CN114015678A - Aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 as well as recombinant strain and application thereof - Google Patents

Aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 as well as recombinant strain and application thereof Download PDF

Info

Publication number
CN114015678A
CN114015678A CN202111166141.7A CN202111166141A CN114015678A CN 114015678 A CN114015678 A CN 114015678A CN 202111166141 A CN202111166141 A CN 202111166141A CN 114015678 A CN114015678 A CN 114015678A
Authority
CN
China
Prior art keywords
amp0279
aminopeptidase
recombinant
pht43
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111166141.7A
Other languages
Chinese (zh)
Inventor
熊海容
胡晓敏
赵普瑛
张萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South Central Minzu University
Original Assignee
South Central University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South Central University for Nationalities filed Critical South Central University for Nationalities
Priority to CN202111166141.7A priority Critical patent/CN114015678A/en
Publication of CN114015678A publication Critical patent/CN114015678A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/485Exopeptidases (3.4.11-3.4.19)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus

Abstract

The invention discloses a gene of aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 and application thereofThe amino acid sequence constructs a recombinant plasmid containing the enzyme coding gene, recombinant Escherichia coli BL21(pET28a-amp0279) and recombinant Bacillus subtilis WB800N (pHT43-amp 0279). The enzyme is heterologously expressed in escherichia coli, purified by a nickel column affinity chromatography method, and the enzymological property of the purified protein is detected by taking Leu-pNA as a substrate. The optimum reaction conditions of the aminopeptidase Amp0279 provided by the invention are that the enzyme activity is stable at 50 ℃, the pH is 8.0, the enzyme activity is stable at 40-55 ℃ and the pH is 6.0-9.0, and 100 mu MCo is added2+Then, the specific enzyme activity can reach 35383U/mg, and the method is suitable for industrial fields of feed, food, brewing, medicine and the like.

Description

Aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 as well as recombinant strain and application thereof
Technical Field
The invention belongs to the field of protein engineering and genetic engineering, and particularly relates to aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41, and a recombinant strain and application thereof.
Background
During food processing processes such as fermentation and aging, proteins can be hydrolyzed into small molecular substances such as polypeptides or amino acids by protease and peptidase, or sensitization epitopes are destroyed, so that sensitization potential is reduced, and the food is more beneficial to human body to take and absorb. Protein hydrolysates are therefore widely used in the food industry. However, the protein hydrolysis process generates bitter peptides, which affect the flavor of food and hinder the popularization of protein hydrolysates. Aminopeptidases (EC 3.4.11.-) are enzymes with debittering effect on protein hydrolysate, and can specifically hydrolyze hydrophobic amino acid residues at the amino terminal of bitter peptide, release one to three amino acids at a time, destroy the structure of bitter peptide and achieve debittering effect. Aminopeptidases are widely present in fungi, animals and plants, are of a wide variety, and are often named subtypes by their localization regions (e.g., cell membrane, cytoplasm). Aminopeptidases can also be classified, like carboxypeptidases, by the active center into serine aminopeptidases, metalloaminopeptidases and cysteine aminopeptidases. More than 70% of aminopeptidases are metalloenzymes, the active center of which contains one or two divalent metal ions, the common metal ion being Zn2+、Co2+And Mn2+Etc., which have a stabilizing effect on the protein structure of the enzyme. Aminopeptidases can also be divided into three classes according to the substrate: one is an aminopeptidase with broad specificity, such as leucyl aminopeptidase, membrane and cytoplasmic alanyl aminopeptidase, and the like; secondly, the specificity of stenosisAminopeptidases of (a), such as aminopeptidase B which prefers basic amino acid substrates, glutamyl-peptidase which prefers acidic amino acid substrates, aspartyl-amido peptidase, cysteinyl-amido peptidase which prefers specific amino acids, methionine-amido peptidase, prolinamido peptidase, etc.; and thirdly, an enzyme for cutting the short peptide with 2-3 amino acids at the amino terminal. Aminopeptidase can be used as flavourzyme for removing bitter taste of polypeptide in food processing processes such as baking, brewing and cheese making; in addition, aminopeptidases can be applied to the synthesis of biological peptides and amino acids and are found to be more efficient than chemical synthesis; moreover, aminopeptidases are capable of hydrolysing organophosphorus compounds and are therefore of nutritional, biological and ecological significance. Currently, there are few commercially available aminopeptidases with a single hydrolysis site. The method for mining the new aminopeptidase has important application and popularization values.
Lysinibacillus sphaericus (Lysinibacillus sphaericus) is a spore-forming gram-positive bacterium. Some strains have specific poisoning effect on mosquitoes or capability of inhibiting pathogenic (true) bacteria and even tumor cells and the like; meanwhile, the genus bacteria has special metabolic synthesis capacity and shows wide application prospects in the fields of vector mosquito biological control, energy utilization, plant protection and the like. The spherical lysine bacillus cannot metabolize sugars. Compared with Bacillus cereus and Bacillus subtilis, the polypeptide has more abundant amino acid transport and metabolism coding genes. And the mosquito-killing toxin protein expressed in the wild strain is dominant, and the yield of other proteins is less. Therefore, it is speculated that the amino acid related protease may have higher activity and meet the metabolic demand of the protease on the amino acid. Therefore, the aminopeptidase-encoding gene of Bacillus lysinibacillus sphaericus can be utilized.
Disclosure of Invention
In order to achieve the aim, the technical scheme provided by the invention is that aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 has a nucleic acid sequence shown in SEQ ID NO. 1.
And the amino acid sequence is shown as SEQ ID NO. 2.
A recombinant plasmid pHT43-Amp0279 comprising the aminopeptidase Amp0279 coding sequence, wherein: the nucleic acid sequence of the recombinant plasmid pHT43-amp0279 is shown in SEQ ID NO: 4.
And a recombinant strain containing the recombinant plasmid pHT43-amp 0279.
The recombinant strain is Bacillus subtilis WB800N (pHT43-amp0279), and is preserved in China center for type culture Collection with the address: china, wuhan university; the zip code 430072 has a preservation date of 2021, 9 months and 29 days, and has a preservation number of: CCTCC NO: m20211237, taxonomic nomenclature Bacillus subtilis.
And the application of the recombinant strain in expressing the product aminopeptidase Amp 0279.
And the application of the expression product aminopeptidase Amp0279 in feed, food, brewing or medicine.
A recombinant plasmid pET28a-Amp0279 comprising the coding sequence for aminopeptidase Amp0279, wherein: the nucleic acid sequence of the recombinant plasmid pET28a-amp0279 is shown in SEQ ID NO 3.
And a recombinant strain Escherichia coli BL21(pET28a-amp0279) containing the recombinant plasmid pET28a-amp 0279.
The beneficial effect of this scheme lies in: 1. through means such as bioinformatics prediction, vector construction by genetic engineering technology, biochemical analysis and the like, the aminopeptidase Amp0279 gene sequence derived from the spherical lysine bacillus C3-41 is obtained;
2. constructing an aminopeptidase encoding gene amp0279 derived from the lysinibacillus sphaericus into an escherichia coli expression vector to obtain a recombinant plasmid pHT43-amp0279, and transforming escherichia coli to obtain a recombinant strain BL21(pET28a-amp 0279);
3. after purifying the enzyme expressed by secretion, Leu-pNA is used as a substrate, and the enzymatic property is detected by using a p-nitroaniline method to determine the optimal reaction condition. Finally, the aminopeptidase Amp0279 provided by the invention is determined to belong to a novel Co family of M292+The dependent aminopeptidase has optimum reaction temperature of 50 deg.C, optimum reaction pH of 8.0, stable enzyme activity at 40-55 deg.C and pH of 6.0-9.0, and is added with 100 μ MCo2+Then, the specific enzyme activity can reach 35383U/mg, and the method is suitable for useIn the industrial fields of feed, food, brewing, medicine, and the like;
4. meanwhile, in consideration of the complicated, time-consuming and cost-increasing purification and label removal process required by an Escherichia coli expression system, the secretory expression system of aminopeptidase Amp0279 is further developed, and a more excellent recombinant plasmid pHT43-Amp0279 and a recombinant strain Bacillus subtilis WB800N (pHT43-Amp0279) are obtained.
Drawings
FIG. 1Amp0279 amino acid sequence alignment
FIG. 2Amp0279 three-dimensional Structure drawing (SWISS MODEL)
FIG. 3 detection of Amp0279 after purification
FIG. 4Amp0279 optimum temperature analysis
FIG. 5Amp0279 optimum pH analysis
FIG. 6Amp0279 thermal stability analysis
FIG. 7Amp0279 pH stability assay
FIG. 8 Effect of different Metal ions and EDTA on Amp0279 Activity
FIG. 9 different concentrations of Co2+Effect on Amp0279 Activity
FIG. 10Western blot for detecting Amp0279 secretion expression in genetically engineered strain WB800N (pHT43-Amp0279)
FIG. 11 detection of secreted Amp0279 crude enzyme activity.
Detailed Description
The present invention will be described in detail with reference to the accompanying drawings and examples, and the present invention is not limited to the examples.
The gene encoding aminopeptidase Amp0279 was predicted in the genome of Bacillus lysinibacillus globiformis C3-41: the nucleic acid sequence is shown as SEQ ID NO. 1.
The corresponding amino acid sequence is shown in SEQ ID NO. 2.
Passing amp0279 full gene through primer pair
P6-F:CGCGGATCCATGACGTTTGAAGAAAAATTAC
P6-R:CGCGAGCTCTTAGAAAGCCCAGCTACCT
Amplified from the C3-41 genome, and the amp0279 gene is inserted into an expression vector pET28a through double digestion and connection to construct a recombinant expression plasmid pET28a-amp 0279.
The nucleic acid sequence of the recombinant plasmid pET28a-amp0279 is shown in SEQ ID NO 3. (the sequence of bold letters is the sequence of amp0279 inserted in pET28 a).
The recombinant plasmid is transformed into escherichia coli BL21 competent cells, a positive clone bacterial strain is screened out by a PCR verification method, and the plasmid is extracted for further sequencing verification. This procedure yielded the recombinant strain E.coli BL21(pET28a-amp 0279).
The aminopeptidase Amp0279 producing genetic engineering strain BL21(pET28a-Amp0279) provided by the invention is used for purifying the expressed aminopeptidase by a nickel column affinity chromatography and detecting the enzymological property.
The specific aminopeptidase Amp0279 gene sequence obtaining method, the recombinant plasmid and recombinant strain construction method, the product aminopeptidase Amp0279 property analysis method and the application condition analysis method are as follows:
experimental materials:
1) strains and plasmids: bacillus sphaericus C3-41, Escherichia coli JM109, JM110 and BL21, and Bacillus subtilis WB 800N.
2) Enzymes and kits: restriction enzymes (NEB), Golden Mix (Scirpus), Rapid Tag Master Mix (Vazyme), T4 DNA ligase (NEB); DNA purification Kit (Omega), FastPerure Plasmid Mini Kit (Vazyme), PAGE gel Rapid preparation Kit (10%) (Shanghai Yazyme biomedical science and technology Co., Ltd.), BCA Kit (Takara), protein dye (Biosharp), and protein affinity chromatography Nickel column (Ni-Sepharose TM 6Fast Flow, GE healthcare, US); a tool enzyme (TaKaRa) such as in-fusion ligase; Cycle-Pure Kit and Gel Extraction Kit (Omega Bio-Tek); prestained Protein Ladder 26616 (seimer feishel technologies (china) ltd);
Figure BDA0003291706440000041
Western(Millipore,USA)。
3) biochemical reagents: isoproyl-beta-D-thiogalactoside (IPTG); kanamycin; chloromycetin
50mM disodium phosphate-citric acid buffer: after preparing 50mM disodium hydrogen phosphate solution, adjusting pH (3.0-5.0) with 0.1M citric acid solution; the 10 XTSST buffer was purchased from Beijing Solaibao Tech Co., Ltd; tryptone (Tryptone), yeast extract was purchased from seimer feishell scientific; SDS, Tris purchased from Beijing Byeldi Biotechnology, Inc.; glycerol, acetic acid, hydrochloric acid, sodium chloride, magnesium chloride and calcium chloride are purchased from national medicine group limited company; Leu-pNA was purchased from SIGMA-ALDRICH; the skimmed milk powder is purchased from Beijing Lei Gen Biotechnology Co.
Solution required by a p-nitroaniline method:
substrate 200mM Leu-pNA: prepared by DMSO, 0.063g Leu-pNA is dissolved in 1250 mu L DMSO, and 50 mu L is subpackaged.
Reaction termination solution: 40% (v/v) glacial acetic acid, 160mL acetic acid, and 400mL of ultra pure water.
Reaction buffer: Tris-HCl pH 8.050 mM, 1.2114g was dissolved in 200mL of ultrapure water.
50mM disodium hydrogen phosphate-sodium dihydrogen phosphate buffer solution: respectively preparing 0.1M disodium hydrogen phosphate solution and sodium dihydrogen phosphate solution, mixing at a certain proportion, adjusting pH to 6.0 and 7.0, adding equal volume of ultrapure water to adjust to concentration of 50mM
50mM Tris-HCl buffer: preparing 50mM Tris solution, adding concentrated hydrochloric acid to adjust pH (8.0-9.0)
50mM glycine-sodium hydroxide buffer: with 50mM glycine solution, adjusting the pH (10.0-11.0) with 5M sodium hydroxide solution
Metal ion solution mother liquor: 10mL of ultrapure water was used for preparation
1M K+Solution: 0.7455g of KCl;
100mM Na+solution: 0.0584g NaCl;
100mM Mg2+solution: 0.2033g MgCl2·6H2O;
100mM Ca2+Solution: 0.1010g CaCl2
100mM Mn2+Solution: 0.1258g MnCl2
100mM Cu2+Solution: 0.1705g CuCl2·2H2O;
100mM Zn2+Solution: 0.288g of ZnSO4·7H2O;
100mM Fe2+Solution: 0.278g FeSO4·7H2O;
100mM Co2+Solution: 0.2379gCoCl2·6H2O。
100mM EDTA:0.3722g EDTA。
The experimental procedures in the following examples are conventional unless otherwise specified.
The percentages in the following examples are by mass unless otherwise specified.
Example 1: aminopeptidase Amp0279 Structure and function prediction and Gene sequence acquisition
According to the genome sequence (CP000817) of the Bacillus lysinibacillus globiformis C3-41, the protein Amp0279 encoded by the Amp0279 gene (300199..301428) is predicted to be possibly aminopeptidase. Sequence alignment found the amino acid sequence of Amp0279 to have the highest similarity (51%) to AmpS encoded by bacillus subtilis (see fig. 1). 3D modeling analysis found it to be a dimeric structure with four cobalt ion binding sites, probably belonging to the M29 family (see FIG. 2). FIG. 2 is an Amp 02793D structural MODEL (SWISS-MODEL). Amp0279 is a homodimer. The left side in the figure is chain A, the right side is chain B, 4Co2+The active center is marked as a dot. The predicted 6 active sites (GLU 249, GLU 315, HIS 344, TYR 351, HIS 377 and ASP 379) surround two Co on chain A2+. Designing primers with enzyme cutting sites BamHI and SacI according to the gene sequence, amplifying the gene from the genome, and purifying.
Example 2: construction of recombinant expression plasmid pET28a-Amp0279 and recombinant bacterium BL21(pET28a-Amp0279) containing aminopeptidase Amp0279 gene
Restriction enzyme BamHI and SacI sites are respectively introduced into the 5 'end and the 3' end of the aminopeptidase Amp0279 gene, the restriction enzymes BamHI and SacI are used for completing double enzyme digestion of the aminopeptidase Amp0279 gene and an Escherichia coli inducible expression vector pET28a, and then the two are connected by using ligase to construct a recombinant expression plasmid pET28a-Amp 0279. The recombinant expression plasmid is transformed into escherichia coli BL21 competent cells, a positive clone strain BL21(pET28a-amp0279) is screened out by a PCR verification method, and plasmid sequencing verification is extracted.
Example 3: purification of aminopeptidase Amp0279 by Nickel column affinity chromatography
The recombinant strain was inoculated into 5mL LB (50. mu.g/mL kanamycin) and cultured overnight at 37 ℃ and 220rpm to obtain a seed solution. Adding the seed solution into fresh LB culture medium (50. mu.g/mL kanamycin) according to the ratio of 1:100, and culturing for about 3h to OD600When the concentration is 0.6 to 0.8, IPTG (final concentration of 1mM) is added to the mixture, and the mixture is slowly induced at a low temperature (25 ℃ C., 160rpm) for about 5 hours. The strain was collected by centrifugation (5000g, 10min) and the supernatant was discarded. The thalli is broken by ultrasonic, at 4 ℃, 12000g, the supernatant is kept for protein nickel column affinity chromatography after 30min of centrifugation. After dialysis, protein concentration was measured with BCA kit. A single band of about 55kD was detected by SDS-PAGE to obtain a known concentration of pure aminopeptidase Amp0279 (see FIG. 3 for Amp0279 after purification).
Example 4: property analysis of aminopeptidase Amp0279
The enzyme activity of the aminopeptidase is detected by a p-nitroaniline method, and a substrate used in the method is Leu-pNA. Preparing 800 mu L reaction liquid from 1mM substrate Leu-pNA, 10 ng/mu L Amp0279 and reaction buffer solution, reacting for 1h, adding 200 mu L of 40% (v/v) glacial acetic acid to terminate the reaction, detecting the absorbance at 405nm, and judging the substrate hydrolysis condition and the substrate hydrolysis capacity of the enzyme. The aminopeptidase activity was measured in 50mM Tris-HCl buffer (pH 8.0) at 30-80 ℃ to examine the optimum temperature for the reaction (FIG. 4). Amp0279 aminopeptidase activity was tested under reaction buffer conditions of varying pH (FIG. 5). Through the above detection, the conditions of 50 ℃ and pH8.0 are determined as the optimal conditions. U is defined as the amount of enzyme that hydrolyzes the substrate Leu-pNA at 50 ℃ and pH8.0 to yield 1. mu. mol pNA per minute. The purified enzyme was incubated at different temperatures (40-80 ℃) for 2h and then cooled to room temperature. Residual activity was measured at 50 ℃, ph8.0 and Amp0279 thermal stability was evaluated (fig. 6). The enzyme was incubated with different buffers (pH 5.0-10.0 as described above) at 4 ℃ for 2h, and the residual activity was measured at pH8.0, 50 ℃ to assess its pH stability (FIG. 7). Detecting the effect of metal ions and metal ion chelating agent EDTA on Amp0279 enzyme activity (FIG. 8), adding into the reaction system under optimum temperature and pH conditionsInto 1mM K+、Na+、Mg2+、Cu2+、Zn2+、Fe2+、Mn2+、Co2+Or EDTA, and the absorbance is detected after 1 h. Then, different concentrations of Co were investigated2+Influence on the enzyme activity (FIG. 9), Co was added to the reaction system at various concentrations2+And measuring the enzyme activity.
Through the above analysis, it was found that Amp0279 is optimally stable in enzyme activity at 50 ℃ and pH8.0, at 40-55 ℃ and pH6.0-9.0, and is optimally stabilized by adding 100. mu.M Co2+Then, the specific enzyme activity can reach 35383U/mg.
Example 5: comparison of enzyme Activity of aminopeptidase Amp0279 with commercial flavor enzymes
Adding flavor enzyme (A), (B), (C)
Figure BDA0003291706440000071
Shanghai-derived leaf Biotechnology Co., Ltd., LOT: P29F11B109057) powder was dissolved in a buffer (20mM Tris, 200mM NaCl, pH 8.0) as a stock solution (400. mu.g/mL), and then the protein content was measured using a BCA protein assay kit (TaKaRa Biotech, Japan). The enzyme activity was determined as in example 4, under the conditions including general conditions (usually at 30 ℃ C., pH7.5) and optimized conditions for Amp0279 (50 ℃ C., pH8.0, 100. mu.M Co)2+). The results show that Co is not added2+Under the optimized condition, Amp0279 has specific enzyme activity of about
Figure BDA0003291706440000072
1/40(1024Vs.42249U/mg), and 100. mu.M Co was added2+Under the condition, the activity of Amp0279 is obviously increased and can reach 35383U/mg which is slightly higher than
Figure BDA0003291706440000073
(33663U/mg) (see Table 1).
TABLE 1Amp0279 and commercial flavor enzymes
Figure BDA0003291706440000074
Comparing enzyme activity of (1).
Figure BDA0003291706440000075
Wherein, a, the conversion of specific enzyme activity is carried out according to the protein content measured after the flavor enzyme powder is dissolved
General conditions
Optimization condition of Amp0279
On the basis of the verification of Escherichia coli BL21, the invention further develops a secretory expression system of aminopeptidase Amp0279 in consideration of the fact that an Escherichia coli expression system requires a complicated, time-consuming and cost-increasing purification and label-removal process. Since Bacillus subtilis is a relatively mature production strain in the industry at present, the Bacillus subtilis has the following advantages: (1) the protein can be directly secreted into a culture medium, and the active protein is easy to separate; (2) the outer membrane is free of lipopolysaccharide (endotoxin), is nonpathogenic, and is certified by the FDA (U.S. food and drug administration) as Generally Recognized As Safe (GRAS). The bacillus subtilis produces abundant protease, can influence the expression of the protease with heterologous expression, can modify an expression strain through simplifying and optimizing a genome, knocks out unnecessary redundant genes, maintains the growth of the strain, and maximizes the production of a target product. Therefore, the method is favorable for further obtaining more excellent recombinant plasmids and recombinant strains.
Bacillus subtilis WB800N (pHT43-amp0279), which is deposited in the China center for type culture Collection, address: china, wuhan university; the zip code 430072 has a preservation date of 2021, 9 months and 29 days, and has a preservation number of: CCTCC NO: m20211237, taxonomic nomenclature Bacillus subtilis.
The construction of recombinant plasmid and recombinant bacillus subtilis, the secretion expression condition of Amp0279 and the crude enzyme biopsy of the expression product aminopeptidase Amp0279 are as follows:
construction of pHT43-amp0279 recombinant plasmid: first, amp0279 full Gene was used as a primer set
P6-43-F (ATCAGCCGTAAGGATCCATGACGTTGAAGAAAAATTAC)/P6-43-R (TAGGCGGGCTGCCCCGGGGTTAGAAAGCCCAGCTACCTACT) is amplified from a C3-41 genome, and amp0279 is inserted into an expression vector pHT JM 43 through BamHI/SmaI double digestion and ligation, and the ligation product is transformed into Escherichia coli 109. Positive clones were screened by PCR and plasmids were extracted for further sequencing validation. The recombinant expression plasmid obtained was pHT43-amp 0279. The nucleic acid sequence is shown as SEQ ID NO. 4.
The recombinant expression plasmid pHT43-amp0279 is transformed into competent cells of Bacillus subtilis WB800N, and a positive clone strain is screened out by a PCR verification method. The aminopeptidase secreted and expressed by the obtained genetically engineered strain WB800N (pHT43-Amp0279) for producing the aminopeptidase Amp0279 directly detects the enzyme activity.
The specific embodiment is as follows:
example 6: construction of recombinant expression plasmid pHT43-amp0279 containing amp0279 Gene
Primers with cleavage sites BamHI and SmaI were designed based on the predicted amp0279(300199..301428) gene sequence of Bacillus globuliformis C3-41 genome sequence (CP000817), and the fragment was amplified from the genome and purified to give an amp0279 fragment of the aminopeptidase encoding gene. The amp0279 fragment and the E.coli-B.subtilis shuttle vector pHT43 were digested simultaneously with restriction enzymes BamHI and SmaI, and ligated with ligase to construct recombinant expression plasmid pHT43-amp 0279. Escherichia coli JM109 competent cells were transformed with the recombinant expression plasmid, positive clone strain JM109(pHT43-amp0279) was selected by PCR verification, recombinant plasmid pHT43-amp0279 which was successfully sequenced was retransformed into JM110 competent cells (demethylation), and positive clone strain JM110(pHT43-amp0279) was selected by PCR verification. The culture temperature of Escherichia coli was 37 ℃ and Amp was 100. mu.g/mL.
Example 7: construction of recombinant expression Strain WB800N (pHT43-Amp0279) containing aminopeptidase Amp0279 Gene
The successfully verified recombinant plasmid of example 6, pHT43-amp0279, was transformed into WB800N competent cells by chemical transformation. The method comprises the following specific steps:
WB800N was prepared chemically competent according to the prior art method. Taking 500 mu L of competence; taking about 1 mu g of plasmid to be put in competent cells, and keeping the temperature at 37 ℃ and 100rpm for 1 h; 37 ℃, 220rpm, 2 h; after centrifugation, about 200. mu.L of the resuspended suspension was spread on Cm25 (25. mu.g/mL Cm) plates and single colonies were grown at 37 ℃ for 1-2 d.
Example 8: detecting the secretory expression condition of Amp0279 in recombinant strain WB800N (pHT43-Amp0279)
The recombinant strain was inoculated into 5mL LB (100. mu.g/mL Amp, 25. mu.g/mL Cm), and cultured overnight at 37 ℃ and 220rpm to obtain a seed solution. Adding the seed solution into fresh LB culture medium (100. mu.g/mL Amp, 25. mu.g/mL Cm) at a ratio of 1:100, and culturing for about 3h to OD600When the concentration is 0.6 to 0.8, IPTG (final concentration of 1mM) is added to the mixture, and the mixture is slowly induced at a low temperature (25 ℃ C., 160rpm) for about 5 hours. 5mL samples were taken before and after induction, and after centrifugation, the supernatant and the pellet were retained. Preparing supernatant protein by using a TCA precipitation method, and preparing samples of the supernatant protein and the thallus precipitate respectively. Western blot assays were performed using antiserum raised from mice immunized with Amp0279 protein expressed and purified from BL21(pET28-Amp0279-BL 21). The results showed that clear expression hybridization signals were detected in the supernatant of WB800N (pHT43-amp0279) medium (FIG. 10). In the figure, M: prestained Protein Ladder 26616; +: amp0279 protein expressed from BL21(pET28-Amp0279-BL21) and purified; 1 and 2 experimental groups, which are intracellular proteins of thalli and proteins secreted to supernatant respectively; 3 and 4 are negative controls, pHT43-WB800N, which are intracellular proteins and proteins secreted to the supernatant, respectively.
Example 9: detecting the activity of the supernatant enzyme of the culture medium of the recombinant bacteria WB800N (pHT43-amp0279)
The enzyme activity of the aminopeptidase is detected by a p-nitroaniline method, and the used substrate is Leu-pNA. And (4) centrifuging the bacterial culture solution, measuring the wet weight of the bacterial precipitate, collecting the supernatant, and performing enzyme activity detection. 1mM substrate Leu-pNA, 100. mu.M Co 2+200 mul of supernatant and reaction buffer are prepared into 800 mul of reaction liquid, the reaction liquid is placed at 50 ℃ and pH8.0 for 1h, 200 mul of 40% (v/v) glacial acetic acid is added to stop the reaction, and the absorbance at the wavelength of 405nm is detected to indicate the hydrolysis condition of the substrate and the capability of enzyme to hydrolyze the substrate. The unit μ M/g is defined as the μ M value of Leu-pNA hydrolyzed by wet weight per gram of bacteria. As a result, it was revealed that, without concentration and purification, the activity of the enzyme (the amount of pNA released per g wet weight of the cells in the reaction system was 20 to 40. mu.M) was detected from the culture supernatant of the recombinant bacteria (FIG. 11), in which the black column was a Bacillus subtilis budDetecting the activity of Amp0279 crude enzyme secreted and expressed by Bacillus subtilis WB800N (pHT43-Amp 0279).
It is also noted that in pHT43-amp0279 sequence SEQ ID NO 4, the sequence in capital letters is the sequence of amp0279 inserted in pHT43
ttaagttattggtatgactggttttaagcgcaaaaaaagttgctttttcgtacctattaatgtatcgttttagaaaaccgactgtaaaaagtacagtcggcattatctcatattataaaagccagtcattaggcctatctgacaattcctgaatagagttcataaacaatcctgcatgataaccatcacaaacagaatgatgtacctgtaaagatagcggtaaatatattgaattacctttattaatgaattttcctgctgtaataatgggtagaaggtaattactattattattgatatttaagttaaacccagtaaatgaagtccatggaataatagaaagagaaaaagcattttcaggtataggtgttttgggaaacaatttccccgaaccattatatttctctacatcagaaaggtataaatcataaaactctttgaagtcattctttacaggagtccaaataccagagaatgttttagatacaccatcaaaaattgtataaagtggctctaacttatcccaataacctaactctccgtcgctattgtaaccagttctaaaagctgtatttgagtttatcacccttgtcactaagaaaataaatgcagggtaaaatttatatccttcttgttttatgtttcggtataaaacactaatatcaatttctgtggttatactaaaagtcgtttgttggttcaaataatgattaaatatctcttttctcttccaattgtctaaatcaattttattaaagttcatttgatatgcctcctaaatttttatctaaagtgaatttaggaggcttacttgtctgctttcttcattagaatcaatccttttttaaaagtcaatattactgtaacataaatatatattttaaaaatatcccactttatccaattttcgtttgttgaactaatgggtgctttagttgaagaataaagaccacattaaaaaatgtggtcttttgtgtttttttaaaggatttgagcgtagcgaaaaatccttttctttcttatcttgataataagggtaactattgccgatcgtccattccgacagcatcgccagtcactatggcgtgctgctagcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtgaattcgagctcaggccttaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctgagagagttgcagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttgacggcgggatataacatgagctgtcttcggtatcgtcgtatcccactaccgagatatccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagtgggaacgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtgagatatttatgccagccagccagacgcagacgcgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatgctccacgcccagtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacgccggaacattagtgcaggcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgctttacaggcttcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcgcgtgcagggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatcgccgcttccactttttcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtataacgttactggtttcatcaaaatcgtctccctccgtttgaatatttgattgatcgtaaccagatgaagcactctttccactatccctacagtgttatggcttgaacaatcacgaaacaataattggtacgtacgatctttcagccgactcaaacatcaaatcttacaaatgtagtctttgaaagtattacatatgtaagatttaaatgcaaccgttttttcggaaggaaatgatgacctcgtttccaccggaattagcttggtaccagctattgtaacataatcggtacgggggtgaaaaagctaacggaaaagggagcggaaaagaatgatgtaagcgtgaaaaattttttatcttatcacttgaaattggaagggagattctttattataagaattgtggaattgtgagcggataacaattcccaattaaaggaggaaggatcaatgattcaaaaacgaaagcggacagtttcgttcagacttgtgcttatgtgcacgctgttatttgtcagtttgccgattacaaaaacatcagccgtaggatccATGACGTTTGAAGAAAAATTACAGGCATACGCGGAACTTGCAGTAAAAGTTGGGGTAAACATTCAACCAGGTCAATATTTGTTAGTCAACACATCAGTTGAGGCTTTAGATTTTGCTCGTTTAGTCGTTAAAGAGGCGTATAAGGCTGGGGCAGGGCGTGTCCATGTTAATTTTTCTGACGATGAAATGGATCGTGCCTATTTTGAACATGCCTCTGATGAAGAATTTAACCGTTTCCCCGAATGGGTCGTACAAATGCGTGATGAACTCATTGAACGTAAAGGGGCATTATTATGGATAGATGCCGCAGATCCTGATAAATTAACAGGAATCTCGGCTGATCGATTAGCTACTCATCAAAAGGTATCAGGAGCTGCGTTGAAAAACTATCGTAATGCAGTTATGAAGGATTTGATTGCGTGGTCCATTATTGCAGTACCTTCGCCAAAGTGGGCGGCAAAGGTATTCCCTCAATTGACAGCAGACGAGCAAGTACCTGCTTTATGGGAAGCTATCTTTAAAACAGTTCATATCGGAGAAGGTAACGCAGTTGAAAATTGGCATCAGCATGTAACGAATTTAGAATCTCGGGCAGAACTTTTAAATAATAAAAAGTATGCGAAGCTACACTATACTGCACCTGGAACAGATTTAACGATTGCTTTAGCTCCACAGCATAAATGGGTAACTGGTGGCAGTAAAACGCCTGAAGGCCATGTTTTTATCGCCAATATGCCAACAGAAGAAGTCTATACACTTCCTATGAAGCAAGGTGTAGACGGTTATGTTAGTAATTCAAAGCCTTTAGTATATCAGGGCAATATCATTGATGGCTTTAAATTAACATTTAAAGAAGGAAAAATCATTAAAGCAGAAGCTGAAGTAGGTCAAGATTTACTACAGGAGCTTATTCAAGTAGATGAGGGTTCTAGTTATTTAGGTGAAGTAGCACTTGTCCCGCATGAGTCACCAATTTCAGCATCAGGGATTTTATACTTTAATACACTATTCGATGAGAATGCTTCGAACCATTTAGCGATTGGAGAAGCATACCCGACATGCTTAGAGGGTGGTAGAGACTTGGAAAACGGTCAACTAGAAGCATTAGGTGCGAATATTTCTGTAACCCATGAAGACTTTATGGTTGGTAACGGTGAAATGGACATTGATGGTATATTACCAGATGGAACTATAGAGCCTATATTCCGTAAAGGTAGCTGGGCTTTCTAAcccggggcagcccgcctaatgagcgggcttttttcacgtcacgcgtccatggagatctttgtctgcaactgaaaagtttataccttacctggaacaaatggttgaaacatacgaggctaatatcggcttattaggaatagtccctgtactaataaaatcaggtggatcagttgatcagtatattttggacgaagctcggaaagaatttggagatgacttgcttaattccacaattaaattaagggaaagaataaagcgatttgatgttcaaggaatcacggaagaagatactcatgataaagaagctctaaaactattcaataaccttacaatggaattgatcgaaagggtggaaggttaatggtacgaaaattaggggatctacctagaaagccacaaggcgataggtcaagcttaaagaacccttacatggatcttacagattctgaaagtaaagaaacaacagaggttaaacaaacagaaccaaaaagaaaaaaagcattgttgaaaacaatgaaagttgatgtttcaatccataataagattaaatcgctgcacgaaattctggcagcatccgaagggaattcatattacttagaggatactattgagagagctattgataagatggttgagacattacctgagagccaaaaaactttttatgaatatgaattaaaaaaaagaaccaacaaaggctgagacagactccaaacgagtctgtttttttaaaaaaaatattaggagcattgaatatatattagagaattaagaaagacatgggaataaaaatattttaaatccagtaaaaatatgataagattatttcagaatatgaagaactctgtttgtttttgatgaaaaaacaaacaaaaaaaatccacctaacggaatctcaatttaactaacagcggccaaactgagaagttaaatttgagaaggggaaaaggcggatttatacttgtatttaactatctccattttaacattttattaaaccccatacaagtgaaaatcctcttttacactgttcctttaggtgatcgcggagggacattatgagtgaagtaaacctaaaaggaaatacagatgaattagtgtattatcgacagcaaaccactggaaataaaatcgccaggaagagaatcaaaaaagggaaagaagaagtttattatgttgctgaaacggaagagaagatatggacagaagagcaaataaaaaacttttctttagacaaatttggtacgcatataccttacatagaaggtcattatacaatcttaaataattacttctttgatttttggggctattttttaggtgctgaaggaattgcgctctatgctcacctaactcgttatgcatacggcagcaaagacttttgctttcctagtctacaaacaatcgctaaaaaaatggacaagactcctgttacagttagaggctacttgaaactgcttgaaaggtacggttttatttggaaggtaaacgtccgtaataaaaccaaggataacacagaggaatccccgatttttaagattagacgtaaggttcctttgctttcagaagaacttttaaatggaaaccctaatattgaaattccagatgacgaggaagcacatgtaaagaaggctttaaaaaaggaaaaagagggtcttccaaaggttttgaaaaaagagcacgatgaatttgttaaaaaaatgatggatgagtcagaaacaattaatattccagaggccttacaatatgacacaatgtatgaagatatactcagtaaaggagaaattcgaaaagaaatcaaaaaacaaatacctaatcctacaacatcttttgagagtatatcaatgacaactgaagaggaaaaagtcgacagtactttaaaaagcgaaatgcaaaatcgtgtctctaagccttcttttgatacctggtttaaaaacactaagatcaaaattgaaaataaaaattgtttattacttgtaccgagtgaatttgcatttgaatggattaagaaaagatatttagaaacaattaaaacagtccttgaagaagctggatatgttttcgaaaaaatcgaactaagaaaagtgcaataaactgctgaagtatttcagcagttttttttatttagaaatagtgaaaaaaatataatcagggaggtatcaatatttaatgagtactgatttaaatttatttagactggaattaataattaacacgtagactaattaaaatttaatgagggataaagaggatacaaaaatattaatttcaatccctattaaattttaacaagggggggattaaaatttaattagaggtttatccacaagaaaagaccctaataaaatttttactagggttataacactgattaatttcttaatgggggagggattaaaatttaatgacaaagaaaacaatcttttaagaaaagcttttaaaagataataataaaaagagctttgcgattaagcaaaactctttactttttcattgacattatcaaattcatcgatttcaaattgttgttgtatcataaagttaattctgttttgcacaaccttttcaggaatataaaacacatctgaggcttgttttataaactcagggtcgctaaagtcaatgtaacgtagcatatgatatggtatagcttccacccaagttagcctttctgcttcttctgaatgtttttcatatacttccatgggtatctctaaatgattttcctcatgtagcaaggtatgagcaaaaagtttatggaattgatagttcctctctttttcttcaacttttttatctaaaacaaacactttaacatctgagtcaatgtaagcataagatgtttttccagtcataatttcaatcccaaatcttttagacagaaattctggacgtaaatcttttggtgaaagaatttttttatgtagcaatatatccgatacagcaccttctaaaagcgttggtgaatagggcattttacctatctcctctcattttgtggaataaaaatagtcatattcgtccatctacctatcctattatcgaacagttgaactttttaatcaaggatcagtcctttttttcattattcttaaactgtgctcttaactttaacaactcgatttgtttttccagatctcgagggtaactagcctcgccgatcccgcaagaggcccggcagtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcatgc.
Sequence listing
<110> university of the south China nationality
<120> aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41, and recombinant strain and application thereof
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1230
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
atgacgtttg aagaaaaatt acaggcatac gcggaacttg cagtaaaagt tggggtaaac 60
attcaaccag gtcaatattt gttagtcaac acatcagttg aggctttaga ttttgctcgt 120
ttagtcgtta aagaggcgta taaggctggg gcagggcgtg tccatgttaa tttttctgac 180
gatgaaatgg atcgtgccta ttttgaacat gcctctgatg aagaatttaa ccgtttcccc 240
gaatgggtcg tacaaatgcg tgatgaactc attgaacgta aaggggcatt attatggata 300
gatgccgcag atcctgataa attaacagga atctcggctg atcgattagc tactcatcaa 360
aaggtatcag gagctgcgtt gaaaaactat cgtaatgcag ttatgaagga tttgattgcg 420
tggtccatta ttgcagtacc ttcgccaaag tgggcggcaa aggtattccc tcaattgaca 480
gcagacgagc aagtacctgc tttatgggaa gctatcttta aaacagttca tatcggagaa 540
ggtaacgcag ttgaaaattg gcatcagcat gtaacgaatt tagaatctcg ggcagaactt 600
ttaaataata aaaagtatgc gaagctacac tatactgcac ctggaacaga tttaacgatt 660
gctttagctc cacagcataa atgggtaact ggtggcagta aaacgcctga aggccatgtt 720
tttatcgcca atatgccaac agaagaagtc tatacacttc ctatgaagca aggtgtagac 780
ggttatgtta gtaattcaaa gcctttagta tatcagggca atatcattga tggctttaaa 840
ttaacattta aagaaggaaa aatcattaaa gcagaagctg aagtaggtca agatttacta 900
caggagctta ttcaagtaga tgagggttct agttatttag gtgaagtagc acttgtcccg 960
catgagtcac caatttcagc atcagggatt ttatacttta atacactatt cgatgagaat 1020
gcttcgaacc atttagcgat tggagaagca tacccgacat gcttagaggg tggtagagac 1080
ttggaaaacg gtcaactaga agcattaggt gcgaatattt ctgtaaccca tgaagacttt 1140
atggttggta acggtgaaat ggacattgat ggtatattac cagatggaac tatagagcct 1200
atattccgta aaggtagctg ggctttctaa 1230
<210> 2
<211> 409
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 2
Met Thr Phe Glu Glu Lys Leu Gln Ala Tyr Ala Glu Leu Ala Val Lys
1 5 10 15
Val Gly Val Asn Ile Gln Pro Gly Gln Tyr Leu Leu Val Asn Thr Ser
20 25 30
Val Glu Ala Leu Asp Phe Ala Arg Leu Val Val Lys Glu Ala Tyr Lys
35 40 45
Ala Gly Ala Gly Arg Val His Val Asn Phe Ser Asp Asp Glu Met Asp
50 55 60
Arg Ala Tyr Phe Glu His Ala Ser Asp Glu Glu Phe Asn Arg Phe Pro
65 70 75 80
Glu Trp Val Val Gln Met Arg Asp Glu Leu Ile Glu Arg Lys Gly Ala
85 90 95
Leu Leu Trp Ile Asp Ala Ala Asp Pro Asp Lys Leu Thr Gly Ile Ser
100 105 110
Ala Asp Arg Leu Ala Thr His Gln Lys Val Ser Gly Ala Ala Leu Lys
115 120 125
Asn Tyr Arg Asn Ala Val Met Lys Asp Leu Ile Ala Trp Ser Ile Ile
130 135 140
Ala Val Pro Ser Pro Lys Trp Ala Ala Lys Val Phe Pro Gln Leu Thr
145 150 155 160
Ala Asp Glu Gln Val Pro Ala Leu Trp Glu Ala Ile Phe Lys Thr Val
165 170 175
His Ile Gly Glu Gly Asn Ala Val Glu Asn Trp His Gln His Val Thr
180 185 190
Asn Leu Glu Ser Arg Ala Glu Leu Leu Asn Asn Lys Lys Tyr Ala Lys
195 200 205
Leu His Tyr Thr Ala Pro Gly Thr Asp Leu Thr Ile Ala Leu Ala Pro
210 215 220
Gln His Lys Trp Val Thr Gly Gly Ser Lys Thr Pro Glu Gly His Val
225 230 235 240
Phe Ile Ala Asn Met Pro Thr Glu Glu Val Tyr Thr Leu Pro Met Lys
245 250 255
Gln Gly Val Asp Gly Tyr Val Ser Asn Ser Lys Pro Leu Val Tyr Gln
260 265 270
Gly Asn Ile Ile Asp Gly Phe Lys Leu Thr Phe Lys Glu Gly Lys Ile
275 280 285
Ile Lys Ala Glu Ala Glu Val Gly Gln Asp Leu Leu Gln Glu Leu Ile
290 295 300
Gln Val Asp Glu Gly Ser Ser Tyr Leu Gly Glu Val Ala Leu Val Pro
305 310 315 320
His Glu Ser Pro Ile Ser Ala Ser Gly Ile Leu Tyr Phe Asn Thr Leu
325 330 335
Phe Asp Glu Asn Ala Ser Asn His Leu Ala Ile Gly Glu Ala Tyr Pro
340 345 350
Thr Cys Leu Glu Gly Gly Arg Asp Leu Glu Asn Gly Gln Leu Glu Ala
355 360 365
Leu Gly Ala Asn Ile Ser Val Thr His Glu Asp Phe Met Val Gly Asn
370 375 380
Gly Glu Met Asp Ile Asp Gly Ile Leu Pro Asp Gly Thr Ile Glu Pro
385 390 395 400
Ile Phe Arg Lys Gly Ser Trp Ala Phe
405
<210> 3
<211> 6593
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540
tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600
tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660
actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720
gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780
aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840
agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900
cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960
aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020
tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080
tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140
taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200
ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260
tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320
tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380
cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500
gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 1560
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680
aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1740
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100
gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160
tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220
agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280
tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340
caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400
ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460
gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520
gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580
gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640
aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700
ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760
acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820
ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880
tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940
tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000
cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060
gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120
ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180
catgccggcg ataatggcct gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa 3240
ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300
gctccagcga aagcggtcct cgccgaaaat gacccagagc gctgccggca cctgtcctac 3360
gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420
ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480
atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 3540
cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600
tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660
ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720
aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780
atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840
cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900
gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960
tcggctgaat ttgattgcga gtgagatatt tatgccagcc agccagacgc agacgcgccg 4020
agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080
gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140
ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200
catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 4260
tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320
tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380
gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440
ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500
tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg 4560
catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg aattgactct 4620
cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680
tctcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag taggttgagg 4740
ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800
ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860
cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920
gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatctc gatcccgcga 4980
aattaatacg actcactata ggggaattgt gagcggataa caattcccct ctagaaataa 5040
ttttgtttaa ctttaagaag gagatatacc atgggcagca gccatcatca tcatcatcac 5100
agcagcggcc tggtgccgcg cggcagccat atggctagca tgactggtgg acagcaaatg 5160
ggtcgcggat ccatgacgtt tgaagaaaaa ttacaggcat acgcggaact tgcagtaaaa 5220
gttggggtaa acattcaacc aggtcaatat ttgttagtca acacatcagt tgaggcttta 5280
gattttgctc gtttagtcgt taaagaggcg tataaggctg gggcagggcg tgtccatgtt 5340
aatttttctg acgatgaaat ggatcgtgcc tattttgaac atgcctctga tgaagaattt 5400
aaccgtttcc ccgaatgggt cgtacaaatg cgtgatgaac tcattgaacg taaaggggca 5460
ttattatgga tagatgccgc agatcctgat aaattaacag gaatctcggc tgatcgatta 5520
gctactcatc aaaaggtatc aggagctgcg ttgaaaaact atcgtaatgc agttatgaag 5580
gatttgattg cgtggtccat tattgcagta ccttcgccaa agtgggcggc aaaggtattc 5640
cctcaattga cagcagacga gcaagtacct gctttatggg aagctatctt taaaacagtt 5700
catatcggag aaggtaacgc agttgaaaat tggcatcagc atgtaacgaa tttagaatct 5760
cgggcagaac ttttaaataa taaaaagtat gcgaagctac actatactgc acctggaaca 5820
gatttaacga ttgctttagc tccacagcat aaatgggtaa ctggtggcag taaaacgcct 5880
gaaggccatg tttttatcgc caatatgcca acagaagaag tctatacact tcctatgaag 5940
caaggtgtag acggttatgt tagtaattca aagcctttag tatatcaggg caatatcatt 6000
gatggcttta aattaacatt taaagaagga aaaatcatta aagcagaagc tgaagtaggt 6060
caagatttac tacaggagct tattcaagta gatgagggtt ctagttattt aggtgaagta 6120
gcacttgtcc cgcatgagtc accaatttca gcatcaggga ttttatactt taatacacta 6180
ttcgatgaga atgcttcgaa ccatttagcg attggagaag catacccgac atgcttagag 6240
ggtggtagag acttggaaaa cggtcaacta gaagcattag gtgcgaatat ttctgtaacc 6300
catgaagact ttatggttgg taacggtgaa atggacattg atggtatatt accagatgga 6360
actatagagc ctatattccg taaaggtagc tgggctttct aagagctccg tcgacaagct 6420
tgcggccgca ctcgagcacc accaccacca ccactgagat ccggctgcta acaaagcccg 6480
aaaggaagct gagttggctg ctgccaccgc tgagcaataa ctagcataac cccttggggc 6540
ctctaaacgg gtcttgaggg gttttttgct gaaaggagga actatatccg gat 6593
<210> 4
<211> 9272
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
ttaagttatt ggtatgactg gttttaagcg caaaaaaagt tgctttttcg tacctattaa 60
tgtatcgttt tagaaaaccg actgtaaaaa gtacagtcgg cattatctca tattataaaa 120
gccagtcatt aggcctatct gacaattcct gaatagagtt cataaacaat cctgcatgat 180
aaccatcaca aacagaatga tgtacctgta aagatagcgg taaatatatt gaattacctt 240
tattaatgaa ttttcctgct gtaataatgg gtagaaggta attactatta ttattgatat 300
ttaagttaaa cccagtaaat gaagtccatg gaataataga aagagaaaaa gcattttcag 360
gtataggtgt tttgggaaac aatttccccg aaccattata tttctctaca tcagaaaggt 420
ataaatcata aaactctttg aagtcattct ttacaggagt ccaaatacca gagaatgttt 480
tagatacacc atcaaaaatt gtataaagtg gctctaactt atcccaataa cctaactctc 540
cgtcgctatt gtaaccagtt ctaaaagctg tatttgagtt tatcaccctt gtcactaaga 600
aaataaatgc agggtaaaat ttatatcctt cttgttttat gtttcggtat aaaacactaa 660
tatcaatttc tgtggttata ctaaaagtcg tttgttggtt caaataatga ttaaatatct 720
cttttctctt ccaattgtct aaatcaattt tattaaagtt catttgatat gcctcctaaa 780
tttttatcta aagtgaattt aggaggctta cttgtctgct ttcttcatta gaatcaatcc 840
ttttttaaaa gtcaatatta ctgtaacata aatatatatt ttaaaaatat cccactttat 900
ccaattttcg tttgttgaac taatgggtgc tttagttgaa gaataaagac cacattaaaa 960
aatgtggtct tttgtgtttt tttaaaggat ttgagcgtag cgaaaaatcc ttttctttct 1020
tatcttgata ataagggtaa ctattgccga tcgtccattc cgacagcatc gccagtcact 1080
atggcgtgct gctagcgcca ttcgccattc aggctgcgca actgttggga agggcgatcg 1140
gtgcgggcct cttcgctatt acgccagctg gcgaaagggg gatgtgctgc aaggcgatta 1200
agttgggtaa cgccagggtt ttcccagtca cgacgttgta aaacgacggc cagtgaattc 1260
gagctcaggc cttaactcac attaattgcg ttgcgctcac tgcccgcttt ccagtcggga 1320
aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt 1380
attgggcgcc agggtggttt ttcttttcac cagtgagacg ggcaacagct gattgccctt 1440
caccgcctgg ccctgagaga gttgcagcaa gcggtccacg ctggtttgcc ccagcaggcg 1500
aaaatcctgt ttgatggtgg ttgacggcgg gatataacat gagctgtctt cggtatcgtc 1560
gtatcccact accgagatat ccgcaccaac gcgcagcccg gactcggtaa tggcgcgcat 1620
tgcgcccagc gccatctgat cgttggcaac cagcatcgca gtgggaacga tgccctcatt 1680
cagcatttgc atggtttgtt gaaaaccgga catggcactc cagtcgcctt cccgttccgc 1740
tatcggctga atttgattgc gagtgagata tttatgccag ccagccagac gcagacgcgc 1800
cgagacagaa cttaatgggc ccgctaacag cgcgatttgc tggtgaccca atgcgaccag 1860
atgctccacg cccagtcgcg taccgtcttc atgggagaaa ataatactgt tgatgggtgt 1920
ctggtcagag acatcaagaa ataacgccgg aacattagtg caggcagctt ccacagcaat 1980
ggcatcctgg tcatccagcg gatagttaat gatcagccca ctgacgcgtt gcgcgagaag 2040
attgtgcacc gccgctttac aggcttcgac gccgcttcgt tctaccatcg acaccaccac 2100
gctggcaccc agttgatcgg cgcgagattt aatcgccgcg acaatttgcg acggcgcgtg 2160
cagggccaga ctggaggtgg caacgccaat cagcaacgac tgtttgcccg ccagttgttg 2220
tgccacgcgg ttgggaatgt aattcagctc cgccatcgcc gcttccactt tttcccgcgt 2280
tttcgcagaa acgtggctgg cctggttcac cacgcgggaa acggtctgat aagagacacc 2340
ggcatactct gcgacatcgt ataacgttac tggtttcatc aaaatcgtct ccctccgttt 2400
gaatatttga ttgatcgtaa ccagatgaag cactctttcc actatcccta cagtgttatg 2460
gcttgaacaa tcacgaaaca ataattggta cgtacgatct ttcagccgac tcaaacatca 2520
aatcttacaa atgtagtctt tgaaagtatt acatatgtaa gatttaaatg caaccgtttt 2580
ttcggaagga aatgatgacc tcgtttccac cggaattagc ttggtaccag ctattgtaac 2640
ataatcggta cgggggtgaa aaagctaacg gaaaagggag cggaaaagaa tgatgtaagc 2700
gtgaaaaatt ttttatctta tcacttgaaa ttggaaggga gattctttat tataagaatt 2760
gtggaattgt gagcggataa caattcccaa ttaaaggagg aaggatcaat gattcaaaaa 2820
cgaaagcgga cagtttcgtt cagacttgtg cttatgtgca cgctgttatt tgtcagtttg 2880
ccgattacaa aaacatcagc cgtaggatcc atgacgtttg aagaaaaatt acaggcatac 2940
gcggaacttg cagtaaaagt tggggtaaac attcaaccag gtcaatattt gttagtcaac 3000
acatcagttg aggctttaga ttttgctcgt ttagtcgtta aagaggcgta taaggctggg 3060
gcagggcgtg tccatgttaa tttttctgac gatgaaatgg atcgtgccta ttttgaacat 3120
gcctctgatg aagaatttaa ccgtttcccc gaatgggtcg tacaaatgcg tgatgaactc 3180
attgaacgta aaggggcatt attatggata gatgccgcag atcctgataa attaacagga 3240
atctcggctg atcgattagc tactcatcaa aaggtatcag gagctgcgtt gaaaaactat 3300
cgtaatgcag ttatgaagga tttgattgcg tggtccatta ttgcagtacc ttcgccaaag 3360
tgggcggcaa aggtattccc tcaattgaca gcagacgagc aagtacctgc tttatgggaa 3420
gctatcttta aaacagttca tatcggagaa ggtaacgcag ttgaaaattg gcatcagcat 3480
gtaacgaatt tagaatctcg ggcagaactt ttaaataata aaaagtatgc gaagctacac 3540
tatactgcac ctggaacaga tttaacgatt gctttagctc cacagcataa atgggtaact 3600
ggtggcagta aaacgcctga aggccatgtt tttatcgcca atatgccaac agaagaagtc 3660
tatacacttc ctatgaagca aggtgtagac ggttatgtta gtaattcaaa gcctttagta 3720
tatcagggca atatcattga tggctttaaa ttaacattta aagaaggaaa aatcattaaa 3780
gcagaagctg aagtaggtca agatttacta caggagctta ttcaagtaga tgagggttct 3840
agttatttag gtgaagtagc acttgtcccg catgagtcac caatttcagc atcagggatt 3900
ttatacttta atacactatt cgatgagaat gcttcgaacc atttagcgat tggagaagca 3960
tacccgacat gcttagaggg tggtagagac ttggaaaacg gtcaactaga agcattaggt 4020
gcgaatattt ctgtaaccca tgaagacttt atggttggta acggtgaaat ggacattgat 4080
ggtatattac cagatggaac tatagagcct atattccgta aaggtagctg ggctttctaa 4140
cccggggcag cccgcctaat gagcgggctt ttttcacgtc acgcgtccat ggagatcttt 4200
gtctgcaact gaaaagttta taccttacct ggaacaaatg gttgaaacat acgaggctaa 4260
tatcggctta ttaggaatag tccctgtact aataaaatca ggtggatcag ttgatcagta 4320
tattttggac gaagctcgga aagaatttgg agatgacttg cttaattcca caattaaatt 4380
aagggaaaga ataaagcgat ttgatgttca aggaatcacg gaagaagata ctcatgataa 4440
agaagctcta aaactattca ataaccttac aatggaattg atcgaaaggg tggaaggtta 4500
atggtacgaa aattagggga tctacctaga aagccacaag gcgataggtc aagcttaaag 4560
aacccttaca tggatcttac agattctgaa agtaaagaaa caacagaggt taaacaaaca 4620
gaaccaaaaa gaaaaaaagc attgttgaaa acaatgaaag ttgatgtttc aatccataat 4680
aagattaaat cgctgcacga aattctggca gcatccgaag ggaattcata ttacttagag 4740
gatactattg agagagctat tgataagatg gttgagacat tacctgagag ccaaaaaact 4800
ttttatgaat atgaattaaa aaaaagaacc aacaaaggct gagacagact ccaaacgagt 4860
ctgttttttt aaaaaaaata ttaggagcat tgaatatata ttagagaatt aagaaagaca 4920
tgggaataaa aatattttaa atccagtaaa aatatgataa gattatttca gaatatgaag 4980
aactctgttt gtttttgatg aaaaaacaaa caaaaaaaat ccacctaacg gaatctcaat 5040
ttaactaaca gcggccaaac tgagaagtta aatttgagaa ggggaaaagg cggatttata 5100
cttgtattta actatctcca ttttaacatt ttattaaacc ccatacaagt gaaaatcctc 5160
ttttacactg ttcctttagg tgatcgcgga gggacattat gagtgaagta aacctaaaag 5220
gaaatacaga tgaattagtg tattatcgac agcaaaccac tggaaataaa atcgccagga 5280
agagaatcaa aaaagggaaa gaagaagttt attatgttgc tgaaacggaa gagaagatat 5340
ggacagaaga gcaaataaaa aacttttctt tagacaaatt tggtacgcat ataccttaca 5400
tagaaggtca ttatacaatc ttaaataatt acttctttga tttttggggc tattttttag 5460
gtgctgaagg aattgcgctc tatgctcacc taactcgtta tgcatacggc agcaaagact 5520
tttgctttcc tagtctacaa acaatcgcta aaaaaatgga caagactcct gttacagtta 5580
gaggctactt gaaactgctt gaaaggtacg gttttatttg gaaggtaaac gtccgtaata 5640
aaaccaagga taacacagag gaatccccga tttttaagat tagacgtaag gttcctttgc 5700
tttcagaaga acttttaaat ggaaacccta atattgaaat tccagatgac gaggaagcac 5760
atgtaaagaa ggctttaaaa aaggaaaaag agggtcttcc aaaggttttg aaaaaagagc 5820
acgatgaatt tgttaaaaaa atgatggatg agtcagaaac aattaatatt ccagaggcct 5880
tacaatatga cacaatgtat gaagatatac tcagtaaagg agaaattcga aaagaaatca 5940
aaaaacaaat acctaatcct acaacatctt ttgagagtat atcaatgaca actgaagagg 6000
aaaaagtcga cagtacttta aaaagcgaaa tgcaaaatcg tgtctctaag ccttcttttg 6060
atacctggtt taaaaacact aagatcaaaa ttgaaaataa aaattgttta ttacttgtac 6120
cgagtgaatt tgcatttgaa tggattaaga aaagatattt agaaacaatt aaaacagtcc 6180
ttgaagaagc tggatatgtt ttcgaaaaaa tcgaactaag aaaagtgcaa taaactgctg 6240
aagtatttca gcagtttttt ttatttagaa atagtgaaaa aaatataatc agggaggtat 6300
caatatttaa tgagtactga tttaaattta tttagactgg aattaataat taacacgtag 6360
actaattaaa atttaatgag ggataaagag gatacaaaaa tattaatttc aatccctatt 6420
aaattttaac aaggggggga ttaaaattta attagaggtt tatccacaag aaaagaccct 6480
aataaaattt ttactagggt tataacactg attaatttct taatggggga gggattaaaa 6540
tttaatgaca aagaaaacaa tcttttaaga aaagctttta aaagataata ataaaaagag 6600
ctttgcgatt aagcaaaact ctttactttt tcattgacat tatcaaattc atcgatttca 6660
aattgttgtt gtatcataaa gttaattctg ttttgcacaa ccttttcagg aatataaaac 6720
acatctgagg cttgttttat aaactcaggg tcgctaaagt caatgtaacg tagcatatga 6780
tatggtatag cttccaccca agttagcctt tctgcttctt ctgaatgttt ttcatatact 6840
tccatgggta tctctaaatg attttcctca tgtagcaagg tatgagcaaa aagtttatgg 6900
aattgatagt tcctctcttt ttcttcaact tttttatcta aaacaaacac tttaacatct 6960
gagtcaatgt aagcataaga tgtttttcca gtcataattt caatcccaaa tcttttagac 7020
agaaattctg gacgtaaatc ttttggtgaa agaatttttt tatgtagcaa tatatccgat 7080
acagcacctt ctaaaagcgt tggtgaatag ggcattttac ctatctcctc tcattttgtg 7140
gaataaaaat agtcatattc gtccatctac ctatcctatt atcgaacagt tgaacttttt 7200
aatcaaggat cagtcctttt tttcattatt cttaaactgt gctcttaact ttaacaactc 7260
gatttgtttt tccagatctc gagggtaact agcctcgccg atcccgcaag aggcccggca 7320
gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat ttttctaaat 7380
acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc aataatattg 7440
aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct tttttgcggc 7500
attttgcctt cctgtttttg ctcacccaga aacgctggtg aaagtaaaag atgctgaaga 7560
tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta agatccttga 7620
gagttttcgc cccgaagaac gttttccaat gatgagcact tttaaagttc tgctatgtgg 7680
cgcggtatta tcccgtattg acgccgggca agagcaactc ggtcgccgca tacactattc 7740
tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg atggcatgac 7800
agtaagagaa ttatgcagtg ctgccataac catgagtgat aacactgcgg ccaacttact 7860
tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca tgggggatca 7920
tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa gccataccaa acgacgagcg 7980
tgacaccacg atgcctgtag caatggcaac aacgttgcgc aaactattaa ctggcgaact 8040
acttactcta gcttcccggc aacaattaat agactggatg gaggcggata aagttgcagg 8100
accacttctg cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg 8160
tgagcgtggg tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat 8220
cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc 8280
tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat 8340
actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt 8400
tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc 8460
cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt 8520
gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac 8580
tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg tccttctagt 8640
gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct 8700
gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga 8760
ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac 8820
acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg 8880
agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt 8940
cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc 9000
tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg 9060
gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc 9120
ttttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc 9180
ctttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag 9240
cgaggaagcg gaagagcgcc caatacgcat gc 9272

Claims (9)

1. An aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41, which is characterized in that: the nucleic acid sequence of the coding gene is shown as SEQ ID NO. 1.
2. The spherical lysine bacillus C3-41-derived aminopeptidase Amp0279 according to claim 1, wherein: the amino acid sequence is shown as SEQ ID NO. 2.
3. A recombinant plasmid pHT43-Amp0279 comprising the aminopeptidase Amp0279 coding sequence of claim 1, wherein: the nucleic acid sequence of the recombinant plasmid pHT43-amp0279 is shown in SEQ ID NO: 4.
4. A recombinant strain comprising the recombinant plasmid pHT43-amp0279 of claim 3.
5. The recombinant strain of claim 4, wherein: the recombinant strain is Bacillus subtilis WB800N (pHT43-amp0279), and is preserved in China center for type culture Collection with the address: china, wuhan university; the zip code 430072 has a preservation date of 2021, 9 months and 29 days, and has a preservation number of: CCTCC NO: m20211237, taxonomic nomenclature Bacillus subtilis.
6. Use of a recombinant strain according to claim 5 for expressing the product aminopeptidase Amp 0279.
7. The expression product aminopeptidase Amp0279 of claim 6 for use in feed, food, brewing, or medicine.
8. A recombinant plasmid pET28a-Amp0279 comprising the aminopeptidase Amp0279 coding sequence of claim 1, wherein: the nucleic acid sequence of the recombinant plasmid pET28a-amp0279 is shown in SEQ ID NO 3.
9. A recombinant strain of Escherichia coli BL21(pET28a-amp0279) comprising the recombinant plasmid pET28a-amp0279 of claim 8.
CN202111166141.7A 2021-09-30 2021-09-30 Aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 as well as recombinant strain and application thereof Pending CN114015678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111166141.7A CN114015678A (en) 2021-09-30 2021-09-30 Aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 as well as recombinant strain and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111166141.7A CN114015678A (en) 2021-09-30 2021-09-30 Aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 as well as recombinant strain and application thereof

Publications (1)

Publication Number Publication Date
CN114015678A true CN114015678A (en) 2022-02-08

Family

ID=80055200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111166141.7A Pending CN114015678A (en) 2021-09-30 2021-09-30 Aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 as well as recombinant strain and application thereof

Country Status (1)

Country Link
CN (1) CN114015678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896072A (en) * 2022-10-27 2023-04-04 深圳润康生态环境股份有限公司 Aminopeptidase BmAP, mutant BmAPM and application thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285071A (en) * 2008-05-13 2008-10-15 江南大学 Recombination bacillus coli of high producing beta-glucanase and construction thereof
CN101857856A (en) * 2010-05-25 2010-10-13 中国科学院武汉病毒研究所 Bacillus subtilis lipase, and preparation method and application thereof
CN104232675A (en) * 2014-08-28 2014-12-24 武汉诺维健生物技术有限公司 Single-resistance escherichia coli-bacillus subtilis shuttle expression vector and application thereof
US20150307562A1 (en) * 2012-11-20 2015-10-29 Pronutria Biosciences, Inc. Engineered secreted proteins and methods
CN105238809A (en) * 2015-11-04 2016-01-13 黑龙江八一农垦大学 Expressing method of antimicrobial peptide CC31 in bacillus subtilis
CN106282221A (en) * 2016-08-16 2017-01-04 齐鲁工业大学 The construction method of a kind of secreting, expressing trehalose synthase gene engineering bacteria and application
CN106754600A (en) * 2016-12-14 2017-05-31 上海科技大学 Bacillus subtilis, biomembrane and its structure and application
CN106893733A (en) * 2017-03-09 2017-06-27 南昌大学 A kind of restructuring pBpp protein preparation methods based on escherichia expression system
KR101814024B1 (en) * 2016-08-23 2018-01-02 주식회사농심 Bacillus Strain, Enzyme Produced by the Strain and Application Thereof
CN108531439A (en) * 2018-04-16 2018-09-14 南京工业大学 A kind of Recombinant organism and its construction method and application
CN109825488A (en) * 2019-04-01 2019-05-31 湖北大学 A kind of new method carrying out xylanase secretion expression in Escherichia coli
CN111434770A (en) * 2019-01-11 2020-07-21 华东师范大学 Expression and self-processing of protein Proglutaminase in Bacillus subtilis
CN111875699A (en) * 2020-07-03 2020-11-03 江南大学 Method for improving bacillus subtilis ovalbumin expression level

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285071A (en) * 2008-05-13 2008-10-15 江南大学 Recombination bacillus coli of high producing beta-glucanase and construction thereof
CN101857856A (en) * 2010-05-25 2010-10-13 中国科学院武汉病毒研究所 Bacillus subtilis lipase, and preparation method and application thereof
US20150307562A1 (en) * 2012-11-20 2015-10-29 Pronutria Biosciences, Inc. Engineered secreted proteins and methods
CN104232675A (en) * 2014-08-28 2014-12-24 武汉诺维健生物技术有限公司 Single-resistance escherichia coli-bacillus subtilis shuttle expression vector and application thereof
CN105238809A (en) * 2015-11-04 2016-01-13 黑龙江八一农垦大学 Expressing method of antimicrobial peptide CC31 in bacillus subtilis
CN106282221A (en) * 2016-08-16 2017-01-04 齐鲁工业大学 The construction method of a kind of secreting, expressing trehalose synthase gene engineering bacteria and application
KR101814024B1 (en) * 2016-08-23 2018-01-02 주식회사농심 Bacillus Strain, Enzyme Produced by the Strain and Application Thereof
CN106754600A (en) * 2016-12-14 2017-05-31 上海科技大学 Bacillus subtilis, biomembrane and its structure and application
CN106893733A (en) * 2017-03-09 2017-06-27 南昌大学 A kind of restructuring pBpp protein preparation methods based on escherichia expression system
CN108531439A (en) * 2018-04-16 2018-09-14 南京工业大学 A kind of Recombinant organism and its construction method and application
CN111434770A (en) * 2019-01-11 2020-07-21 华东师范大学 Expression and self-processing of protein Proglutaminase in Bacillus subtilis
CN109825488A (en) * 2019-04-01 2019-05-31 湖北大学 A kind of new method carrying out xylanase secretion expression in Escherichia coli
CN111875699A (en) * 2020-07-03 2020-11-03 江南大学 Method for improving bacillus subtilis ovalbumin expression level

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HU X.等: "aminopeptidase [Lysinibacillus sphaericus C3-41]", NCBI GENPEPT,GENBANK: ACA37908.1 *
HU,X: "Lysinibacillus sphaericus C3-41, complete genome", NCBI GENBANK: CP000817 *
阎光宇;孙继鹏;易瑞灶;苏永全;: "基于枯草芽孢杆菌重组菌株构建技术制备海洋源金属硫蛋白", 渔业研究, no. 02, pages 1 - 6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896072A (en) * 2022-10-27 2023-04-04 深圳润康生态环境股份有限公司 Aminopeptidase BmAP, mutant BmAPM and application thereof
CN115896072B (en) * 2022-10-27 2023-09-05 深圳润康生态环境股份有限公司 Aminopeptidase BmAp, mutant BmApM and application thereof

Similar Documents

Publication Publication Date Title
DK2491120T3 (en) Synthetic phytasevarianter
CN104804093A (en) Single-domain antibody for CD47
CN105154462B (en) Method for establishing N-glycosylation receptor protein model in escherichia coli by using framework protein Fn3
KR20210093954A (en) A method for treating muscular dystrophy by targeting the eutrophin gene
CN105154461B (en) Method for establishing N-glycosylation efficiency detection receptor protein model in escherichia coli by using framework protein Fn3
CN107904254B (en) Method for extracellular production of N-glycosylation recombinant protein by using escherichia coli
CN111850007B (en) Cellulosobody docking protein combination mutant 36864 applicable to low calcium ion concentration and application
CN114015678A (en) Aminopeptidase Amp0279 derived from Bacillus sphaericus C3-41 as well as recombinant strain and application thereof
CN112522169B (en) Genetically engineered bacterium for high yield of bacillomycin L and construction method and application thereof
CN113308482B (en) Tetrahydropyrimidine synthetic gene cluster from Yunnan tengcong and application thereof
CN111548410A (en) Recombinant fibronectin with anti-wrinkle repair function and preparation method and application thereof
CN111848758B (en) Cellulosome docking protein mutant suitable for low calcium ion concentration and application
CN112646833A (en) Design and construction of fully human antibody yeast display technology
CN106191087B (en) A method of haemophilus influenzae class source of people sugar chain is prepared based on skelemin Fn3
CN107475272B (en) A kind of tool thermal stability and halophilic agarase
CN110184292A (en) A method of yeast cell surface display functionality Infliximab Fab segment is improved using molecular chaperones
CN113265414B (en) Construction method for converting high-yield bacterial strain of fengycin by using glucose
CN111848757B (en) Cellulosome docking protein combined mutant 36862 suitable for low calcium ion concentration and application
CN111850005B (en) Cellulosome docking protein combined mutant 36863 suitable for low calcium ion concentration and application
KR102194740B1 (en) Methods for preparing recombinant Acremonium chrysogenum producing deacetoxycephalosporin C with high concentration and Acremonium chrysogenum prepared thereby as bioprocess for 7-ADCA preparation
CN111088209B (en) Recombinant clostridium butyricum for producing 1, 4-butanediol and construction method and application thereof
CN113736764A (en) Recombinant plasmid containing aminopeptidase Amp0279 coding sequence, recombinant corynebacterium glutamicum and application
CN109872774B (en) YESS-based method for analyzing protein interaction in prokaryote
CN109722403B (en) Engineering strain and method for preparing farnesene by using cellulose
CN109722404B (en) Engineering strain and method for preparing farnesene by using cellulose

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination