过程,例如:粘合,吸附,分散等,都与材料表面的浸润性密切相关。超疏水表面是指材料表面与水的接触角大于150°,滚动角小于10°。超疏水表面所具有的非润湿和自清洁特性使其在自清洁、防水、防冰、抗腐蚀、器件防黏附等领域具有广泛的应用前景而受到广泛关注。
目前,基于聚合物、玻璃、金属、无机氧化物、碳纳米管等不同材料的超疏水材料都已被制备出来。所采用的方法包括:微机械加工法、激光或等离子体刻蚀法、物理或化学气相沉积法、阳极氧化法、电化学沉积法、静电纺纱法、聚电解质交替沉积法等。然而,现有的这些方法大多需要特殊的加工设备和复杂的工艺过程。
制备超疏水材料需要满足两个基本条件:物质表面具有微观粗糙结构;物质表面需要具有较低的表面自由能。通常,构筑超疏水表面有两种途径:在低表面能物质表面构建微观粗糙结构;在具有高表面能的粗糙表面进行低表面能物质的修饰。无机物材料一般都具有亲水性,其疏水性表面的制备通常采用先制备出微观粗糙结构,后进行低表面能物质修饰的方法。制备具有微观粗糙表面无机薄膜的方法主要有刻蚀法、溶胶-凝胶法、水浴-水热法、逐层吸附法和电化学沉积法等。溶胶-凝胶法由于具有工艺简单和成本低廉的特点而被广泛应用于二氧化硅、二氧化钛、氧化铝等超疏水薄膜的制备。其基本原理是在溶胶-凝胶的前驱体中加入惰性的有机高分子化合物,在凝胶膜烧结的过程中,通过有机高分子的热分解形成孔洞来构筑粗糙表面。粗糙表面孔洞的大小和分布与高分子化合物的性质有关,但不具有规整结构。
现有的疏水材料普遍存在疏水性能不够,限制疏水材料的使用范围,强度低,不抗磨,易破损。因此,发明一种疏水性好且强度高的高强度超疏水薄膜对新材料制备技术领域具有积极意义。
发明内容
本发明所要解决的技术问题:针对目前疏水薄膜疏水性能不够、强度低的缺陷,提供了一种高强度超疏水薄膜的制备方法。
为解决上述技术问题,本发明采用的技术方案是:
一种高强度超疏水薄膜的制备方法,其特征在于具体制备步骤为:
(1)按重量份数计,称取1~3份石墨粉、10~12份重铬酸钾粉末与30~32份质量分数为的硫酸放入烧杯中混合,将烧杯放于冰水浴中,以的转速搅拌,搅拌后升温至35~40min,静置2~3h制得分散液,过滤得滤饼,用蒸馏水洗涤滤饼3~5次,干燥,得到氧化粉末;
(2)将乙酸乙酰和乙醇按质量比1:8混合搅拌均匀得到混合溶剂,将混合溶剂与钛酸四丁酯按质量比6:1投入烧杯中,用搅拌器搅拌,密封烧杯,进行磁力搅拌,得到反应溶胶;
(3)将反应溶胶与备用的氧化粉末按质量比10:1投入三口烧瓶中,以的转速搅拌混合,静置6~8h后,得到混合产物,将混合产物升温至60~80℃,并向混合产物中通入氢气,以60mL/min的速率通入氢气,得到改性反应溶胶,备用;
(4)提取1片厚度为1.0~1.2mm,面积为6~10cm2的铝片,依次用去离子水、无水乙醇、丙酮超声清洗,清洗结束后用硝酸溶液浸泡铝片,浸泡结束后用无水乙醇超声清洗得到表面改性铝片;
(5)将上述表面改性铝片放入备用的改性反应溶胶中,提拉10~12次表面成膜,放于常温下风干,再重复提拉风干动作10~15次,提拉风干结束后将表面覆有薄膜的铝片放入烘箱中干燥,揭下铝片上的薄膜并将薄膜放入高温炉中,在氩气保护下处理得到预处理薄膜;
(6)用质量分数为2~4%的十七氟癸基三甲基硅氧烷的乙醇溶液浸泡上述预处理薄膜24~26h,浸泡结束后放入烘箱中干燥得到高强度超疏水薄膜。
步骤(1)中所述的硫酸的质量分数为80~90%,搅拌转速为300~350r/min,搅拌时间为30~40min。
步骤(2)中所述的搅拌器搅拌转速为500~600r/min,搅拌时间为120~140min,磁力搅拌转速为100~120r/min,搅拌时间为24~25h。
步骤(3)中所述的搅拌转速为800~850r/min,搅拌时间为60~80min,通氢气时间为80~100min。
步骤(4)中所述的超声清洗仪的超声频率28~30kHz,清洗时间为8~10min,硝酸溶液的质量分数为8~12%。
步骤(5)中所述的烘箱温度为110~120℃,干燥时间为2~3h,高温炉中温度为540~560℃,处理时间为4.0~4.5h。
步骤(6)中所述的烘箱中温度为120~125℃,干燥时间为120~130min。
本发明的有益技术效果是:
(1)本发明首先将石墨粉在酸性条件下氧化分解,制得纳米氧化石墨烯材料,然后以钛酸四丁酯为原料制得二氧化钛纳米薄膜材料,并将二氧化钛纳米薄膜材料与氧化纳米石墨烯搅拌混合得到混合溶胶,然后将氧化石墨烯还原成石墨烯制得二氧化钛、石墨烯复合材料,将铝片放入溶胶中,提拉烘干数次制得薄膜,再将薄膜放入十七氟癸基三甲基硅氧烷的乙醇溶液中浸泡改性制得高强度超疏水薄膜,本发明以钛酸四丁酯为原料制得纳米二氧化钛薄膜材料,二氧化钛本身具有优异的力学强度,键能大,分子键作用力强,抗磨性抗冲击性好,同时具有优越的光学性能,能够光催化氧化病菌和有毒物质,具有自清洁性能,本发明同时将纳米石墨烯引入二氧化钛纳米结构中,首先将氧化石墨烯与二氧化钛结合,氧化石墨烯中具有羟基、羰基、磺基以及其它含氧官能团,可以与纳米二氧化钛产生分子间作用力结合吸附,还原后,纳米石墨烯嵌入纳米二氧化钛晶格中,使薄膜表面微观空间结构更加致密紧凑,进一步提高薄膜的力学性能;
(2)本发明制得纳米二氧化钛超疏水薄膜材料,薄膜表面微观结构粗糙,并且二氧化钛本身具有疏水性,制成粗糙状表面后,可以形成超疏水层,可以使水的接触角大于150°,再将十七氟癸基三甲基硅氧烷浸泡薄膜,修饰薄膜表层表面能,使薄膜表层表面能更低,使水分子更容易滑落,从而提高疏水效果,纳米石墨烯分子的嵌入可以使薄膜表层微观结构中的粗糙程度增加,增加凸点之间的密集程度,从而进一步提高疏水效果,具有广阔的应用前景。
具体实施方式
按重量份数计,称取1~3份石墨粉、10~12份重铬酸钾粉末与30~32份质量分数为80~90%的硫酸放入烧杯中混合,将烧杯放于冰水浴中,以300~350r/min的转速搅拌30~40min,搅拌后升温至35~40min,静置2~3h制得分散液,过滤得滤饼,用蒸馏水洗涤滤饼3~5次,干燥,得到氧化粉末;将乙酸乙酰和乙醇按质量比1:8混合搅拌均匀得到混合溶剂,将混合溶剂与钛酸四丁酯按质量比6:1投入烧杯中,用搅拌器以500~600r/min的转速搅拌120~140min,密封烧杯,进行磁力搅拌,以100~120r/min的转速搅拌24~25h得到反应溶胶;将反应溶胶与备用的氧化粉末按质量比10:1投入三口烧瓶中,以800~850r/min的转速搅拌混合60~80min,静置6~8h后,得到混合产物,将混合产物升温至60~80℃,并向混合产物中通入氢气,以60mL/min的速率通入氢气80~100min,得到改性反应溶胶,备用;提取1片厚度为1.0~1.2mm,面积为6~10cm2的铝片,依次用去离子水、无水乙醇、丙酮超声清洗,以28~30kHz的频率清洗8~10min,清洗结束后用质量分数为8~12%的硝酸溶液浸泡铝片15~20min,浸泡结束后用无水乙醇超声清洗得到表面改性铝片;将上述表面改性铝片放入备用的改性反应溶胶中,提拉10~12次表面成膜,放于常温下风干,再重复提拉风干动作10~15次,提拉风干结束后将表面覆有薄膜的铝片放入烘箱中在温度为110~120℃的条件下干燥2~3h,揭下铝片上的薄膜并将薄膜放入高温炉中,在氩气保护下以540~560℃温度处理4.0~4.5h得到预处理薄膜;用质量分数为2~4%的十七氟癸基三甲基硅氧烷的乙醇溶液浸泡上述预处理薄膜24~26h,浸泡结束后放入烘箱中以120~125℃的温度干燥120~130min得到高强度超疏水薄膜。
按重量份数计,称取1份石墨粉、10份重铬酸钾粉末与30份质量分数为80%的硫酸放入烧杯中混合,将烧杯放于冰水浴中,以300r/min的转速搅拌30min,搅拌后升温至35min,静置2h制得分散液,过滤得滤饼,用蒸馏水洗涤滤饼3次,干燥,得到氧化粉末;将乙酸乙酰和乙醇按质量比1:8混合搅拌均匀得到混合溶剂,将混合溶剂与钛酸四丁酯按质量比6:1投入烧杯中,用搅拌器以500r/min的转速搅拌120min,密封烧杯,进行磁力搅拌,以100r/min的转速搅拌24h得到反应溶胶;将反应溶胶与备用的氧化粉末按质量比10:1投入三口烧瓶中,以800r/min的转速搅拌混合60min,静置6h后,得到混合产物,将混合产物升温至60℃,并向混合产物中通入氢气,以60mL/min的速率通入氢气80min,得到改性反应溶胶,备用;提取1片厚度为1.0mm,面积为6cm2的铝片,依次用去离子水、无水乙醇、丙酮超声清洗,以28kHz的频率清洗8min,清洗结束后用质量分数为8%的硝酸溶液浸泡铝片15min,浸泡结束后用无水乙醇超声清洗得到表面改性铝片;将上述表面改性铝片放入备用的改性反应溶胶中,提拉10次表面成膜,放于常温下风干,再重复提拉风干动作10次,提拉风干结束后将表面覆有薄膜的铝片放入烘箱中在温度为110℃的条件下干燥2h,揭下铝片上的薄膜并将薄膜放入高温炉中,在氩气保护下以540℃温度处理4.0h得到预处理薄膜;用质量分数为2%的十七氟癸基三甲基硅氧烷的乙醇溶液浸泡上述预处理薄膜24h,浸泡结束后放入烘箱中以120℃的温度干燥120min得到高强度超疏水薄膜。
按重量份数计,称取2份石墨粉、11份重铬酸钾粉末与31份质量分数为85%的硫酸放入烧杯中混合,将烧杯放于冰水浴中,以320r/min的转速搅拌35min,搅拌后升温至37min,静置2.5h制得分散液,过滤得滤饼,用蒸馏水洗涤滤饼4次,干燥,得到氧化粉末;将乙酸乙酰和乙醇按质量比1:8混合搅拌均匀得到混合溶剂,将混合溶剂与钛酸四丁酯按质量比6:1投入烧杯中,用搅拌器以550r/min的转速搅拌130min,密封烧杯,进行磁力搅拌,以110r/min的转速搅拌24.5h得到反应溶胶;将反应溶胶与备用的氧化粉末按质量比10:1投入三口烧瓶中,以820r/min的转速搅拌混合70min,静置7h后,得到混合产物,将混合产物升温至70℃,并向混合产物中通入氢气,以60mL/min的速率通入氢气90min,得到改性反应溶胶,备用;提取1片厚度为1.1mm,面积为8cm2的铝片,依次用去离子水、无水乙醇、丙酮超声清洗,以29kHz的频率清洗9min,清洗结束后用质量分数为10%的硝酸溶液浸泡铝片17min,浸泡结束后用无水乙醇超声清洗得到表面改性铝片;将上述表面改性铝片放入备用的改性反应溶胶中,提拉11次表面成膜,放于常温下风干,再重复提拉风干动作12次,提拉风干结束后将表面覆有薄膜的铝片放入烘箱中在温度为115℃的条件下干燥2.5h,揭下铝片上的薄膜并将薄膜放入高温炉中,在氩气保护下以550℃温度处理4.2h得到预处理薄膜;用质量分数为3%的十七氟癸基三甲基硅氧烷的乙醇溶液浸泡上述预处理薄膜25h,浸泡结束后放入烘箱中以122℃的温度干燥125min得到高强度超疏水薄膜。
按重量份数计,称取3份石墨粉、12份重铬酸钾粉末与32份质量分数为90%的硫酸放入烧杯中混合,将烧杯放于冰水浴中,以350r/min的转速搅拌40min,搅拌后升温至40min,静置3h制得分散液,过滤得滤饼,用蒸馏水洗涤滤饼5次,干燥,得到氧化粉末;将乙酸乙酰和乙醇按质量比1:8混合搅拌均匀得到混合溶剂,将混合溶剂与钛酸四丁酯按质量比6:1投入烧杯中,用搅拌器以600r/min的转速搅拌140min,密封烧杯,进行磁力搅拌,以120r/min的转速搅拌25h得到反应溶胶;将反应溶胶与备用的氧化粉末按质量比10:1投入三口烧瓶中,以850r/min的转速搅拌混合80min,静置8h后,得到混合产物,将混合产物升温至80℃,并向混合产物中通入氢气,以60mL/min的速率通入氢气100min,得到改性反应溶胶,备用;提取1片厚度为1.2mm,面积为10cm2的铝片,依次用去离子水、无水乙醇、丙酮超声清洗,以30kHz的频率清洗10min,清洗结束后用质量分数为12%的硝酸溶液浸泡铝片20min,浸泡结束后用无水乙醇超声清洗得到表面改性铝片;将上述表面改性铝片放入备用的改性反应溶胶中,提拉12次表面成膜,放于常温下风干,再重复提拉风干动作15次,提拉风干结束后将表面覆有薄膜的铝片放入烘箱中在温度为120℃的条件下干燥3h,揭下铝片上的薄膜并将薄膜放入高温炉中,在氩气保护下以560℃温度处理4.5h得到预处理薄膜;用质量分数为4%的十七氟癸基三甲基硅氧烷的乙醇溶液浸泡上述预处理薄膜26h,浸泡结束后放入烘箱中以125℃的温度干燥130min得到高强度超疏水薄膜。
对比例以河南某公司生产的高强度超疏水薄膜作为对比例 对本发明制得的高强度超疏水薄膜和对比例中的高强度超疏水薄膜进行性能检测,检测结果如表1所示:
测试方法:
硬度测试采用铅笔硬度来表示:采用三菱(UNI)一套硬度分别为6B、5B、4B、3B、2B、B、HB、F、H、2H、3H、4H、5H的铅笔,在样品上,按45°方向施加1000克力,10毫米行程,不同位置划3道,观察样品外观是否有明显划痕,以不能划破漆膜的最硬铅笔号为漆膜的硬度。
耐磨测试:使用美国诺曼仪器设备公司生产的7-IBB型RCA磨耗仪,在175克力的作用下,磨涂装好的涂层,记录涂层露底材时橡胶轮转动的次数。
附着力测试按GB/T9286标准进行检测。
耐高压水冲击性能测试,在200kPa压强度条件下,滚动角为90度,对将实例1~3和对比例中的疏水薄膜进行冲压,记录薄膜破坏时间。
抗拉强度测试采用薄膜抗拉强度测试仪进行检测。
接触角测试根据国标GB/T 26490-2011进行检测。
表1疏水薄膜性能测定结果
测试项目 实例1 实例2 实例3 对比例
铅笔硬度 2H 2H 2H F
耐磨性(圈) 574 576 578 205
附着力(级) 1 0 0 3
耐高压水冲击性能(min) 47 48 50 20
抗拉强度(MPa) 5.2 5.4 5.6 3.5
接触角(度) 158 159 160 125
根据上述中数据可知本发明制得的高强度超疏水薄膜具有较佳的硬度、耐磨性,不易磨损,附着力好,耐高压水冲击性能好,抗拉强度高,力学强度好,接触角高,疏水性能好,具有广阔的应用前景。

Claims (7)

1.一种高强度超疏水薄膜的制备方法,其特征在于具体制备步骤为:
(1)按重量份数计,称取1~3份石墨粉、10~12份重铬酸钾粉末与30~32份质量分数为的硫酸放入烧杯中混合,将烧杯放于冰水浴中,以的转速搅拌,搅拌后升温至35~40min,静置2~3h制得分散液,过滤得滤饼,用蒸馏水洗涤滤饼3~5次,干燥,得到氧化粉末;
(2)将乙酸乙酰和乙醇按质量比1:8混合搅拌均匀得到混合溶剂,将混合溶剂与钛酸四丁酯按质量比6:1投入烧杯中,用搅拌器搅拌,密封烧杯,进行磁力搅拌,得到反应溶胶;
(3)将反应溶胶与备用的氧化粉末按质量比10:1投入三口烧瓶中,以的转速搅拌混合,静置6~8h后,得到混合产物,将混合产物升温至60~80℃,并向混合产物中通入氢气,以60mL/min的速率通入氢气,得到改性反应溶胶,备用;
(4)提取1片厚度为1.0~1.2mm,面积为6~10cm2的铝片,依次用去离子水、无水乙醇、丙酮超声清洗,清洗结束后用硝酸溶液浸泡铝片,浸泡结束后用无水乙醇超声清洗得到表面改性铝片;
(5)将上述表面改性铝片放入备用的改性反应溶胶中,提拉10~12次表面成膜,放于常温下风干,再重复提拉风干动作10~15次,提拉风干结束后将表面覆有薄膜的铝片放入烘箱中干燥,揭下铝片上的薄膜并将薄膜放入高温炉中,在氩气保护下处理得到预处理薄膜;
(6)用质量分数为2~4%的十七氟癸基三甲基硅氧烷的乙醇溶液浸泡上述预处理薄膜24~26h,浸泡结束后放入烘箱中干燥得到高强度超疏水薄膜。
2.根据权利要求1所述的一种高强度超疏水薄膜的制备方法,其特征在于:步骤(1)中所述的硫酸的质量分数为80~90%,搅拌转速为300~350r/min,搅拌时间为30~40min。
3.根据权利要求1所述的一种高强度超疏水薄膜的制备方法,其特征在于:步骤(2)中所述的搅拌器搅拌转速为500~600r/min,搅拌时间为120~140min,磁力搅拌转速为100~120r/min,搅拌时间为24~25h。
4.根据权利要求1所述的一种高强度超疏水薄膜的制备方法,其特征在于:步骤(3)中所述的搅拌转速为800~850r/min,搅拌时间为60~80min,通氢气时间为80~100min。
5.根据权利要求1所述的一种高强度超疏水薄膜的制备方法,其特征在于:步骤(4)中所述的超声清洗仪的超声频率28~30kHz,清洗时间为8~10min,硝酸溶液的质量分数为8~12%。
6.根据权利要求1所述的一种高强度超疏水薄膜的制备方法,其特征在于:步骤(5)中所述的烘箱温度为110~120℃,干燥时间为2~3h,高温炉中温度为540~560℃,处理时间为4.0~4.5h。
7.根据权利要求1所述的一种高强度超疏水薄膜的制备方法,其特征在于:步骤(6)中所述的烘箱中温度为120~125℃,干燥时间为120~130min。
CN201810626532.4A 2018-06-19 2018-06-19 一种高强度超疏水薄膜的制备方法 Withdrawn CN108531894A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810626532.4A CN108531894A (zh) 2018-06-19 2018-06-19 一种高强度超疏水薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810626532.4A CN108531894A (zh) 2018-06-19 2018-06-19 一种高强度超疏水薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN108531894A true CN108531894A (zh) 2018-09-14

Family

ID=63471228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810626532.4A Withdrawn CN108531894A (zh) 2018-06-19 2018-06-19 一种高强度超疏水薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN108531894A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044878A (zh) * 2021-03-23 2021-06-29 南昌大学 一种超疏水性能的改性二氧化钛及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044878A (zh) * 2021-03-23 2021-06-29 南昌大学 一种超疏水性能的改性二氧化钛及其制备方法
CN113044878B (zh) * 2021-03-23 2022-09-16 南昌大学 一种超疏水性能的改性二氧化钛及其制备方法

Similar Documents

Publication Publication Date Title
Taloub et al. Improving the mechanical properties, UV and hydrothermal aging resistance of PIPD fiber using MXene (Ti3C2 (OH) 2) nanosheets
Xie et al. A novel approach to fabricate polyacrylate modified graphene oxide for improving the corrosion resistance of epoxy coatings
CN102140179B (zh) 苯乙烯接枝二氧化硅超疏水薄膜的制备方法
Jiang et al. Preparation of graphene oxide coatings onto carbon fibers by electrophoretic deposition for enhancing interfacial strength in carbon fiber composites
Xiong et al. Chemical grafting of nano-TiO 2 onto carbon fiber via thiol–ene click chemistry and its effect on the interfacial and mechanical properties of carbon fiber/epoxy composites
CN102174289A (zh) 用于航空铝合金材料的表面防腐溶胶及其处理方法
CN108659671A (zh) 一种木质素/石墨烯基复合防腐涂层及其制备方法与应用
CN108192138B (zh) 用做橡胶填料碳纳米管的改性方法
Mo et al. A simple process for fabricating organic/TiO2 super-hydrophobic and anti-corrosion coating
CN109913123A (zh) 一种超疏水PDMS/Cu2O/SiO2/KH-550复合涂层材料的制备方法
Fei et al. Optimizing fiber/matrix interface by growth MnO2 nanosheets for achieving desirable mechanical and tribological properties
Munoz-Velez et al. Effect of fiber surface treatment on the incorporation of carbon nanotubes and on the micromechanical properties of a single-carbon fiber-epoxy matrix composite.
CN108531894A (zh) 一种高强度超疏水薄膜的制备方法
CN109810622A (zh) 常温固化水性聚氨酯/氮化硼纳米复合涂料及其涂膜的制备方法
CN111534132A (zh) 一种纯无机水性面漆、其制备方法及纯无机水性建筑涂料
Yuan et al. Facile fabrication approach for a novel multifunctional superamphiphobic coating based on chemically grafted montmorillonite/Al 2 O 3-polydimethylsiloxane binary nanocomposite
Cui et al. Preparation and characterization of a durable superhydrophobic hyperbranched poly (dimethylolbutanoic acid-glycidyl ester of versatic acid)/nano-SiO2 coating
Shu et al. Preparation of SiO2-decorated GO sheets and their influences on the properties of castor oil-based polyurethane coating film
CN102321395B (zh) 一种硼酸酯偶联剂表面改性硼酸镁晶须的方法
Cheng et al. Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites
CN110423531A (zh) 一种环保水性漆及其制备方法
CN109306243A (zh) 一种耐油污的超疏水涂料及其制备方法和应用
Zhou et al. Superhydrophobic epoxy resin coating with composite nanostructures for metal protection
CN114773655A (zh) 一种MXene泥复合薄膜及其制备方法和应用
CN112011271B (zh) 有机无机杂化型光固化植物油基涂料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20180914