CN108531439B - Escherichia coli genetic engineering bacterium and construction method and application thereof - Google Patents

Escherichia coli genetic engineering bacterium and construction method and application thereof Download PDF

Info

Publication number
CN108531439B
CN108531439B CN201810336575.9A CN201810336575A CN108531439B CN 108531439 B CN108531439 B CN 108531439B CN 201810336575 A CN201810336575 A CN 201810336575A CN 108531439 B CN108531439 B CN 108531439B
Authority
CN
China
Prior art keywords
escherichia coli
fimh
genetic engineering
fermentation
threonine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810336575.9A
Other languages
Chinese (zh)
Other versions
CN108531439A (en
Inventor
应汉杰
刘娜
陈勇
任培芳
余斌
杨乐云
孙文俊
奚迅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201810336575.9A priority Critical patent/CN108531439B/en
Publication of CN108531439A publication Critical patent/CN108531439A/en
Application granted granted Critical
Publication of CN108531439B publication Critical patent/CN108531439B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses an escherichia coli genetic engineering bacterium, which introduces recombinant plasmid carrying fimH gene. The invention also discloses a construction method of the genetic engineering bacteria. The invention further discloses application of the genetic engineering bacteria in fermentation production of L-threonine. According to the invention, by constructing the escherichia coli genetic engineering bacteria for over-expressing fimH genes, the yield of the biomembrane is increased in the process of producing L-threonine by fermentation of escherichia coli, the adhesion is increased, the number of flora is increased, the yield of L-threonine and the sugar conversion rate are increased, and the fermentation period is shortened.

Description

Escherichia coli genetic engineering bacterium and construction method and application thereof
Technical Field
The invention relates to L-threonine fermentation, in particular to an escherichia coli genetic engineering bacterium and a construction method and application thereof.
Background
L-threonine, an amino acid isolated and identified from fibrin hydrolysate in 1935 by w.c. rose, has proven to be the last essential amino acid discovered and cannot be synthesized by the human body itself and must be ingested from food. L-threonine is widely used as a food additive in the feed industry, health food and pharmaceutical industry, and due to the wide role of L-threonine, the market demand of threonine has increased rapidly in recent years, and the market of threonine will increase rapidly and the demand of threonine will increase continuously in the future.
The preparation method of L-threonine mainly comprises a protein hydrolysis method, a chemical synthesis method and a microbial fermentation method, wherein the microbial fermentation method has the advantages of resource saving, low cost, small environmental pollution and the like, and is widely applied to the production of L-threonine. With the rapid advancement of modern society genetic engineering technology, the application demand of industrial microorganisms and industrial technology is increased, and particularly, the construction of an industrial microorganism carrier system provides reliable technical support for the screening of excellent L-threonine production strains and the improvement of acid production level, so that the production of L-threonine by a microorganism direct fermentation method becomes a cheap industrial production method. Microorganisms capable of producing threonine at present include Escherichia, Corynebacterium, and Serratia. The threonine produced by escherichia coli is commonly applied to microbial fermentation experiments at present, and has the advantages of fast strain propagation, short fermentation period, low cost and the like, but the yield is stably increased but the speed is slower compared with the requirement of the amino acid industry.
Disclosure of Invention
The purpose of the invention is as follows: in order to solve the problems of low yield and long fermentation period when the existing Escherichia coli is used for producing L-threonine by fermentation, the invention provides an Escherichia coli genetic engineering bacterium, further provides a construction method of the Escherichia coli genetic engineering bacterium, and further provides application of the Escherichia coli genetic engineering bacterium in producing L-threonine by fermentation.
The technical scheme is as follows: the invention relates to an escherichia coli genetic engineering bacterium, which is introduced with recombinant plasmid carrying fimH gene. The invention starts from the medical field, most of bacterial infections are closely related to the formation of a biological film, and the reduction of the formation of the biological film is adopted in the medical science to reduce the bacterial infections; the invention firstly proposes that the adhesion of the escherichia coli is increased by increasing the biological membrane amount of the escherichia coli, the adhesion can be adhered to the surface of a non-living organism, and the yield and the fermentation period of the L-threonine in the process of producing the L-threonine by fermentation are improved.
Wherein the original Escherichia coli is CCTCC NO: M2015233; the recombinant plasmid is PET-28a plasmid carrying fimH gene.
The invention further provides a construction method of the escherichia coli genetic engineering bacteria, which comprises the following steps:
(1) extracting the original genome of the escherichia coli;
(2) amplifying fimH gene by using the genome extracted in the step (1) as a template and adopting a PCR technology;
(3) inserting the fimH gene obtained in the step (2) into the NcoI/XbaI enzyme cutting sites of the PET-28a plasmid to obtain a recombinant plasmid carrying the fimH gene;
(4) transforming the recombinant plasmid obtained in the step (3) into a competent cell of E.coli DH5 α, and extracting the recombinant plasmid from E.coli DH5 α;
(5) and (4) transforming the recombinant plasmid extracted in the step (4) into competent cells of original escherichia coli to obtain the escherichia coli genetic engineering bacteria.
Wherein the original escherichia coli in the step (1) is donated from Shanghai Life sciences research institute of Chinese academy of sciences, the escherichia coli is applied for patent 201510199036.1 and is preserved, the preservation number is CCTCC NO: M2015233, and the strain number is CIBTS 1688.
Wherein, the primers used in the PCR in the step (2) are as follows:
fimH-F:GGATAACAATTCCCCTCTAGAATGAAACGAGTTATTACCCTGTTTGC
fimH-R:GATGATGGCTGCTGCCCATGGTTATTGATAAACAAAAGTCACGCCA。
the invention further provides application of the escherichia coli genetic engineering bacteria in fermentation production of L-threonine.
Wherein, the fermentation conditions are as follows: the fermentation temperature is 25-37 ℃, and the fermentation time is 30-32 h.
Has the advantages that: according to the invention, by constructing the escherichia coli genetic engineering bacteria for over-expressing fimH genes, the yield of the biomembrane is increased, the adhesion is increased, the number of flora is increased in the process of producing L-threonine by fermentation of escherichia coli, the yield of L-threonine and the sugar conversion rate are increased, and the fermentation period is shortened.
Drawings
FIG. 1 is an electrophoretogram of the original E.coli genome;
FIG. 2 is an electrophoretogram of fimH gene;
FIG. 3 is an electrophoretogram of recombinant plasmid;
FIG. 4 is a map of a recombinant plasmid;
FIG. 5 is an electron micrograph of the biofilm of strain CIBTS 1688;
FIG. 6 is an electron micrograph of the biofilm of strain CIBTS1688 fimH;
fig. 7 shows the results of fermentation of strain CIBTS1688 and strain CIBTS1688 fimH.
Detailed Description
Example 1
First, extracting original colibacillus CIBTS1688 genome
Kit for extracting bacterial genome (takara minitest bacterial genomic DNA extraction kit ver.3.0) using takara corporation
(1) Activation of glycerol bacteria: 10 mu L of original strain CIBTS1688+5mL of LB liquid medium, and culturing overnight;
wherein the LB liquid culture medium comprises the following formula: sterilizing 10g/L sodium chloride, 10g/L tryptone and 5g/L yeast powder at 121 ℃ for 20 min;
(2) collecting bacterial liquid by using a 1.5mL centrifuge tube (1.2 mL bacterial liquid is filled in each 1.5mL centrifuge tube), centrifuging at 12000rpm for 2min, and discarding the supernatant;
(3) adding 180 mu L of buffer GL, 20 mu L of protease K (20mg/mL) and 10 mu L of RNase A (10mg/mL) into the thallus obtained in the step (2), fully oscillating and uniformly mixing, and carrying out warm bath on the thallus in 56 ℃ for 10min, wherein the solution is transparent and clear;
(4) adding 200 mu L of buffer GB and 200 mu L of absolute ethyl alcohol into the system obtained in the step (3), fully sucking, beating and uniformly mixing;
(5) mounting Spin Column on Collection Tube, transferring the solution obtained in the step (4) into Spin Column, centrifuging at 12000rpm for 2min, and removing the filtrate;
(6) adding 500 μ L Buffer WA into Spin Column, centrifuging at 12000rpm for 1min, and discarding the filtrate;
(7) adding 700 mu L of Buffer WB into Spin Column, centrifuging at 12000rpm for 1min, and removing the filtrate;
(8) buffer WB is added along the periphery of the Spin Column tube wall, which is beneficial to completely washing salt attached to the tube wall;
(9) repeating the operation step (8);
(10) spin Column was mounted on the Collection Tube and centrifuged at 12000rpm for 2 min;
(11) placing Spin Column on a new 1.5mL centrifuge tube, adding 50-200 μ L of sterilized water or Elution Buffer at the center of the Spin Column membrane, and standing at room temperature for 5 min; wherein, the sterilization water is heated to 65 ℃ for use, which is beneficial to improving the elution efficiency;
(12) then, the DNA was eluted by centrifugation at 12000rpm for 2 min. If a larger yield is required, the supernatant can be added into the center of a Spin Column membrane again or 50-200 mu L of sterilized water is added, after standing for 5min at room temperature, the solution is centrifuged at 12000rpm for 2min to elute DNA, and the electrophoresis chart of the original Escherichia coli DNA is shown in figure 1.
Secondly, amplifying the target gene fimH by using PCR technology
(1) Amplifying a target gene fimH by using the DNA obtained in the step one as a template and applying a PCR technology, wherein a reaction system is shown in a table 1;
fimH-F:GGATAACAATTCCCCTCTAGAATGAAACGAGTTATTACCCTGTTTGC
fimH-R:GATGATGGCTGCTGCCCATGGTTATTGATAAACAAAAGTCACGCCA
TABLE 1 PCR reaction System
Figure BDA0001629408810000041
The PCR product (fimH gene fragment) was electrophoresed using 0.8% (0.8g/100mL) agarose gel, and the result is shown in FIG. 2.
(2) Gel recovery purification fragment fimH
Using the TaKaRa kit (TaKaRa MiniBEST Agarose Gel DNA Extraction KitVer.4.0)
2.1 preparing agarose gel by using TBE buffer solution, and then carrying out agarose gel electrophoresis on the target fragment fimH;
2.2 cutting out agarose gel containing target fragment fimH under an ultraviolet lamp, and completely absorbing surface liquid by using a paper towel;
2.3 chopping the rubber blocks and weighing the rubber blocks. When the volume is calculated, the calculation is carried out according to 1mg to 1 μ L;
2.4 adding a dissolving solution Buffer GM into the rubber block, wherein the adding amount of the Buffer GM is less than that of the rubber block, uniformly mixing, dissolving the rubber block at room temperature of 15-25 ℃, and at the moment, intermittently oscillating and mixing to fully dissolve the rubber block;
2.5 placing Spin Colum in the kit on the Collection Tube;
2.6 transferring the solution obtained in the step 2.4 into Spin Column, centrifuging at 1200000 rpm for 1min, and discarding the filtrate;
2.7 adding 700 μ L Buffer WB into Spin Column, centrifuging at 12000rpm for 1min at room temperature, and discarding the filtrate;
2.8 repeating the operation step 2.7;
2.9 Spin Column was mounted on the Collection Tube, centrifuged at 12000rpm for 1min at room temperature, and the filtrate was discarded;
2.10 placing Spin Column in a new centrifuge tube of 1.5mL, adding 30 μ L of sterilized water at the center of the Spin Column membrane, and standing at room temperature for 1 min;
2.11 centrifugation at 12000rpm for 1min at room temperature to elute fimH fragment;
2.12 carrying out agarose gel electrophoresis verification on the purified fimH target fragment, and calculating the concentration; wherein the nucleotide sequence of fimH gene is shown in SEQ ID NO: 1.
thirdly, extracting the plasmid PET-28a
Using the TaKaRa Kit (TaKaRa MiniBEST plasma Purification Kit Ver.4.0)
(1) Selecting a single E.coli DH5 α colony (containing PET-28a, from Koehai Biotechnology Co., Ltd., and having a nucleotide sequence shown in SEQ ID NO: 2) from a plate culture medium, wherein the E.coli DH5 α is purchased from Shanghai Biotechnology engineering (Shanghai) Ltd., NO.B528413, and the preservation method of PET-28a is carried out according to a method in molecular cloning experimental guidance (Huang Petang et al, China, science publishers, 2002, third edition), inoculating the colony to a 5mL LB liquid culture medium containing antibiotics (the resistance is 50 mu g/mL kanamycin), and carrying out overnight culture at 37 ℃ for 12-16 h;
(2) taking 1-4 mL of overnight culture bacterial liquid, centrifuging at 12000rpm for 2min, and removing supernatant;
(3) suspending the bacterial pellet with 250 μ L Solution I (containing RNase A);
(4) adding 250 mu L of Solution II, slightly turning and mixing the mixture up and down for 5-6 times to ensure that the thalli are fully cracked to form a transparent Solution;
(5) adding 350 mu L of Solution III precooled at 4 ℃, slightly turning and mixing the Solution III up and down for 5 to 6 times until compact aggregates are formed, and then standing the aggregates for 2min at room temperature;
(6) centrifuging at 12000rpm for 10min at room temperature, and collecting supernatant;
(7) placing Spin Column in the kit on the Collection Tube;
(8) transferring the supernatant obtained in the step (6) into Spin Column, centrifuging at 12000rpm for 1min, and removing the filtrate;
(9) adding 500 mu L of Buffer WA into Spin Column, centrifuging at 12000rpm for 1min, and removing the filtrate;
(10) adding 700 mu L of Buffer WB into Spin Column, centrifuging at 12000rpm for 1min, and removing the filtrate;
(11) repeating the operation step (10);
(12) placing Spin Column on Collection Tube again, centrifuging at 12000rpm for 1min, and removing residual lotion;
(13) placing Spin Column on a new centrifuge tube of 1.5mL, adding 30-50 μ L of 65 ℃ sterilized water at the center of the Spin Column membrane, and standing at room temperature for 1 min;
(14) centrifuging at 12000rpm for 1min to elute DNA;
(15) and carrying out agarose gel electrophoresis verification on the extracted plasmid PET-28a, and calculating the concentration.
Fourthly, the plasmid PET28a is double digested by restriction enzymes Nco I and Xba I
TABLE 2 enzymatic hydrolysis System
Figure BDA0001629408810000061
Fifthly, connecting the target gene fimH and the plasmid PET28a after double enzyme digestion to obtain a recombinant plasmid PET28a + fimH
One-step cloning kit using Novozan
Figure BDA0001629408810000062
The following reaction systems were prepared in an ice-water bath, see table 3.
TABLE 3 enzyme Linked systems
Figure BDA0001629408810000063
Figure BDA0001629408810000071
Sixthly, the recombinant plasmid PET28a + fimH is transformed into E.coli DH5 α
(1) A tube of 200. mu.L E.coli DH5 α competent cell (No. B528413, Shanghai Biotechnology engineering, Ltd.) suspension was taken out of a-80 ℃ refrigerator, thawed at room temperature, and immediately placed on ice after thawing;
(2) adding the recombinant plasmid PET-28a + fimH solution obtained in the fifth step into E.coli DH5 α competent cell suspension, shaking up gently, and standing on ice for 30 min;
(3) heating in 42 deg.C water bath for 90s, immediately cooling on ice for 5 min;
(4) adding 1mL LB liquid culture medium, mixing, and shake culturing at 37 deg.C for 40min to recover normal growth state of thallus;
(5) shaking the bacterial solution uniformly, coating 100 mu L of the bacterial solution on an LB resistance plate, inverting a culture dish, and culturing for 12 hours in a constant-temperature incubator at 37 ℃;
the formula of the LB resistant plate is as follows: 10g/L of sodium chloride, 10g/L of tryptone, 5g/L of yeast powder and 20g/L of agar powder, sterilizing for 20min at 121 ℃, cooling and adding kanamycin to the final concentration of 50 mu g/mL.
(6) Picking single colony from the resistant plate, preserving bacteria, extracting plasmid PET-28a + fimH according to the third step, carrying out agarose gel electrophoresis verification and sequencing verification on the extracted plasmid PET-28a + fimH, and obtaining a correct result, wherein the result is shown in figure 3, the map of the plasmid PET-28a + fimH is shown in figure 4, and the nucleotide sequence is shown in SEQ ID NO: 3.
seventhly, the recombinant plasmid PET-28a + fimH is transformed into the original escherichia coli
And (3) transforming the correctly verified recombinant plasmid PET-28a + fimH into competent cells of the original strain CIBTS1688 according to the sixth step, picking a single colony, extracting the plasmid according to the third step, and performing sequencing verification to obtain the constructed recombinant Escherichia coli CIBTS1688 fimH.
Wherein, the competent cells of the CIBTS1688 are prepared by the following steps:
(1) transferring 500 μ L of fresh overnight CIBTS1688 cell culture solution obtained by step-glycerol activation to 50mL LB liquid medium, shaking at 37 deg.C for 3h (shaking table 200r/min), and measuring OD600About 0.8-1.0;
(2) transferring 1.5mL of the bacterial culture solution into a centrifugal tube precooled by ice under the aseptic condition, and placing the centrifugal tube on the ice for 10 min;
(3) then centrifuging for 10min at the temperature of 4 ℃ at 4000 r/min;
(4) discarding supernatant, and inverting the centrifuge tube for 1min to drain off residual culture solution;
(5) adding 150 μ L of ice pre-cooled 0.1M CaCl2Resuspending the cells in the aqueous solution, combining the two tubes, and carrying out ice bath for 10 min;
(6) then centrifuging for 10min at the temperature of 4 ℃ at 4000 r/min;
(7) discarding the supernatant, and inverting the centrifuge tube for 1min to drain the residual trace culture solution;
(8) first, 800. mu.L of ice-precooled 0.1M CaCl was added2The aqueous solution was used to resuspend the cells, 25. mu.L of pre-cooled 30% v/v glycerol was added, and the cells were aliquoted and stored at-80 ℃ until use.
Example 2
(1) Adding 100 μ L of glycerobacteria CIBTS1688 and CIBTS1688fimH into sterilized 5mL LB liquid culture medium for overnight culture, and activating;
(2) then diluted according to the ratio of 1:100, and slowly shaken at 37 ℃ for 5h to enable the logarithmic phase OD to be reached6000.8-1.0;
(3) 2mL of the bacterial solution was taken in OD600Measuring the light absorption value, diluting the bacteria solution with sterilized distilled water to obtain diluted bacteria solution OD600Is 0.01;
(4) adding 200 mu L of bacterial liquid into a 96-well plate, taking an LB liquid culture medium as a reference, and culturing at 37 ℃ for 24 h;
(5) pouring out the 96-pore plate bacterial liquid, buffering for 3 times by using pure water, and patting dry;
(6) adding 200 μ L of 1% crystal violet solution into 96-well plate, dyeing for 10min, washing with tap water, and air drying;
(7) adding 33% glacial acetic acid 200 μ L into 96-well plate, dissolving, and gently shaking to obtain OD600Measuring the biofilm yield, and taking an average value: the OD value of CIBTS1688 cultured in a 96-well plate for 24h is 1.9-2.1, the OD value of CIBTS1688fimH cultured in the 96-well plate for 24h is 2.6-2.7, and the electron microscope images of the biological membrane are respectively shown in figure 5 and figure 6.
Example 3
(1) Inoculating 10 μ L of CIBTS1688 and modified CIBTS1688fimH glycerol bacteria in 5mL LB liquid culture medium, culturing at 37 deg.C and 200rpm overnight;
(2) inoculating the bacterial liquid obtained in the step (1) into 50mL LB liquid culture medium according to the volume ratio of 1:10, culturing at 37 ℃ and 200rpm for 2h until the bacterial liquid concentration reaches OD600About 1.0;
(3) inoculating the bacterial liquid into a fermentation culture medium according to the volume ratio of 5%, fermenting at 37 ℃ at 200-250 rpm, finishing the reaction after the glucose is exhausted, and measuring the content of L-threonine in the fermentation liquid by using a high performance liquid chromatograph, wherein the results are shown in table 5 and fig. 7.
The formula of the fermentation medium is as follows: 33g/L of glucose monohydrate, 0.8g/L of sodium chloride, 22g/L of ammonium sulfate, 2.65g/L of dipotassium phosphate trihydrate, 0.8g/L of magnesium sulfate heptahydrate, 0.02g/L of anhydrous copper sulfate, 0.02g/L of ferric sulfate heptahydrate, 0.002g/L of thiamine hydrochloride, 1.0g/L of yeast powder, 30g/L of calcium carbonate and pH 7.2.
The HPLC detection method comprises the following steps:
chromatographic conditions are as follows: sepax AA special column, 4.6 × 150mm, detection wavelength 254nm, column temperature: the sample size was 5. mu.L at 36 ℃.
Preparing a derivative: triethylamine acetonitrile solution: taking 1.4mL of triethylamine, adding 2mL of acetonitrile, and uniformly mixing;
phenyl isothiocyanate acetonitrile solution: adding 2mL of acetonitrile into 25 mu L of phenyl isothiocyanate and mixing uniformly.
Mobile phase A: 15.2g of sodium acetate was weighed, 1850mL of water was added, and after dissolution, the pH was adjusted to 6.5 with glacial acetic acid.
Mobile phase B: 80% acetonitrile (v/v);
flow rate: 0.8mL/min, and data acquisition time of 50 min.
Table 4 shows HPLC gradient elution procedure
Figure BDA0001629408810000091
Table 5 shows the L-threonine production by genetically engineered bacteria
Figure BDA0001629408810000092
Note: the number of the flora is determined after the fermentation is stable, the yield of threonine fermented for 36h by the CIBTS1688 reaches a stable and highest value, the sugar consumption is finished, the yield of threonine fermented for 32h by the CIBTS1688fimH reaches a stable and highest value, and the sugar consumption is finished.
Example 4
The procedure is as in example 3, except that the glucose concentration is 100g/L, and the results are shown in Table 6.
Table 6 shows the L-threonine yields of the genetic engineering bacteria at a glucose concentration of 100g/L
Figure BDA0001629408810000093
Sequence listing
<110> Nanjing university of industry
<120> escherichia coli genetic engineering bacterium and construction method and application thereof
<160>3
<170>SIPOSequenceListing 1.0
<210>1
<211>903
<212>DNA
<213>FimH
<400>1
atgaaacgag ttattaccct gtttgctgta ctgctgatgg gctggtcggt aaatgcctgg 60
tcattcgcct gtaaaaccgc caatggtacc gctatcccta ttggcggtgg cagcgccaat 120
gtttatgtaa accttgcgcc cgtcgtgaat gtggggcaaa acctggtcgt ggatctttcg 180
acgcaaatct tttgccataa cgattatccg gaaaccatta cagactatgt cacactgcaa 240
cgaggctcgg cttatggcgg cgtgttatct aatttttccg ggaccgtaaa atatagtggc 300
agtagctatc catttcctac caccagcgaa acgccgcgcg ttgtttataa ttcgagaacg 360
gataagccgt ggccggtggc gctttatttg acgcctgtga gcagtgcggg cggggtggcg 420
attaaagctg gctcattaat tgccgtgctt attttgcgac agaccaacaa ctataacagc 480
gatgatttcc agtttgtgtg gaatatttac gccaataatg atgtggtggt gcctactggc 540
ggctgcgatg tttctgctcg tgatgtcacc gttactctgc cggactaccc tggttcagtg 600
ccaattcctc ttaccgttta ttgtgcgaaa agccaaaacc tggggtatta cctctccggc 660
acaaccgcag atgcgggcaa ctcgattttc accaataccg cgtcgttttc acctgcacag 720
ggcgtcggcg tacagttgac gcgcaacggt acgattattc cagcgaataa cacggtatcg 780
ttaggagcag tagggacttc ggcggtgagt ctgggattaa cggcaaatta tgcacgtacc 840
ggagggcagg tgactgcagg gaatgtgcaa tcgattattg gcgtgacttt tgtttatcaa 900
taa 903
<210>2
<211>5369
<212>DNA
<213>PET-28a
<400>2
atccggatat agttcctcct ttcagcaaaa aacccctcaa gacccgttta gaggccccaa 60
ggggttatgc tagttattgc tcagcggtgg cagcagccaa ctcagcttcc tttcgggctt 120
tgttagcagc cggatctcag tggtggtggt ggtggtgctc gagtgcggcc gcaagcttgt 180
cgacggagct cgaattcgga tccgcgaccc atttgctgtc caccagtcat gctagccata 240
tggctgccgc gcggcaccag gccgctgctg tgatgatgat gatgatggct gctgcccatg 300
gtatatctcc ttcttaaagt taaacaaaat tatttctaga ggggaattgt tatccgctca 360
caattcccct atagtgagtc gtattaattt cgcgggatcg agatctcgat cctctacgcc 420
ggacgcatcg tggccggcat caccggcgcc acaggtgcgg ttgctggcgc ctatatcgcc 480
gacatcaccg atggggaaga tcgggctcgc cacttcgggc tcatgagcgc ttgtttcggc 540
gtgggtatgg tggcaggccc cgtggccggg ggactgttgg gcgccatctc cttgcatgca 600
ccattccttg cggcggcggt gctcaacggc ctcaacctac tactgggctg cttcctaatg 660
caggagtcgc ataagggaga gcgtcgagat cccggacacc atcgaatggc gcaaaacctt 720
tcgcggtatg gcatgatagc gcccggaaga gagtcaattc agggtggtga atgtgaaacc 780
agtaacgtta tacgatgtcg cagagtatgc cggtgtctct tatcagaccg tttcccgcgt 840
ggtgaaccag gccagccacg tttctgcgaa aacgcgggaa aaagtggaag cggcgatggc 900
ggagctgaat tacattccca accgcgtggc acaacaactg gcgggcaaac agtcgttgct 960
gattggcgtt gccacctcca gtctggccct gcacgcgccg tcgcaaattg tcgcggcgat 1020
taaatctcgc gccgatcaac tgggtgccag cgtggtggtg tcgatggtag aacgaagcgg 1080
cgtcgaagcc tgtaaagcgg cggtgcacaa tcttctcgcg caacgcgtca gtgggctgat 1140
cattaactat ccgctggatg accaggatgc cattgctgtg gaagctgcct gcactaatgt 1200
tccggcgtta tttcttgatg tctctgacca gacacccatc aacagtatta ttttctccca 1260
tgaagacggt acgcgactgg gcgtggagca tctggtcgca ttgggtcacc agcaaatcgc 1320
gctgttagcg ggcccattaa gttctgtctc ggcgcgtctg cgtctggctg gctggcataa 1380
atatctcact cgcaatcaaa ttcagccgat agcggaacgg gaaggcgact ggagtgccat 1440
gtccggtttt caacaaacca tgcaaatgct gaatgagggc atcgttccca ctgcgatgct 1500
ggttgccaac gatcagatgg cgctgggcgc aatgcgcgcc attaccgagt ccgggctgcg 1560
cgttggtgcg gatatctcgg tagtgggata cgacgatacc gaagacagct catgttatat 1620
cccgccgtta accaccatca aacaggattt tcgcctgctg gggcaaacca gcgtggaccg 1680
cttgctgcaa ctctctcagg gccaggcggt gaagggcaat cagctgttgc ccgtctcact 1740
ggtgaaaaga aaaaccaccc tggcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 1800
cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca 1860
acgcaattaa tgtaagttag ctcactcatt aggcaccggg atctcgaccg atgcccttga 1920
gagccttcaa cccagtcagc tccttccggt gggcgcgggg catgactatc gtcgccgcac 1980
ttatgactgt cttctttatc atgcaactcg taggacaggt gccggcagcg ctctgggtca 2040
ttttcggcga ggaccgcttt cgctggagcg cgacgatgat cggcctgtcg cttgcggtat 2100
tcggaatctt gcacgccctc gctcaagcct tcgtcactgg tcccgccacc aaacgtttcg 2160
gcgagaagca ggccattatc gccggcatgg cggccccacg ggtgcgcatg atcgtgctcc 2220
tgtcgttgag gacccggcta ggctggcggg gttgccttac tggttagcag aatgaatcac 2280
cgatacgcga gcgaacgtga agcgactgct gctgcaaaac gtctgcgacc tgagcaacaa 2340
catgaatggt cttcggtttc cgtgtttcgt aaagtctgga aacgcggaag tcagcgccct 2400
gcaccattat gttccggatc tgcatcgcag gatgctgctg gctaccctgt ggaacaccta 2460
catctgtatt aacgaagcgc tggcattgac cctgagtgat ttttctctgg tcccgccgca 2520
tccataccgc cagttgttta ccctcacaac gttccagtaa ccgggcatgt tcatcatcag 2580
taacccgtat cgtgagcatc ctctctcgtt tcatcggtat cattaccccc atgaacagaa 2640
atccccctta cacggaggca tcagtgacca aacaggaaaa aaccgccctt aacatggccc 2700
gctttatcag aagccagaca ttaacgcttc tggagaaact caacgagctg gacgcggatg 2760
aacaggcaga catctgtgaa tcgcttcacg accacgctga tgagctttac cgcagctgcc 2820
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 2880
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 2940
ttggcgggtg tcggggcgca gccatgaccc agtcacgtag cgatagcgga gtgtatactg 3000
gcttaactat gcggcatcag agcagattgt actgagagtg caccatatat gcggtgtgaa 3060
ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gctcttccgc ttcctcgctc 3120
actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg 3180
gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc 3240
cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc 3300
ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga 3360
ctataaagat accaggcgtt tccccctgga agctccctcg tgcgctctcc tgttccgacc 3420
ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat 3480
agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct gggctgtgtg 3540
cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc 3600
aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga 3660
gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact 3720
agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt 3780
ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag 3840
cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg 3900
tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgaa caataaaact 3960
gtctgcttac ataaacagta atacaagggg tgttatgagc catattcaac gggaaacgtc 4020
ttgctctagg ccgcgattaa attccaacat ggatgctgat ttatatgggt ataaatgggc 4080
tcgcgataat gtcgggcaat caggtgcgac aatctatcga ttgtatggga agcccgatgc 4140
gccagagttg tttctgaaac atggcaaagg tagcgttgcc aatgatgtta cagatgagat 4200
ggtcagacta aactggctga cggaatttat gcctcttccg accatcaagc attttatccg 4260
tactcctgat gatgcatggt tactcaccac tgcgatcccc gggaaaacag cattccaggt 4320
attagaagaa tatcctgatt caggtgaaaa tattgttgat gcgctggcag tgttcctgcg 4380
ccggttgcat tcgattcctg tttgtaattg tccttttaac agcgatcgcg tatttcgtct 4440
cgctcaggcg caatcacgaa tgaataacgg tttggttgat gcgagtgatt ttgatgacga 4500
gcgtaatggc tggcctgttg aacaagtctg gaaagaaatg cataaacttt tgccattctc 4560
accggattca gtcgtcactc atggtgattt ctcacttgat aaccttattt ttgacgaggg 4620
gaaattaata ggttgtattg atgttggacg agtcggaatc gcagaccgat accaggatct 4680
tgccatccta tggaactgcc tcggtgagtt ttctccttca ttacagaaac ggctttttca 4740
aaaatatggt attgataatc ctgatatgaa taaattgcag tttcatttga tgctcgatga 4800
gtttttctaa gaattaattc atgagcggat acatatttga atgtatttag aaaaataaac 4860
aaataggggt tccgcgcaca tttccccgaa aagtgccacc tgaaattgta aacgttaata 4920
ttttgttaaa attcgcgtta aatttttgtt aaatcagctc attttttaac caataggccg 4980
aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg agtgttgttc 5040
cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa 5100
ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt 5160
cgaggtgccg taaagcacta aatcggaacc ctaaagggag cccccgattt agagcttgac 5220
ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta 5280
gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc gcgcttaatg 5340
cgccgctaca gggcgcgtcc cattcgcca 5369
<210>3
<211>6227
<212>DNA
<213>PET-28a+fimH
<400>3
atccggatat agttcctcct ttcagcaaaa aacccctcaa gacccgttta gaggccccaa 60
ggggttatgc tagttattgc tcagcggtgg cagcagccaa ctcagcttcc tttcgggctt 120
tgttagcagc cggatctcag tggtggtggt ggtggtgctc gagtgcggcc gcaagcttgt 180
cgacggagct cgaattcgga tccgcgaccc atttgctgtc caccagtcat gctagccata 240
tggctgccgc gcggcaccag gccgctgctg tgatgatgat gatgatggct gctgcttatt 300
gataaacaaa agtcacgcca ataatcgatt gcacattccc tgcagtcacc tgccctccgg 360
tacgtgcata atttgccgtt aatcccagac tcaccgccga agtccctact gctcctaacg 420
ataccgtgtt attcgctgga ataatcgtac cgttgcgcgt caactgtacg ccgacgccct 480
gtgcaggtga aaacgacgcg gtattggtga aaatcgagtt gcccgcatct gcggttgtgc 540
cggagaggta ataccccagg ttttggcttt tcgcacaata aacggtaaga ggaattggca 600
ctgaaccagg gtagtccggc agagtaacgg tgacatcacg agcagaaaca tcgcagccgc 660
cagtaggcac caccacatca ttattggcgt aaatattcca cacaaactgg aaatcatcgc 720
tgttatagtt gttggtctgt cgcaaaataa gcacggcaat taatgagcca gctttaatcg 780
ccaccccgcc cgcactgctc acaggcgtca aataaagcgc caccggccac ggcttatccg 840
ttctcgaatt ataaacaacg cgcggcgttt cgctggtggt aggaaatgga tagctactgc 900
cactatattt tacggtcccg gaaaaattag ataacacgcc gccataagcc gagcctcgtt 960
gcagtgtgac atagtctgta atggtttccg gataatcgtt atggcaaaag atttgcgtcg 1020
aaagatccac gaccaggttt tgccccacat tcacgacggg cgcaaggttt acataaacat 1080
tggcgctgcc accgccaata gggatagcgg taccattggc ggttttacag gcgaatgacc 1140
aggcatttac cgaccagccc atcagcagta cagcaaacag ggtaataact cgtttcatgg 1200
ggaattgtta tccgctcaca attcccctat agtgagtcgt attaatttcg cgggatcgag 1260
atctcgatcc tctacgccgg acgcatcgtg gccggcatca ccggcgccac aggtgcggtt 1320
gctggcgcct atatcgccga catcaccgat ggggaagatc gggctcgcca cttcgggctc 1380
atgagcgctt gtttcggcgt gggtatggtg gcaggccccg tggccggggg actgttgggc 1440
gccatctcct tgcatgcacc attccttgcg gcggcggtgc tcaacggcct caacctacta 1500
ctgggctgct tcctaatgca ggagtcgcat aagggagagc gtcgagatcc cggacaccat 1560
cgaatggcgc aaaacctttc gcggtatggc atgatagcgc ccggaagaga gtcaattcag 1620
ggtggtgaat gtgaaaccag taacgttata cgatgtcgca gagtatgccg gtgtctctta 1680
tcagaccgtt tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa 1740
agtggaagcg gcgatggcgg agctgaatta cattcccaac cgcgtggcac aacaactggc 1800
gggcaaacag tcgttgctga ttggcgttgc cacctccagt ctggccctgc acgcgccgtc 1860
gcaaattgtc gcggcgatta aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc 1920
gatggtagaa cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca 1980
acgcgtcagt gggctgatca ttaactatcc gctggatgac caggatgcca ttgctgtgga 2040
agctgcctgc actaatgttc cggcgttatt tcttgatgtc tctgaccaga cacccatcaa 2100
cagtattatt ttctcccatg aagacggtac gcgactgggc gtggagcatc tggtcgcatt 2160
gggtcaccag caaatcgcgc tgttagcggg cccattaagt tctgtctcggcgcgtctgcg 2220
tctggctggc tggcataaat atctcactcg caatcaaatt cagccgatag cggaacggga 2280
aggcgactgg agtgccatgt ccggttttca acaaaccatg caaatgctga atgagggcat 2340
cgttcccact gcgatgctgg ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat 2400
taccgagtcc gggctgcgcg ttggtgcgga tatctcggta gtgggatacg acgataccga 2460
agacagctca tgttatatcc cgccgttaac caccatcaaa caggattttc gcctgctggg 2520
gcaaaccagc gtggaccgct tgctgcaact ctctcagggc caggcggtga agggcaatca 2580
gctgttgccc gtctcactgg tgaaaagaaa aaccaccctg gcgcccaata cgcaaaccgc 2640
ctctccccgc gcgttggccg attcattaat gcagctggca cgacaggttt cccgactgga 2700
aagcgggcag tgagcgcaac gcaattaatg taagttagct cactcattag gcaccgggat 2760
ctcgaccgat gcccttgaga gccttcaacc cagtcagctc cttccggtgg gcgcggggca 2820
tgactatcgt cgccgcactt atgactgtct tctttatcat gcaactcgta ggacaggtgc 2880
cggcagcgct ctgggtcatt ttcggcgagg accgctttcg ctggagcgcg acgatgatcg 2940
gcctgtcgct tgcggtattc ggaatcttgc acgccctcgc tcaagccttc gtcactggtc 3000
ccgccaccaa acgtttcggc gagaagcagg ccattatcgc cggcatggcg gccccacggg 3060
tgcgcatgat cgtgctcctg tcgttgagga cccggctagg ctggcggggt tgccttactg 3120
gttagcagaa tgaatcaccg atacgcgagc gaacgtgaag cgactgctgc tgcaaaacgt 3180
ctgcgacctg agcaacaaca tgaatggtct tcggtttccg tgtttcgtaa agtctggaaa 3240
cgcggaagtc agcgccctgc accattatgt tccggatctg catcgcagga tgctgctggc 3300
taccctgtgg aacacctaca tctgtattaa cgaagcgctg gcattgaccc tgagtgattt 3360
ttctctggtc ccgccgcatc cataccgcca gttgtttacc ctcacaacgt tccagtaacc 3420
gggcatgttc atcatcagta acccgtatcg tgagcatcct ctctcgtttc atcggtatca 3480
ttacccccat gaacagaaat cccccttaca cggaggcatc agtgaccaaa caggaaaaaa 3540
ccgcccttaa catggcccgc tttatcagaa gccagacatt aacgcttctg gagaaactca 3600
acgagctgga cgcggatgaa caggcagaca tctgtgaatc gcttcacgac cacgctgatg 3660
agctttaccg cagctgcctc gcgcgtttcg gtgatgacgg tgaaaacctc tgacacatgc 3720
agctcccgga gacggtcaca gcttgtctgt aagcggatgc cgggagcaga caagcccgtc 3780
agggcgcgtc agcgggtgtt ggcgggtgtc ggggcgcagc catgacccag tcacgtagcg 3840
atagcggagt gtatactggc ttaactatgc ggcatcagag cagattgtac tgagagtgca 3900
ccatatatgc ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg catcaggcgc 3960
tcttccgctt cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta 4020
tcagctcact caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag 4080
aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg 4140
tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg 4200
tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg 4260
cgctctcctg ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga 4320
agcgtggcgc tttctcatag ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc 4380
tccaagctgg gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt 4440
aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact 4500
ggtaacagga ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg 4560
cctaactacg gctacactag aaggacagta tttggtatct gcgctctgct gaagccagtt 4620
accttcggaa aaagagttgg tagctcttga tccggcaaac aaaccaccgc tggtagcggt 4680
ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct 4740
ttgatctttt ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg 4800
gtcatgaaca ataaaactgt ctgcttacat aaacagtaat acaaggggtg ttatgagcca 4860
tattcaacgg gaaacgtctt gctctaggcc gcgattaaat tccaacatgg atgctgattt 4920
atatgggtat aaatgggctc gcgataatgt cgggcaatca ggtgcgacaa tctatcgatt 4980
gtatgggaag cccgatgcgc cagagttgtt tctgaaacat ggcaaaggta gcgttgccaa 5040
tgatgttaca gatgagatgg tcagactaaa ctggctgacg gaatttatgc ctcttccgac 5100
catcaagcat tttatccgta ctcctgatga tgcatggtta ctcaccactg cgatccccgg 5160
gaaaacagca ttccaggtat tagaagaata tcctgattca ggtgaaaata ttgttgatgc 5220
gctggcagtg ttcctgcgcc ggttgcattc gattcctgtt tgtaattgtc cttttaacag 5280
cgatcgcgta tttcgtctcg ctcaggcgca atcacgaatg aataacggtt tggttgatgc 5340
gagtgatttt gatgacgagc gtaatggctg gcctgttgaa caagtctgga aagaaatgca 5400
taaacttttg ccattctcac cggattcagt cgtcactcat ggtgatttct cacttgataa 5460
ccttattttt gacgagggga aattaatagg ttgtattgat gttggacgag tcggaatcgc 5520
agaccgatac caggatcttg ccatcctatg gaactgcctc ggtgagtttt ctccttcatt 5580
acagaaacgg ctttttcaaa aatatggtat tgataatcct gatatgaata aattgcagtt 5640
tcatttgatg ctcgatgagt ttttctaaga attaattcat gagcggatac atatttgaat 5700
gtatttagaa aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg 5760
aaattgtaaa cgttaatatt ttgttaaaat tcgcgttaaa tttttgttaa atcagctcat 5820
tttttaacca ataggccgaa atcggcaaaa tcccttataa atcaaaagaa tagaccgaga 5880
tagggttgag tgttgttcca gtttggaaca agagtccact attaaagaac gtggactcca 5940
acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc actacgtgaa ccatcaccct 6000
aatcaagttt tttggggtcg aggtgccgta aagcactaaa tcggaaccct aaagggagcc 6060
cccgatttag agcttgacgg ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag 6120
cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca 6180
cacccgccgc gcttaatgcg ccgctacagg gcgcgtccca ttcgcca 6227

Claims (6)

1. The application of the escherichia coli genetic engineering bacteria in fermentation production of L-threonine is characterized in that the escherichia coli genetic engineering bacteria are obtained by introducing recombinant plasmids carrying fimH genes into original escherichia coli.
2. The use according to claim 1, wherein the original E.coli strain is CCTCC NO: M2015233.
3. The use according to claim 1, wherein the recombinant plasmid is a PET-28a plasmid carrying the fimH gene.
4. The use of any one of claims 1 to 3, wherein the construction method of the Escherichia coli genetically engineered bacteria comprises the following steps:
(1) extracting the original genome of the escherichia coli;
(2) amplifying fimH gene by using the genome extracted in the step (1) as a template and adopting a PCR technology;
(3) inserting the fimH gene obtained in the step (2) into the NcoI/XbaI enzyme cutting sites of the PET-28a plasmid to obtain a recombinant plasmid carrying the fimH gene;
(4) transforming the recombinant plasmid obtained in the step (3) into a competent cell of E.coli DH5 α, and extracting the recombinant plasmid from E.coli DH5 α;
(5) and (4) transforming the recombinant plasmid extracted in the step (4) into competent cells of original escherichia coli to obtain the escherichia coli genetic engineering bacteria.
5. The use of claim 4, wherein the primers used in the PCR of step (2) are as follows:
fimH-F:GGATAACAATTCCCCTCTAGAATGAAACGAGTTATTACCCTGTTTGC
fimH-R:GATGATGGCTGCTGCCCATGGTTATTGATAAACAAAAGTCACGCCA。
6. use according to claim 1, characterized in that the fermentation conditions are as follows: the fermentation temperature is 25-37 ℃, and the fermentation time is 30-32 h.
CN201810336575.9A 2018-04-16 2018-04-16 Escherichia coli genetic engineering bacterium and construction method and application thereof Active CN108531439B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810336575.9A CN108531439B (en) 2018-04-16 2018-04-16 Escherichia coli genetic engineering bacterium and construction method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810336575.9A CN108531439B (en) 2018-04-16 2018-04-16 Escherichia coli genetic engineering bacterium and construction method and application thereof

Publications (2)

Publication Number Publication Date
CN108531439A CN108531439A (en) 2018-09-14
CN108531439B true CN108531439B (en) 2020-04-07

Family

ID=63481192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810336575.9A Active CN108531439B (en) 2018-04-16 2018-04-16 Escherichia coli genetic engineering bacterium and construction method and application thereof

Country Status (1)

Country Link
CN (1) CN108531439B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266578B (en) * 2018-09-25 2020-06-23 江苏澳创生物科技有限公司 Escherichia coli ACThr1032 and application thereof in fermentation production of L-threonine
CN109576198B (en) * 2018-11-09 2022-06-07 南京工业大学 Recombinant escherichia coli with fimA gene knocked out, and construction method and application thereof
CN110079567B (en) * 2019-05-13 2021-01-26 南京工业大学 Application of recombinant escherichia coli for overexpression of fimH gene in fermentation production of amino acid
CN110055205B (en) * 2019-05-13 2020-09-01 南京工业大学 Recombinant escherichia coli with fimH gene knocked out and construction method and application thereof
CN114015678A (en) * 2021-09-30 2022-02-08 中南民族大学 Aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 as well as recombinant strain and application thereof
CN114317389B (en) * 2021-12-22 2023-06-13 南京工业大学 Method for producing L-threonine by co-culture fermentation of recombinant escherichia coli

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078039A1 (en) * 2005-01-18 2006-07-27 Ajinomoto Co., Inc. L-amino acid producing microorganism and a method for producing l-amino acid
CN104870464A (en) * 2012-07-24 2015-08-26 国家科研中心 Multimeric mannosides, a process for preparing the same and their uses as a drug
CN104862329A (en) * 2015-04-23 2015-08-26 上海工业生物技术研发中心 L-threonine genetic engineering production bacteria
CN105176906A (en) * 2015-10-20 2015-12-23 上海工业生物技术研发中心 L-threonine gene engineering producing strain
CN106062203A (en) * 2013-10-11 2016-10-26 格林考瓦因有限公司 Methods of host cell modification
CN106535927A (en) * 2014-02-24 2017-03-22 格林考瓦因有限公司 Novel polysaccharide and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307301A (en) * 2007-05-17 2008-11-19 浙江升华拜克生物股份有限公司 L-tryptophan genetic engineering bacterium and process for producing L-tryptophan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078039A1 (en) * 2005-01-18 2006-07-27 Ajinomoto Co., Inc. L-amino acid producing microorganism and a method for producing l-amino acid
CN104870464A (en) * 2012-07-24 2015-08-26 国家科研中心 Multimeric mannosides, a process for preparing the same and their uses as a drug
CN106062203A (en) * 2013-10-11 2016-10-26 格林考瓦因有限公司 Methods of host cell modification
CN106535927A (en) * 2014-02-24 2017-03-22 格林考瓦因有限公司 Novel polysaccharide and uses thereof
CN104862329A (en) * 2015-04-23 2015-08-26 上海工业生物技术研发中心 L-threonine genetic engineering production bacteria
CN105176906A (en) * 2015-10-20 2015-12-23 上海工业生物技术研发中心 L-threonine gene engineering producing strain

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
尹晓琳等.尿路致病性大肠杆菌Ⅰ型菌毛fimH和fimC基因原核表达质粒的构建及表达.《中国人兽共患病学报》.2007,第23卷(第11期), *
尿路致病性大肠杆菌Ⅰ型菌毛fimH和fimC基因原核表达质粒的构建及表达;尹晓琳等;《中国人兽共患病学报》;20071231;第23卷(第11期);第1131-1134页,参见摘要,材料和方法 *

Also Published As

Publication number Publication date
CN108531439A (en) 2018-09-14

Similar Documents

Publication Publication Date Title
CN108531439B (en) Escherichia coli genetic engineering bacterium and construction method and application thereof
CN109679989A (en) A method of improving base editing system editorial efficiency
CN112725256B (en) Recombinant escherichia coli and method for biosynthesizing diosmetin by using recombinant escherichia coli
KR20130116858A (en) Extraction solvents derived from oil for alcohol removal in extractive fermentation
US11702640B2 (en) Monooxygenase mutant, preparation method and application thereof
KR102276373B1 (en) Gene therapy DNA vector VTvaf17, production method; E. coli strain SCS110-AF, production method; E. coli strain SCS110-AF/VTvaf17 having gene therapy DNA vector VTvaf17, production method
CN108026556A (en) The generation of human milk oligosaccharides in the microbial hosts with engineered input/output
CN109825488A (en) A kind of new method carrying out xylanase secretion expression in Escherichia coli
KR20150014953A (en) Ketol-acid reductoisomerase enzymes and methods of use
KR20100118973A (en) Compositions and methods for producing isoprene
KR20140092759A (en) Host cells and methods for production of isobutanol
KR20120099509A (en) Expression of hexose kinase in recombinant host cells
CN113512577A (en) Methods for nucleic acid assembly and high throughput sequencing
CN111378679A (en) Gene expression assembly and cloning vector constructed by same and application of gene expression assembly
CN109825520A (en) A kind of new method carrying out gene assembly using improved CRISPR-Cpf1
CN114410560B (en) Engineering strain for high-yield FK228 and construction and application thereof
CN111607545B (en) Recombinant bacterium for high-yield farnesene as well as construction method and application thereof
US6156544A (en) Process for the preparation of N-acetylneuraminic acid
CN112375781B (en) Application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing
CN112280799B (en) Method for site-directed mutagenesis of hevea brasiliensis or dandelion gene by using CRISPR/Cas9 system
CN109266673A (en) A kind of coli expression carrier pBMcopA and its application
CN108728389B (en) Escherichia coli engineering bacterium for producing 2,3,5, 6-tetramethylpyrazine and application thereof
CN111909918B (en) Endolysin mutant and coding gene and application thereof
CN101892259B (en) SiRNA plant gene expression vector and construction method and application thereof
CN114540400A (en) CRISPR/Cpf1 efficient genome editing technology for corynebacterium glutamicum

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant