CN111088209B - Recombinant clostridium butyricum for producing 1, 4-butanediol and construction method and application thereof - Google Patents

Recombinant clostridium butyricum for producing 1, 4-butanediol and construction method and application thereof Download PDF

Info

Publication number
CN111088209B
CN111088209B CN202010040929.2A CN202010040929A CN111088209B CN 111088209 B CN111088209 B CN 111088209B CN 202010040929 A CN202010040929 A CN 202010040929A CN 111088209 B CN111088209 B CN 111088209B
Authority
CN
China
Prior art keywords
recombinant
butanediol
clostridium butyricum
gene
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010040929.2A
Other languages
Chinese (zh)
Other versions
CN111088209A (en
Inventor
应汉杰
柳东
李楠
王振宇
葛世凯
曹幸园
牛欢青
陈勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202010040929.2A priority Critical patent/CN111088209B/en
Publication of CN111088209A publication Critical patent/CN111088209A/en
Application granted granted Critical
Publication of CN111088209B publication Critical patent/CN111088209B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01124-Hydroxybutanoyl-CoA dehydratase (4.2.1.120)

Abstract

The invention discloses a recombinant clostridium butyricum for producing 1, 4-butanediol and a construction method and application thereof, wherein the recombinant clostridium butyricum is constructed by expressing 4-hydroxybutyryl coenzyme A dehydratase in the clostridium butyricum. Compared with the prior art, the invention has the following advantages: (1) compared with wild bacteria which can not produce 1, 4-butanediol, the recombinant bacteria constructed by the invention have the yield of 66mg/L in the process of producing 1, 4-butanediol. (2) The invention further inactivates the etfA gene in the clostridium butyricum, and the yield of the 1, 4-butanediol produced by the recombinant bacterium is further improved to 182 mg/L.

Description

Recombinant clostridium butyricum for producing 1, 4-butanediol and construction method and application thereof
Technical Field
The invention belongs to the technical field of genetic engineering, and particularly relates to a recombinant clostridium butyricum for producing 1, 4-butanediol, and a construction method and application thereof.
Background
1, 4-butanediol is an important basic organic chemical raw material and fine chemical raw material, and downstream derivatives thereof are many and have wide application. The derivatives are fine chemical products with high added value, are widely used for solvents, medicines, cosmetics, plasticizers, curing agents and pesticides, and are mainly used for manufacturing Tetrahydrofuran (THF), polybutylene terephthalate (PBT), gamma-butyrolactone (GBL), N-methylpyrrolidone (NMP), N-vinyl pyrrolidone (NVP) and the like. China is the fastest growing area of global demand, and the increase is estimated to be 4% -6%. Some foreign producers have avoided the excess of BDO capacity, and the German Basff company is the largest BDO producer worldwide with the annual capacity of 46.7 ten thousand tons. However, the industrial production of 1, 4-butanediol mainly uses fossil fuel, which greatly consumes resources and is environmentally responsible, so that it is necessary to develop a biological preparation method for producing 1, 4-butanediol.
The existing 1, 4-butanediol methods have two kinds, the first method is that succinic acid after TCA circulation is used as a substrate to produce 1, 4-butanediol through some genetic modification; another is the production in the xylose non-phosphorylation pathway. The first method has an energy output of 0 and a reducing power of 1, the second method has an energy output of 1 and a reducing power of 0, and both the energy output and the reducing power are lower. Therefore, it is required to develop a process route for producing 1, 4-butanediol with high energy yield and high reducing power. In addition, the clostridium butyricum is mainly used for acetone-butanol ethanol (ABE) fermentation, is also applied to the production of products such as 2, 3-butanediol, acetoin and the like at present, has high yield and wide application range, has little application to similar 1, 4-butanediol, and is developed into a clostridium model by utilizing the clostridium butyricum to construct a new biological way capable of efficiently producing the 1, 4-butanediol.
Acetoin is a prerequisite for the synthesis of 2, 3-butanediol, clostridium acetobutylicum has genes for the synthesis of acetoin, and metabolic steps flowing to the acetoin are fewer compared with 1, 4-butanediol which needs to be further synthesized by crotonyl-coenzyme A, and metabolic branches are fewer, so that the metabolic direction of the acetoin is easier to control. The production of 1, 4-butanediol has more metabolic branches and redundant metabolites, and is relatively more difficult to control the conversion of metabolic pathways and thus more difficult to produce.
Disclosure of Invention
The purpose of the invention is as follows: the technical problem to be solved by the invention is to provide a recombinant clostridium butyricum for producing 1, 4-butanediol aiming at the defects of the prior art.
The technical problem to be solved by the invention is to provide a construction method of the recombinant clostridium butyricum.
The technical problem to be finally solved by the invention is to provide the application of the recombinant clostridium butyricum.
In order to solve the technical problem, the invention discloses a recombinant clostridium butyricum for producing 1, 4-butanediol, which is constructed by expressing 4-hydroxybutyryl coenzyme A dehydratase in the clostridium butyricum. The metabolic profile is shown in FIG. 1. The metabolic process of FIG. 1 shows that the expression of 4 hydroxybutyryl-CoA dehydratase in C.butyricum and the utilization of crotonyl-CoA, is 1, 4-butanediol produced by 4HBD conversion from crotonyl-CoA.
Wherein the clostridium butyricum is CGMCC NO.5234 or ATCC 824.
Wherein the 4-hydroxybutyryl-CoA dehydratase is expressed by a gene fragment of any one of 4HBD, namely cbei _2100(4HBD-1), ckl _3020(4HBD-2), abfD (4HBD-3), lf65-02412(4HBD-4) and ctk-c07640(4 HBD-5); wherein the nucleotide sequences of cbei _2100, ckl _3020, abfD, lf65-02412 and ctk-c07640 are respectively shown in SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4 and SEQ ID NO. 5.
Among them, the recombinant Clostridium butyricum is preferably Clostridium acetobutylicum having introduced therein a gene fragment of any one of cbei _2100(4HBD-1), ckl _3020(4HBD-2), abfD (4HBD-3), lf65-02412(4HBD-4) and ctk-c07640(4 HBD-5).
More preferably Clostridium butyricum having the cbei _2100(4HBD-1) gene fragment introduced thereinto.
The construction method of the recombinant clostridium butyricum for producing 1, 4-butanediol comprises the following steps:
(1) inserting any one gene fragment of cbei _2100, ckl _3020, abfD, lf65-02412 and ctk-c07640 into Nde I enzyme cutting sites of the vector plasmid to obtain a recombinant plasmid;
(2) methylating the recombinant plasmid obtained in the step (1) to obtain a methylated recombinant plasmid;
(3) transferring the methylated recombinant plasmid obtained in the step (2) into clostridium butyricum, and screening to obtain the recombinant plasmid.
In the step (1), the vector plasmid is PSY8, and the nucleotide sequence of the vector plasmid is shown as SEQ ID NO. 7.
Preferably, the etfA gene in the recombinant clostridium butyricum is inactivated so as to further improve the yield of 1, 4-butanediol, and the nucleotide sequence of the obtained recombinant clostridium butyricum is shown as SEQ ID NO. 6.
The construction method of the recombinant clostridium butyricum for producing 1, 4-butanediol comprises the step of inserting the intron sequence shown in SEQ ID NO.8 between the 639bp and 640bp of the etfA gene by using the knockout technology of the intron II gene.
Wherein the gene knockout technology of the intron type II comprises the following steps:
(1) analyzing the sequence shown in SEQ ID NO.6 to obtain the nucleotide sequence of the intron and the insertion position of the gene;
(2) constructing an intron sequence shown in SEQ ID NO.8 into a gene knockout plasmid to obtain a recombinant plasmid;
(3) and (3) transforming the recombinant plasmid obtained in the step (2) into clostridium butyricum, and screening to obtain the strain with the inactivated etfA gene.
In the step (2), the gene knockout plasmid is PMTL007C-E2, and the nucleotide sequence of the gene knockout plasmid is shown as SEQ ID NO. 9.
The application of the recombinant clostridium butyricum in preparing 1, 4-butanediol also falls within the protection scope of the invention.
Wherein, the application comprises the following steps: and (2) culturing the recombinant clostridium butyricum in a seed culture medium to obtain a seed solution, transferring the seed solution into a fermentation culture medium according to the volume ratio of 10%, and performing anaerobic fermentation for about 84 hours.
Wherein the seed culture medium is 3g/L of yeast powder, 5g/L of peptone, 10g/L of anhydrous glucose, 2g/L of ammonium acetate, 2g/L of sodium chloride, 3g/L of magnesium sulfate heptahydrate, 1g/L of potassium dihydrogen phosphate, 1g/L of dipotassium hydrogen phosphate, 0.1g/L of ferrous sulfate heptahydrate, and the balance of water.
Wherein the fermentation medium is solution I: 60g/L of anhydrous glucose and water as a solvent; solution II: 2.2g/L of ammonium acetate, 0.5g/L of monopotassium phosphate, 0.5g/L of dipotassium phosphate and water as a solvent; solution III: 0.01g/L of sodium chloride, 0.2g/L of magnesium sulfate heptahydrate, 0.01g/L of ferrous sulfate heptahydrate, 0.01g/L of manganese sulfate monohydrate and water as a solvent; solution IV: VB 11 mg/L, 1mg/L of p-amino cresol, 0.01mg/L of biotin and water as a solvent.
And adding the solution III and the solution IV which are prepared by expanding 1000 times into the 80% solution I and the 10% solution II, wherein the solution III and the solution IV are one thousandth of each (taking 50mL system as an example, fermentation liquor is 40mL of solution 1 and 5mL of solution 2; and solutions 3 and 4 are 50 mu L respectively, and the solutions 1, 2,3 and 4 are mixed and then added with 5mL of seed solution) to finally obtain a fermentation culture medium.
Has the advantages that: compared with the prior art, the invention has the following advantages:
(1) the invention takes the more cheap and common glucose as the substrate for production.
(2) The process route for preparing the 1, 4-butanediol is anaerobic fermentation, the energy and the reducing power can be furthest reserved in the metabolic process for product synthesis and thallus growth, the energy output is 2, the reducing power is 1, the product synthesis and the thallus growth are more facilitated, and the synthesis path has the maximum theoretical yield.
(3) Compared with wild bacteria which can not produce 1, 4-butanediol, the recombinant bacteria constructed by the invention have the yield of 66mg/L in the process of producing 1, 4-butanediol.
(4) The invention further inactivates the etfA gene in the clostridium butyricum, and the yield of the 1, 4-butanediol produced by the recombinant bacterium is further improved to 182 mg/L.
Drawings
FIG. 1 is a comparison of metabolic pathways for producing 2, 3-butanediol versus 1, 4-butanediol.
FIG. 2 is a plasmid map of the type II intron gene knock-out plasmid PMTL 007C-E2.
FIG. 3 is a colony PCR gel electrophoresis chart of Clostridium acetobutylicum for verifying whether eftA is knocked out.
FIG. 4 is a diagram showing the results of PCR on the 4HBD 1-3 colonies.
FIG. 5 is a diagram showing the PCR results of 4HBD 4-5 colonies.
FIG. 6 is a gas chromatogram of a 1, 4-butanediol standard.
FIG. 7 is a gas phase diagram after fermentation of wild fungi.
FIG. 8 is a gas chromatogram after fermentation of a recombinant bacterium which expresses only the 4HBD gene.
FIG. 9 is a gas chromatogram after fermentation of a recombinant bacterium which expresses 4HBD after the etfA gene is knocked out.
Detailed Description
The invention will be better understood from the following examples. However, those skilled in the art will readily appreciate that the description of the embodiments is only for illustrating the present invention and should not be taken as limiting the invention as detailed in the claims.
Example 1: method for constructing etfA gene inactivation mutant strain of clostridium acetobutylicum
1. Design of introns
According to the etfA gene sequence of Clostridium acetobutylicum recorded in NCBI database (shown as SEQ ID NO. 6), a suitable insertion gene site (http:// www.Clostron.Com) is designed by software, and is inserted between 640 bases of 639-.
2. Construction of etfA insertion inactivation vector:
the vector PMTL007C-E2 is subjected to double digestion by Xhol and BSrGI, and the sequence of the vector is shown as SEQ ID NO. 9. The enzyme digestion product is converted into a purification kit (Takara), and then is connected with an intron sequence S-639 through one-step cloning (Clonexpress), the recombinant plasmid connected through one-step cloning is transformed into Escherichia coli E.coli DH5a (the laboratory), the Escherichia coli E.coli DH5a is coated on an LB plate containing 25ug/mL chloramphenicol resistance, the culture is carried out at 37 ℃ for 12h, a transformant is picked up, the transformant is inoculated into a liquid LB culture medium containing 25 ug/chloramphenicol resistance, the culture is carried out at 37 ℃ and 200rpm for 12h, the recombinant plasmid is extracted, and the sequence verification is carried out to obtain an etfA insertion inactivation vector PMTL007C-E2-etfA, the nucleotide sequence of the etfA insertion inactivation vector is shown as SEQ ID No.6, and the graph of the inserted plasmid is shown as figure 2.
3. Methylation of vector PMTL 007C-E2-etfA:
since it has been demonstrated that Clostridium acetobutylicum (Clostridium acetobutylicum) ATCC824 contains restriction enzyme Cac824I, which cleaves unmethylated foreign DNA, the recombinant inactivation vector PMTL007C-E2-etfA was methylated before transformation of Clostridium acetobutylicum. The specific operation steps are to prepare the chemical competence of E.coli TOP10/pANZ (laboratory), to transform the sequencing successful inactivation vector into E.coli E.COli TOP10, because the pANZ plasmid has tetracycline resistance, to coat the plasmid on LB plate containing 25ug/mL chloramphenicol and 10ug/mL tetracycline double resistance, to culture for 12h at 37 ℃, to pick up the transformant, to receive the liquid containing 25ug/mL chloramphenicol and 10ug/mL tetracycline LB medium, to culture for 12h at 200rpm at 37 ℃, to extract the methylation deletion vector (the pANZ plasmid contains a Bacillus subtilis phage gene, which can code methyltransferase, and can realize the methylation of exogenous plasmid in E.coli).
4. Electrotransformation of the methylated knock-out plasmid to clostridium acetobutylicum:
under anaerobic conditions, 60mL of C.acetobutylicum B3 culture solution which grows to the middle logarithmic phase and is cultured by 2XYTG medium is taken, centrifuged at 4000rpm at 40 ℃ for 10min, supernatant is discarded, sufficient precooled electrotransformation buffer EPB (27omM sucrose, sfnmNaHZpO4, pH7.4) is added, washing is carried out twice, and 2.3mL of EPB is used for heavy suspension; 570uL was then added to a 0.4cm electric beaker and placed in an ice bath to cool, and 20uL of the methylated plasmid was added and placed in an ice bath for 2 min. Performing electric conversion at an O kV voltage and a 25uF capacitor; the electrotransfer solution was then added to l mL of 2XYTG medium at 37 ℃ for resuscitation and culture for 4h, and 100uL of cells were collected by centrifugation and plated on P2 plates containing 20ug/mL of validamycin A for anaerobic culture for 24 h.
5. Screening of etfA insertionally inactivated mutants
Transformants are picked, colony PCR verification is carried out on the transformants by using primers etfA-F (the sequence of which is shown in SEQ ID NO. 10) and etfA-R (the sequence of which is shown in SEQ ID NO. 11), and mutant strains with introns inserted into the genome are screened (after insertion, about 1Kbp on a gene band electrophoretogram is amplified by PCR compared with the wild type). The correctly inserted mutants were passaged three times and spread on P2 solid medium containing erythromycin and validamycin resistances, and mutants lacking the knockout plasmid (mutants that could not grow on the plate containing both erythromycin and validamycin resistances) were selected, and the colony PCR results of the results of gel nucleic acid electrophoresis were shown in FIG. 3.
Example 2:
1. designing a recombinant plasmid: searching gene sequences of cbei _2100, ckl _3020, abfD, lf65-02412 and ctk-c07640 of clostridium acetobutylicum recorded in an NCBI industrial database, respectively inserting the gene sequences into Nde I enzyme cutting sites in PSY8 serving as vector plasmids, and synthesizing the gene sequences with Jinwei. Inoculating the obtained puncturing strain to LB medium containing 25 ug/ampicillin, culturing at 37 deg.C and 200rpm for 12 hr, extracting recombinant plasmid, preserving the strain with glycerol, and storing in refrigerator at-80 deg.C.
2. Methylation of the recombinant PSY8 plasmid:
since it has been demonstrated that Clostridium acetobutylicum (Clostridium acetobutylicum) ATCC824 contains restriction enzyme Cac824, which cleaves unmethylated foreign DNA, the recombinant vector PSY8 is methylated before transformation of Clostridium acetobutylicum.
The specific operation steps are to prepare the chemical competence of E.coli Top10/pANZ (the laboratory), to transform the extracted recombinant plasmid vector into E.coli E.COli Top10, because the pANZ plasmid has tetracycline resistance, to coat the plasmid into LB plate containing 25ug/mL ampicillin resistance and 10ug/mL tetracycline double resistance, to culture for 12h at 37 ℃, to pick up the transformant, to receive the liquid containing 25ug/mL ampicillin and 10ug/mL tetracycline LB medium, to culture for 12h at 37 ℃ and 200rpm, to extract the methylation deletion vector (the pANZ plasmid contains a Bacillus subtilis phage gene, which can code methyltransferase, to realize the methylation of exogenous plasmid in E.coli).
3. Electrotransformation of the methylated recombinant plasmid to clostridium acetobutylicum and etfA knockout clostridium acetobutylicum of example 1:
under anaerobic conditions, 60mL of C.acetobutylicum B3 culture medium grown to mid-log phase in 2XYTG medium was centrifuged at 4000rpm at 4 ℃ for 10min to discard the supernatant, and sufficient precooled electroporation buffer EPB (270mM sucrose, 5mM NaHZpO) was added4pH7.4), washing twice, re-suspending with 2.3mL of EPB, adding 570uL of the mixture into a 0.4cm electric rotating cup, placing the electric rotating cup in an ice bath for cooling, adding 20uL of the methylated plasmid, and placing the electric rotating cup in the ice bath for 30 min; 2.0kV voltage, 25uF capacitance.
Then adding the electrotransformation liquid into 10mL of 2xYTG culture medium at 37 ℃ for recovery and culture for 4h, centrifugally collecting 100uL of cells, coating the cells in a P2 plate containing 20ug/mL of validamycin for anaerobic culture for 24-36h, and verifying whether the 4HBD gene is successfully electrotransferred into clostridium acetobutylicum: after plate culture, 30 single colonies were picked to a thiamphenicol resistant P2 plate and colony PCR was performed after growth. PCR conditions were as follows: at 95 ℃ for 10 min; 38cycles X (95 ℃, 10 s; 52 ℃, 15 s; 72 ℃, 2 min).
The results of colony PCR were analyzed by nucleic acid gel electrophoresis, and the results are shown in FIG. 4 and FIG. 5 (in which 4HBD-1, 2,3, 4, 5 respectively indicate that the inserted genes are cbei _2100, ckl _3020, abfD, lf65-02412, ctk-c07640)
Example 3: the recombinant bacteria and the wild bacteria are fermented in a 50mL blue-mouth bottle respectively
P2 plate medium: 3g/L of yeast powder, 5g/L of peptone, 10g/L of anhydrous glucose, 2g/L of ammonium acetate, 2g/L of sodium chloride, 3g/L of magnesium sulfate heptahydrate, 1g/L of potassium dihydrogen phosphate, 1g/L of dipotassium hydrogen phosphate, 0.1g/L of ferrous sulfate heptahydrate, 15g/L of agar and the balance of water.
2. Seed culture medium: 3g/L of yeast powder, 5g/L of peptone, 10g/L of anhydrous glucose, 2g/L of ammonium acetate, 2g/L of sodium chloride, 3g/L of magnesium sulfate heptahydrate, 1g/L of potassium dihydrogen phosphate, 1g/L of dipotassium hydrogen phosphate, 0.1g/L of ferrous sulfate heptahydrate and the balance of water.
3. Fermentation medium:
solution I: 60g/L of anhydrous glucose and water as a solvent;
solution II: 2.2g/L of ammonium acetate, 0.5g/L of monopotassium phosphate, 0.5g/L of dipotassium phosphate and water as a solvent;
solution III: 0.01g/L of sodium chloride, 0.2g/L of magnesium sulfate heptahydrate, 0.01g/L of ferrous sulfate heptahydrate, 0.01g/L of manganese sulfate monohydrate and water as a solvent;
solution IV: VB 11 mg/L, 1mg/L of p-amino cresol, 0.01mg/L of biotin and water as a solvent.
Adding solution III and solution IV which are prepared by expanding 1000 times into 80% solution I and 10% solution II, wherein the solution III and the solution IV are respectively one thousandth, and finally obtaining the fermentation culture medium.
4. Plate culture: the recombinant bacterium constructed in example 1, the recombinant bacterium of clostridium butyricum constructed in example 2 and the wild strain are inoculated into a plate culture medium for anaerobic culture at the culture temperature of 37 ℃ for 12 h. The recombinant bacteria and wild bacteria cultured by the plate are inoculated into a seed culture medium (agar is not added, and other components are the same as those of a P2 plate culture medium) to be statically cultured for 12h at 37 ℃.
5. Liquid fermentation: adding 5mL of recombinant bacteria and wild bacteria cultured in the seed culture medium into 45mL of prepared fermentation culture medium, respectively, placing in an anaerobic box for culturing at 37 ℃ for 72h, sampling every 12h and storing in a refrigerator at-80 ℃, and stopping fermentation after 72 h.
Example 4: detecting the yield of 1, 4-butanediol by using a high-efficiency gas chromatograph
1. Chromatographic conditions are as follows: capillary column (30m × 0.32mm, 0.25 μ L); temperature programming: the initial temperature is 70 deg.C, storing for 0.5min, increasing to 180 deg.C at 20 deg.C/min, maintaining for 2min, and increasing to 235 deg.C at 25 deg.C/min, and maintaining for 2 min. The gasification chamber temperature is 240 ℃, the FID detector temperature is 250 ℃, the split ratio is 10: 1, sample size 1 microliter
2. The specific operation is as follows
(1) Preparation of gas phase vial: samples of 12, 24, 36, 48, 60, 72 hours were taken out from a-80 ℃ refrigerator, 1mL of the thawed sample was taken out of 5mL of the fermentation broth and placed in a 1.5mL centrifuge tube, marked, aspirated by a l mL syringe, and injected into a gas phase vial through a filter to prepare a sample.
(2) Preparing a standard product: 10g/L of butanol, 2g/L of ethanol, 4g/L of acetone, 2g/L of acetoin, 2g/L of acetic acid, 2g/L of butyric acid and 2g/L of 1, 4-butanediol. And (4) pumping the prepared standard solution into a gas phase small bottle through a filter membrane to prepare a standard product.
(3) Product quantification: 1.4 butanediol yield (1, 4-butanediol content in the sample/Peak area of the sample).)
FIG. 6 is a gas chromatogram of a 1, 4-butanediol sample, showing that the peak time of 1, 4-butanediol is around 11.069. FIG. 7 is a gas phase diagram of a wild-type bacterium after fermentation, and it can be found that the wild-type bacterium itself does not produce 1, 4-butanediol. FIG. 8 is a gas chromatogram after fermentation of a recombinant bacterium which expresses only the 4HBD gene. FIG. 9 is a gas chromatogram after fermentation of a recombinant bacterium which expresses 4HBD after the etfA gene is knocked out.
TABLE 1 yield of final 1, 4-butanediol in the experiment
Figure BDA0002367737230000081
The detection results are shown in Table 1, and it can be seen from Table 1 that the yield of 1.4 butanediol of the mutant bacteria expressing 4HBD after knockout of eftA is improved greatly compared with the yield of 1, 4-butanediol after overexpression of only 4HBD gene, wherein the yield of 1, 4-butanediol is the highest and reaches 66mg/L when Cbei-2100 is used for expressing 4-hydroxybutyryl coenzyme A dehydratase, and the yield of 1, 4-butanediol reaches 182mg/L after eftA inactivation.
The invention provides a recombinant clostridium butyricum for producing 1, 4-butanediol and a construction method and an application thought and a method thereof, and a method and a way for realizing the technical scheme are many. All the components not specified in the present embodiment can be realized by the prior art.
Sequence listing
<110> Nanjing university of industry
<120> recombinant clostridium butyricum for producing 1, 4-butanediol and construction method and application thereof
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1455
<212> DNA
<213> 4-hydroxybutyryl-CoA dehydratase (cbei _2100)
<400> 1
atgccattaa aaacaaagga acaatatatt gaaagcctta gaaagttaaa cctaaaagtg 60
tacatgtttg gaaaaccagt tgacaatgtt gttgataatc caatcataag accatctctt 120
aattcagttg ctatgactta tgaattagca caaatgccag agtatgaaga tttaatgaca 180
gctacttcta atttaacagg ggaaaaagta aatagatttg ctcatttaca tcaaagcaca 240
gatgatctta ttaaaaaagt aaagatgcaa agattacttg gtcaaaaaac cgcatcatgt 300
ttccaaaggt gcgttggtat ggatgctttt aatgcattat acagttcaac atacgaaata 360
gataaagcgt gtggaacaaa ttatcatgaa aactttaata agtttttaaa atatgttcaa 420
gaaaacgact taaccgttga tggtgcaatg actgatccta aaggggacag aggattatcg 480
ccaagtaaac aagctgatgg agatttatac ttaagggttg ttgaaagaag agaagatggg 540
gtagttgtta gaggagcaaa atgtcaccaa actggaatgt taaattctca tgaggtagta 600
gtaatgccaa caatagcatt aactccaaat gataaggatt gggcaatatc ttttgcagtg 660
cctacagatg ctgaaggaat aattcatata tatggaaggc aatcttgtga tacaagaaaa 720
ttggagccag gtgctgatat agatcttgga aatgctgaat ttggtggaca agaaacatta 780
acaatatttg ataatgtatt tgtaccaaat gaaagaattt tcttaaatgg agaaactgat 840
tttgctggaa tgatagttga aagatttgca ggatatcata gacaaagtta tggtggatgc 900
aaagtcggag ttggagatgt tctaattgga gctgctgcag tagctgctga ttataatgga 960
gctcacaaag catctcatgt taaagataaa ttaatagaaa tgactcactt aaatgaaact 1020
ttattctctt gtggtattgc atgttcagca atgggttcta aaacagaagc tggaaattat 1080
tatattgata atctgctagc aaatgtatgt aagcaaaatg ttacaagatt cccttatgaa 1140
atatgtagac ttgcagaaga tattgctgga ggaatcatgg tgactatgcc atcagaagca 1200
gattttaaag atgaaaagat aggtccatat atagataaat atttgagagg tgtaaactca 1260
gtttcaacag aaaatagaat gagaatatta agattaatag aaaatatttg tttagggact 1320
gcagctgtcg gatatagaac agaatcaatg catggagctg gatcaccaca agctcaaaga 1380
attatgatag ctagacaagg aaatttagca gctaaaaaga aaatagctaa gaaaatagct 1440
agaattaaag aataa 1455
<210> 2
<211> 1455
<212> DNA
<213> 4-hydroxybutyryl-CoA dehydratase (ckl _3020)
<400> 2
atgtctttaa tgactgggga agaatatgta gaaagtttac gtaaattaaa attaaacgtt 60
tattatctgg gagagaaaat agataatcca gtggataacc ctgtacttcg tccatcttta 120
aattctgtta agatgactta tgacttggcc caagaagcag aatatgagga tttaatgaca 180
acaacatcaa atataacagg tgaaaaaata aatagattta caaatttaca tcaaagcagt 240
gaagatttgg taaaaaaagt taaaatgcag agattgtgcg gacaaaaaac tgcagcctgt 300
ttccaaagat gcgttggtat ggactcattt aatgcagtgt acagtactac ttttgaaata 360
gataaggaat ataatacaaa ttattttgaa aatttcaaga aatttttaac ttatgttcaa 420
aagaacgatt taacagtaga tggagctatg acagatccaa aaggagacag aggattgtca 480
ccaagcaaac aggctgatcc agatttatat ttaagagttg tagaaagaag agaagacggt 540
gtagttgtaa gaggagcaaa ggctcaccag acaggtatat gtaattctca tgaagtattg 600
gttatgccaa ctattgctat gagaccggat gataaagatt atgcaatagc tttttctgtt 660
cctacagatg cagaaggaat aactatgata attggaagac agtcctgtga tactagaaaa 720
atggaaaaag atgcggacat agatgttggt aataaagaat ttggcggagt agaagcatta 780
gtagtatttg acgatgtatt tgttccaaat gacaggatat tcttaaatgg tgaaactgaa 840
tatgcaggaa tgttagtaga gagatttgca ggatatcata gacaaagtta tggtggatgc 900
aaagtaggag tgggagatgt attgataggc gctgctgcag tggctgcaga ctataatgga 960
gctgcaaagg catctcacat aaaggataaa ttaatagaaa tgatgcattt aaatgaaact 1020
ctttacgctt gcggaattgc gtgctcagca gaaggacatg caacaaaagc tggaaattac 1080
caaatagact tgcttcttgc aaatgtatgt aagcaaaata taacaagatt cccttatgaa 1140
attgtgagat tagcagaaga tatagcagga ggattaatgg ttactatgcc ttctgaaaag 1200
gattataaga gtccagaggt tggaaaatat gtagagaagt acttggtggg agttgcatcc 1260
gtacctgttg aagacagaat gaagatatta agattattag aaaatatatg tcttggaacg 1320
gctgcagtag gatatagaac tgaatccatg catggagcag gttcacctca agcacagaga 1380
ataatgatat caagacaggg aaacctagca cataagaaga aacttgcaaa gaagatagct 1440
agaatagaag attaa 1455
<210> 3
<211> 430
<212> PRT
<213> 4-hydroxybutyryl-CoA dehydratase (abfD)
<400> 3
Met Leu Met Thr Ala Glu Gln Tyr Ile Glu Ser Leu Arg Lys Leu Asn
1 5 10 15
Thr Arg Val Tyr Met Phe Gly Glu Lys Ile Glu Asn Trp Val Asp His
20 25 30
Pro Met Ile Arg Pro Ser Ile Asn Cys Val Ala Met Thr Tyr Glu Leu
35 40 45
Ala Gln Asp Pro Gln Tyr Ala Asp Leu Met Thr Thr Lys Ser Asn Leu
50 55 60
Ile Gly Lys Thr Ile Asn Arg Phe Ala Asn Leu His Gln Ser Thr Asp
65 70 75 80
Asp Leu Arg Lys Lys Val Lys Met Gln Arg Leu Leu Gly Gln Lys Thr
85 90 95
Ala Ser Cys Phe Gln Arg Cys Val Gly Met Asp Ala Phe Asn Ala Val
100 105 110
Phe Ser Thr Thr Tyr Glu Ile Asp Gln Lys Tyr Gly Thr Asn Tyr His
115 120 125
Lys Asn Phe Thr Glu Tyr Leu Lys Tyr Ile Gln Glu Asn Asp Leu Ile
130 135 140
Val Asp Gly Ala Met Thr Asp Pro Lys Gly Asp Arg Gly Leu Ala Pro
145 150 155 160
Ser Ala Gln Lys Asp Pro Asp Leu Phe Leu Arg Ile Val Glu Lys Arg
165 170 175
Glu Asp Gly Ile Glu Glu Gly Ala Asp Ile Asp Leu Gly Asn Lys Gln
180 185 190
Phe Gly Gly Gln Glu Ala Leu Val Val Phe Asp Asn Val Phe Ile Pro
195 200 205
Asn Asp Arg Ile Phe Leu Cys Gln Glu Tyr Asp Phe Ala Gly Met Met
210 215 220
Val Glu Arg Phe Ala Gly Tyr His Arg Gln Ser Tyr Gly Gly Cys Lys
225 230 235 240
Val Gly Val Gly Asp Val Val Ile Gly Ala Ala Ala Leu Ala Ala Asp
245 250 255
Tyr Asn Gly Ala Gln Lys Ala Ser His Val Lys Asp Lys Leu Ile Glu
260 265 270
Met Thr His Leu Asn Glu Thr Leu Tyr Cys Cys Gly Ile Ala Cys Ser
275 280 285
Ala Glu Gly Tyr Pro Thr Ala Ala Gly Asn Tyr Gln Ile Asp Leu Leu
290 295 300
Leu Ala Asn Val Cys Lys Gln Asn Ile Thr Arg Phe Pro Tyr Glu Ile
305 310 315 320
Val Arg Leu Ala Glu Asp Ile Ala Gly Gly Leu Met Val Thr Met Pro
325 330 335
Ser Glu Ala Asp Phe Lys Ser Glu Thr Val Val Gly Arg Asp Gly Glu
340 345 350
Thr Ile Gly Asp Phe Cys Asn Lys Phe Phe Ala Ala Ala Pro Thr Cys
355 360 365
Thr Thr Glu Glu Arg Met Arg Val Leu Arg Phe Leu Glu Asn Ile Cys
370 375 380
Leu Gly Ala Ser Ala Val Gly Tyr Arg Thr Glu Ser Met His Gly Ala
385 390 395 400
Gly Ser Pro Gln Ala Gln Arg Ile Met Ile Ala Arg Gln Gly Asn Ile
405 410 415
Asn Ala Lys Lys Glu Leu Ala Lys Ala Ile Ala Gly Ile Lys
420 425 430
<210> 4
<211> 1455
<212> DNA
<213> 4-hydroxybutyryl-CoA dehydratase (lf65-02412)
<400> 4
atgccattaa aaacaaagga acaatatatt gaaagtctta ggaagttaaa cctaaaagtg 60
tacatgtttg gaaaaccagt tgacaatgtt gttgataatc caatcataag accatctctt 120
aattcggttg ctatgactta tgaattagca caaatgccag agcatgaaga tttaatgaca 180
gctacttcta atttaacagg ggaaaaagta aatagatttg ctcatttaca tcaaagcaca 240
gatgatctta ttaaaaaagt aaagatgcaa agattacttg gtcaaaaaac cgcatcatgt 300
ttccaaaggt gcgttggtat ggatgctttt aatgcactat acagttcaac atacgaaata 360
gataaagcgt gtggaacaaa ttatcatgaa aactttaata agtttttaaa atatgttcaa 420
gaaaacgact taaccgttga tggtgcaatg actgatccta agggggacag aggattatcg 480
ccaagtaaac aagctgatgg agatttatac ttaagggttg ttgaaagaag agaagatggg 540
gtagttgtta gaggagcaaa atgtcaccaa actggaatgt taaattctca tgaggtagta 600
gtaatgccaa caatagcatt aactccaaat gataaggatt gggcaatatc ttttgcagtg 660
cctacagatg ctgaaggaat aattcatata tacggaaggc aatcttgtga tacaagaaaa 720
ctagaaccag gtgcagatat agatcttgga aacgctgaat ttggtggaca agaaacatta 780
acaatatttg ataatgtatt tgtaccaaat gaaagaattt tcttaaatgg agagactgat 840
tttgctggaa tgatcgttga aagatttgca ggatatcata gacaaagtta tggtggatgt 900
aaagttggag ttggagatgt tctaattgga gctgctgcag tagctgctga ttataacgga 960
gctcacaaag catctcatgt taaagataaa ttaatagaaa tgactcactt aaatgaaact 1020
ttattctctt gtggtattgc atgttcagca atgggttcta aaacagaagc tggaaattat 1080
tatattgata atttgctagc aaatgtatgt aagcaaaatg ttacaagatt cccttatgaa 1140
atatgtagac ttgcagaaga tattgcagga ggaatcatgg ttactatgcc atcagaagct 1200
gactttaaag atgaaaagat aggaccatat atagataaat atttgagagg tgtaaactca 1260
gtttcaacag aaaatagaat gagaatatta agattaatag aaaatatttg tttaggaact 1320
gcagctgtcg gatatagaac agaatcaatg catggagcag gatcaccaca agctcaaaga 1380
attatgatag ctagacaagg aaatttagca gctaaaaaga aaatagctaa gaaaatagct 1440
agaattgaag aataa 1455
<210> 5
<211> 1455
<212> DNA
<213> 4-hydroxybutyryl-CoA dehydratase (ctk-c07640)
<400> 5
atggctttaa tgacaggaga acaatatgta gaaagtatac gtaaattaaa tttaaatatt 60
tatatgttgg gagataaggt agacagtccg gtggacaatc ctatacttcg tccatcattg 120
aattctgtaa agatgactta tgaattggct cagcaacctg agtatgagga tttaatgaca 180
acgacttcaa acttaacagg taaaaaaata aatagattta caaatttaca tcagaattca 240
gaggatctag ttaaaaaagt aaagatgcag agattactag gacaaaaaac agctgcctgt 300
tttcaaagat gtgttggaat ggatgctttt aatgcagttt atagtactac ttatgaagtg 360
gacaaggaat ataaaacaaa ttattttgaa aatttcaaga agtttttagc atacgtacag 420
gacaatgatt taactgtaga tggagctatg actgatccga aaggtgacag aggactttca 480
ccaagtaaac aggctgatcc tgatttatac ctgagagtag tagagagaag gcctgatgga 540
attgttgtaa gaggtgccaa agctcatcaa acaggcattt gtaattctca tgaggtactt 600
gtaatgccaa cagtagccat gagaccagaa gataaagact atgctgtagc attttcagta 660
cctacagata caaagggaat aactatgata attggcagac aatcctgtga cactagaaag 720
tctgaaaaaa atgcagacat agatgttgga aacaaggtat ttggtggagt agaggcttta 780
gttgtatttg atgatgtatt tgtaccaaat gacaggatat ttttaaatgg tgaaagtgaa 840
tatgcaggga tgcttgtaga aaggtttgca ggatatcata gacagagtta tggtggatgc 900
aaagttggtg taggtgatgt cttgatagga gctgctgcat tggctgcaga ttataatgga 960
gcagcaagag catctcatat aaaggataaa ctaatagaaa tgacacattt aaatgaaact 1020
ctatatgcat gtggaattgc atgttctgca gaagggcatc caactaaggc aggaaactat 1080
gaaataaatt tacttcttgc aaatgtatgt aaacaaaatg taactagatt tccatatgaa 1140
atagtaagat tggcagaaga tatagcaggt ggattaatgg ttactcttcc atctgaaaaa 1200
gactataaca atcctgaaac taaaggatat atagagaagt atttagtagg agttaattct 1260
gtatctacag aaaatagaat gagaatattg agattaatag aaaacttaag tcttggaact 1320
gcagcagtag gctacagaac cgaatcaatg cacggagcag gttcaccaca agcccagaga 1380
ataatgatat caagacaggg taatcttcct gctaagaaga aattggcaaa agctatagct 1440
agaatagaag aatag 1455
<210> 6
<211> 1011
<212> DNA
<213> Artificial sequence (artificial)
<400> 6
atgaataaag cagattacaa gggcgtatgg gtgtttgctg aacaaagaga cggagaatta 60
caaaaggtat cattggaatt attaggtaaa ggtaaggaaa tggctgagaa attaggcgtt 120
gaattaacag ctgttttact tggacataat actgaaaaaa tgtcaaagga tttattatct 180
catggagcag ataaggtttt agcagcagat aatgaacttt tagcacattt ttcaacagat 240
ggatatgcta aagttatatg tgatttagtt aatgaaagaa agccagaaat attattcata 300
ggagctactt tcataggaag agatttagga ccaagaatag cagcaagact ttctactggt 360
ttaactgctg attgtacatc acttgacata gatgtagaaa atagagattt attggctaca 420
agaccagcgt ttggtggaaa tttgatagct acaatagttt gttcagacca cagaccacaa 480
atggctacag taagacctgg tgtgtttgaa aaattacctg ttaatgatgc aaatgtttct 540
gatgataaaa tagaaaaagt tgcaattaaa ttaacagcat cagacataag aacaaaagtt 600
tcaaaagttg ttaagcttgc taaagatatt gcagatatcg gagaagctaa ggtattagtt 660
gctggtggta gaggagttgg aagcaaagaa aactttgaaa aacttgaaga gttagcaagt 720
ttacttggtg gaacaatagc cgcttcaaga gcagcaatag aaaaagaatg ggttgataag 780
gaccttcaag taggtcaaac tggtaaaact gtaagaccaa ctctttatat tgcatgtggt 840
atatcaggag ctatccagca tttagcaggt atgcaagatt cagattacat aattgctata 900
aataaagatg tagaagcccc aataatgaag gtagcagatt tggctatagt tggtgatgta 960
aataaagttg taccagaatt aatagctcaa gttaaagctg ctaataatta a 1011
<210> 7
<211> 4040
<212> DNA
<213> vector plasmid (PSY8)
<400> 7
ctgcgttatc ccctgattct gtggataacc gtattaccgc ctttgagtga gctgataccg 60
ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg gaagagcgcc 120
caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc tgtttatgtt 180
acagtaatat tgacttttaa aaaaggattg attctaatga agaaagcaga caagtaagcc 240
tcctaaattc actttagata aaaatttagg aggcatatca aatgaacttt aataaaattg 300
atttagacaa ttggaagaga aaagagatat ttaatcatta tttgaaccaa caaacgactt 360
ttagtataac cacagaaatt gatattagtg ttttataccg aaacataaaa caagaaggat 420
ataaatttta ccctgcattt attttcttag tgacaagggt gataaactca aatacagctt 480
ttagaactgg ttacaatagc gacggagagt taggttattg ggataagtta gagccacttt 540
atacaatttt tgatggtgta tctaaaacat tctctggtat ttggactcct gtaaagaatg 600
acttcaaaga gttttatgat ttataccttt ctgatgtaga gaaatataat ggttcgggga 660
aattgtttcc caaaacacct atacctgaaa atgctttttc tctttctatt attccatgga 720
cttcatttac tgggtttaac ttaaatatca ataataatag taattacctt ctacccatta 780
ttacagcagg aaaattcatt aataaaggta attcaatata tttaccgcta tctttacagg 840
tacatcattc tgtttgtgat ggttatcatg caggattgtt tatgaactct attcaggaat 900
tgtcagatag gcctaatgac tggcttttat aaatcgatta tgtcttttgc gcattcactt 960
cttttctata taaatatgag cgaagcgaat aagcgtcgga aaagcagcaa aaagtttcct 1020
ttttgctgtt ggagcatggg ggttcagggg gtgcagtatc tgacgtcaat gccgagcgaa 1080
agcgagccga agggtagcat ttacgttaga taaccccctg atatgctccg acgctttata 1140
tagaaaagaa gattcaacta ggtaaaatct taatataggt tgagatgata aggtttataa 1200
ggaatttgtt tgttctaatt tttcactcat tttgttctaa tttcttttaa caaatgttct 1260
ttttttttta gaacagttat gatatagtta gaatagttta aaataaggag tgagaaaaag 1320
atgaaagaaa gatatggaac agtctataaa ggctctcaga ggctcataga cgaagaaagt 1380
ggagaagtca tagaggtaga caagttatac cgtaaacaaa cgtctggtaa cttcgtaaag 1440
gcatatatag tgcaattaat aagtatgtta gatatgattg gcggaaaaaa acttaaaatc 1500
gttaactata tcctagataa tgtccactta agtaacaata caatgatagc tacaacaaga 1560
gaaatagcaa aagctacagg aacaagtcta caaacagtaa taacaacact taaaatctta 1620
gaagaaggaa atattataaa aagaaaaact ggagtattaa tgttaaaccc tgaactacta 1680
atgagaggcg acgaccaaaa acaaaaatac ctcttactcg aatttgggaa ctttgagcaa 1740
gaggcaaatg aaatagattg acctcccaat aacaccacgt agttattggg aggtcaatct 1800
atgaaatgcg attaagcttg gctgcaggtc gacggatccc cgggaattct ataaaatata 1860
aataattttc taaaaaactt aacttcatgt gaaaagtttg ttaaaatata aatgagcacg 1920
ttaatcattt aacatagata attaaatagt aaaagggagt gtcgacatat ggtgcactct 1980
cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc 2040
tgacgcgccc tgacgggctt gtctgctccc ggcatccgct tacagacaag ctgtgaccgt 2100
ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgagacgaaa 2160
gggcctcgtg atacgcctat ttttataggt taatgtcatg ataataatgg tttcttagac 2220
gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat ttttctaaat 2280
acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc aataatattg 2340
aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct tttttgcggc 2400
attttgcctt cctgtttttg ctcacccaga aacgctggtg aaagtaaaag atgctgaaga 2460
tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta agatccttga 2520
gagttttcgc cccgaagaac gttttccaat gatgagcact tttaaagttc tgctatgtgg 2580
cgcggtatta tcccgtattg acgccgggca agagcaactc ggtcgccgca tacactattc 2640
tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg atggcatgac 2700
agtaagagaa ttatgcagtg ctgccataac catgagtgat aacactgcgg ccaacttact 2760
tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca tgggggatca 2820
tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa gccataccaa acgacgagcg 2880
tgacaccacg atgcctgtag caatggcaac aacgttgcgc aaactattaa ctggcgaact 2940
acttactcta gcttcccggc aacaattaat agactggatg gaggcggata aagttgcagg 3000
accacttctg cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg 3060
tgagcgtggg tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat 3120
cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc 3180
tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat 3240
actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt 3300
tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc 3360
cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt 3420
gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac 3480
tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg ttcttctagt 3540
gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct 3600
gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga 3660
ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac 3720
acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg 3780
agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt 3840
cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc 3900
tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg 3960
gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc 4020
ttttgctcac atgttctttc 4040
<210> 8
<211> 309
<212> DNA
<213> intron (DNA)
<400> 8
ttatccttaa ttgccgatat cgtgcgccca gatagggtgt taagtcaagt agtttaaggt 60
actactctgt aagataacac agaaaacagc caacctaacc gaaaagcgaa agctgatacg 120
ggaacagagc acggttggaa agcgatgagt tacctaaaga caatcgggta cgactgagtc 180
gcaatgttaa tcagatataa ggtataagtt gtgtttactg aacgcaagtt tctaatttcg 240
gttgcaatcc gatagaggaa agtgtctgaa acctctagta caaagaaagg taagttaccg 300
atatcgact 309
<210> 9
<211> 8925
<212> DNA
<213> knock-out plasmid (PMTL007C-E2)
<400> 9
cctgcagggt gtagtagcct gtgaaataag taaggaaaaa aaagaagtaa gtgttatata 60
tgatgattat tttgtagatg tagataggat aatagaatcc atagaaaata taggttatac 120
agttatataa aaattacttt aaaaattaat aaaaacatgg taaaatataa atcgtataaa 180
gttgtgtaat ttttaagctt gagctcataa caatttcaca caggaaacag ctatgaccat 240
gattacggat tcactggccg tcgttttaca acgtcgtgac tgggaaaacc ctggcgttac 300
ccaacttaat cgccttgcag cacatccccc tttcgccagc tggcgtaata gcgaagaggc 360
ccgcaccgat cgcccttccc aacagttgcg cagcctgaat ggcgaatggc gctaataaag 420
atcttgtaca atctgtagga gaacctatgg gaacgaaacg aaagcgatgc cgagaatctg 480
aatttaccaa gacttaacac taactgggga taccctaaac aagaatgcct aatagaaagg 540
aggaaaaagg ctatagcact agagcttgaa aatcttgcaa gggtacggag tactcgtagt 600
agtctgagaa gggtaacgcc ctttacatgg caaaggggta cagttattgt gtactaaaat 660
taaaaattga ttagggagga aaacctcaaa atgaaaccaa caatggcaat tttagaaaga 720
atcagtaaaa attcacaaga aaatatagac gaagttttta caagacttta tcgttatctt 780
ttacgtccag atatttatta cgtggcgacg cgtgaagttc ctatactttc tagagaatag 840
gaacttcgcg actcatagaa ttatttcctc ccgttaaata atagataact attaaaaata 900
gacaatactt gctcataagt aacggtactt aaattgttta ctttggcgtg tttcattgct 960
tgatgaaact gatttttagt aaacagttga cgatattctc gattgaccca ttttgaaaca 1020
aagtacgtat atagcttcca atatttatct ggaacatctg tggtatggcg ggtaagtttt 1080
attaagacac tgtttacttt tggtttagga tgaaagcatt ccgctggcag cttaagcaat 1140
tgctgaatcg agacttgagt gtgcaagagc aaccctagtg ttcggtgaat atccaaggta 1200
cgcttgtaga atccttcttc aacaatcaga tagatgtcag acgcatggct ttcaaaaacc 1260
acttttttaa taatttgtgt gcttaaatgg taaggaatac tcccaacaat tttatacctc 1320
tgtttgttag ggaattgaaa ctgtagaata tcttggtgaa ttaaagtgac acgagtattc 1380
agttttaatt tttctgacga taagttgaat agatgactgt ctaattcaat agacgttacc 1440
tgtttactta ttttagccag tttcgtcgtt aaatgccctt tacctgttcc aatttcgtaa 1500
acggtatcgg tttcttttaa attcaattgt tttattattt ggttgagtac tttttcactc 1560
gttaaaaagt tttgagaata ttttatattt ttgttcatac cagcaccaga agcaccagca 1620
tctcttgggt taattgaggc ctgagtataa ggtgacttat acttgtaatc tatctaaacg 1680
gggaacctct ctagtagaca atcccgtgct aaattgtagg actgcccttt aataaatact 1740
tctatattta aagaggtatt tatgaaaagc ggaatttatc agattaaaaa tactttctct 1800
agagaaaatt tcgtctggat tagttactta tcgtgtaaaa tctgataaat ggaattggtt 1860
ctacataaat gcctaacgac tatccctttg gggagtaggg tcaagtgact cgaaacgata 1920
gacaacttgc tttaacaagt tggagatata gtctgctctg catggtgaca tgcagctgga 1980
tataattccg gggtaagatt aacgacctta tctgaacata atgccatatg aatccctcct 2040
aatttatacg ttttctctaa caacttaatt atacccacta ttattatttt tatcaatata 2100
gaagttccta tactttctag agaataggaa cttcacgcgt tgggaaatgg caatgatagc 2160
gaaacaacgt aaaactcttg ttgtatgctt tcattgtcat cgtcacgtga ttcataaaca 2220
caagtgaatg tcgacagtga atttttacga acgaacaata acagagccgt atactccgag 2280
aggggtacgt acggttcccg aagagggtgg tgcaaaccag tcacagtaat gtgaacaagg 2340
cggtacctcc ctacttcacc atatcatttt ctgcagcccc ctagaaataa ttttgtttaa 2400
ctttaagaag gagatataca tatatggcta gatcgtccat tccgacagca tcgccagtca 2460
ctatggcgtg ctgctagcgc tatatgcgtt gatgcaattt ctatgcactc gtagtagtct 2520
gagaagggta acgcccttta catggcaaag gggtacagtt attgtgtact aaaattaaaa 2580
attgattagg gaggaaaacc tcaaaatgaa accaacaatg gcaattttag aaagaatcag 2640
taaaaattca caagaaaata tagacgaagt ttttacaaga ctttatcgtt atcttttacg 2700
tccagatatt tattacgtgg cgtatcaaaa tttatattcc aataaaggag cttccacaaa 2760
aggaatatta gatgatacag cggatggctt tagtgaagaa aaaataaaaa agattattca 2820
atctttaaaa gacggaactt actatcctca acctgtacga agaatgtata ttgcaaaaaa 2880
gaattctaaa aagatgagac ctttaggaat tccaactttc acagataaat tgatccaaga 2940
agctgtgaga ataattcttg aatctatcta tgaaccggta ttcgaagatg tgtctcacgg 3000
ttttagacct caacgaagct gtcacacagc tttgaaaaca atcaaaagag agtttggcgg 3060
cgcaagatgg tttgtggagg gagatataaa aggctgcttc gataatatag accacgttac 3120
actcattgga ctcatcaatc ttaaaatcaa agatatgaaa atgagccaat tgatttataa 3180
atttctaaaa gcaggttatc tggaaaactg gcagtatcac aaaacttaca gcggaacacc 3240
tcaaggtgga attctatctc ctcttttggc caacatctat cttcatgaat tggataagtt 3300
tgttttacaa ctcaaaatga agtttgaccg agaaagtcca gaaagaataa cacctgaata 3360
tcgggagctc cacaatgaga taaaaagaat ttctcaccgt ctcaagaagt tggagggtga 3420
agaaaaagct aaagttcttt tagaatatca agaaaaacgt aaaagattac ccacactccc 3480
ctgtacctca cagacaaata aagtattgaa atacgtccgg tatgcggacg acttcattat 3540
ctctgttaaa ggaagcaaag aggactgtca atggataaaa gaacaattaa aactttttat 3600
tcataacaag ctaaaaatgg aattgagtga agaaaaaaca ctcatcacac atagcagtca 3660
acccgctcgt tttctgggat atgatatacg agtaaggaga tctggaacga taaaacgatc 3720
tggtaaagtc aaaaagagaa cactcaatgg gagtgtagaa ctccttattc ctcttcaaga 3780
caaaattcgt caatttattt ttgacaagaa aatagctatc caaaagaaag atagctcatg 3840
gtttccagtt cacaggaaat atcttattcg ttcaacagac ttagaaatca tcacaattta 3900
taattctgaa ctccgcggga tttgtaatta ctacggtcta gcaagtaatt ttaaccagct 3960
caattatttt gcttatctta tggaatacag ctgtctaaaa acgatagcct ccaaacataa 4020
gggaacactt tcaaaaacca tttccatgtt taaagatgga agtggttcgt gggggatccc 4080
gtatgagata aagcaaggta agcagcgccg ttattttgca aattttagtg aatgtaaatc 4140
cccttatcaa tttacggatg agataagtca agctcctgta ttgtatggct atgcccggaa 4200
tactcttgaa aacaggttaa aagctaaatg ttgtgaatta tgtgggacgt ctgatgaaaa 4260
tacttcctat gaaattcacc atgtcaataa ggtcaaaaat cttaaaggca aagaaaaatg 4320
ggaaatggca atgatagcga aacaacgtaa aactcttgtt gtatgctttc attgtcatcg 4380
tcacgtgatt cataaacaca agtgaatgtc gagcacccgt tctcggagca ctgtccgacc 4440
gctttggccg ccgcccagtc ctgctcgctt cgctacttgg agccactatc gactacgcga 4500
tcatggcgac cacacccgtc ctgtggatcg ccaagccgcc gatggtagtg tggggtctcc 4560
ccatgcgaga gtagggaact gccaggcatc aaataaaacg aaaggctcag tcgaaagact 4620
gggcctttcg ttttatctgt tgtttgtcgg tgaacgctct cctgagtagg acaaatccgc 4680
cgggagcgga tttgaacgtt gcgaagcaac ggcccggagg gtggcgggca ggacgcccgc 4740
cataaactgc caggcatcaa attaagcaga aggccatcct gacggatggc ctttttgcgt 4800
ttctacaaac tcttcctgtc gtcatatcta caagccatcc ccccacagat acgggcgcgc 4860
cgccattatt tttttgaaca attgacaatt catttcttat tttttattaa gtgatagtca 4920
aaaggcataa cagtgctgaa tagaaagaaa tttacagaaa agaaaattat agaatttagt 4980
atgattaatt atactcattt atgaatgttt aattgaatac aaaaaaaaat acttgttatg 5040
tattcaatta cgggttaaaa tatagacaag ttgaaaaatt taataaaaaa ataagtcctc 5100
agctcttata tattaagcta ccaacttagt atataagcca aaacttaaat gtgctaccaa 5160
cacatcaagc cgttagagaa ctctatctat agcaatattt caaatgtacc gacatacaag 5220
agaaacatta actatatata ttcaatttat gagattatct taacagatat aaatgtaaat 5280
tgcaataagt aagatttaga agtttatagc ctttgtgtat tggaagcagt acgcaaaggc 5340
ttttttattt gataaaaatt agaagtatat ttattttttc ataattaatt tatgaaaatg 5400
aaagggggtg agcaaagtga cagaggaaag cagtatctta tcaaataaca aggtattagc 5460
aatatcatta ttgactttag cagtaaacat tatgactttt atagtgcttg tagctaagta 5520
gtacgaaagg gggagcttta aaaagctcct tggaatacat agaattcata aattaattta 5580
tgaaaagaag ggcgtatatg aaaacttgta aaaattgcaa agagtttatt aaagatactg 5640
aaatatgcaa aatacattcg ttgatgattc atgataaaac agtagcaacc tattgcagta 5700
aatacaatga gtcaagatgt ttacataaag ggaaagtcca atgtattaat tgttcaaaga 5760
tgaaccgata tggatggtgt gccataaaaa tgagatgttt tacagaggaa gaacagaaaa 5820
aagaacgtac atgcattaaa tattatgcaa ggagctttaa aaaagctcat gtaaagaaga 5880
gtaaaaagaa aaaataattt atttattaat ttaatattga gagtgccgac acagtatgca 5940
ctaaaaaata tatctgtggt gtagtgagcc gatacaaaag gatagtcact cgcattttca 6000
taatacatct tatgttatga ttatgtgtcg gtgggacttc acgacgaaaa cccacaataa 6060
aaaaagagtt cggggtaggg ttaagcatag ttgaggcaac taaacaatca agctaggata 6120
tgcagtagca gaccgtaagg tcgttgttta ggtgtgttgt aatacatacg ctattaagat 6180
gtaaaaatac ggataccaat gaagggaaaa gtataatttt tggatgtagt ttgtttgttc 6240
atctatgggc aaactacgtc caaagccgtt tccaaatctg ctaaaaagta tatcctttct 6300
aaaatcaaag tcaagtatga aatcataaat aaagtttaat tttgaagtta ttatgatatt 6360
atgtttttct attaaaataa attaagtata tagaatagtt taataatagt atatacttaa 6420
tgtgataagt gtctgacagt gtcacagaaa ggatgattgt tatggattat aagcggccgg 6480
ccagtgggca agttgaaaaa ttcacaaaaa tgtggtataa tatctttgtt cattagagcg 6540
ataaacttga atttgagagg gaacttagat ggtatttgaa aaaattgata aaaatagttg 6600
gaacagaaaa gagtattttg accactactt tgcaagtgta ccttgtacct acagcatgac 6660
cgttaaagtg gatatcacac aaataaagga aaagggaatg aaactatatc ctgcaatgct 6720
ttattatatt gcaatgattg taaaccgcca ttcagagttt aggacggcaa tcaatcaaga 6780
tggtgaattg gggatatatg atgagatgat accaagctat acaatatttc acaatgatac 6840
tgaaacattt tccagccttt ggactgagtg taagtctgac tttaaatcat ttttagcaga 6900
ttatgaaagt gatacgcaac ggtatggaaa caatcataga atggaaggaa agccaaatgc 6960
tccggaaaac atttttaatg tatctatgat accgtggtca accttcgatg gctttaatct 7020
gaatttgcag aaaggatatg attatttgat tcctattttt actatgggga aatattataa 7080
agaagataac aaaattatac ttcctttggc aattcaagtt catcacgcag tatgtgacgg 7140
atttcacatt tgccgttttg taaacgaatt gcaggaattg ataaatagtt aacttcaggt 7200
ttgtctgtaa ctaaaaacaa gtatttaagc aaaaacatcg tagaaatacg gtgttttttg 7260
ttaccctaag tttaaactcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt 7320
ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt 7380
ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg 7440
tttgccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca 7500
gataccaaat actgttcttc tagtgtagcc gtagttaggc caccacttca agaactctgt 7560
agcaccgcct acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga 7620
taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc 7680
gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact 7740
gagataccta cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga 7800
caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc ttccaggggg 7860
aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt 7920
tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt 7980
acggttcctg gccttttgct ggccttttgc tcacatgttc tttcctgcgt tatcccctga 8040
ttctgtggat aaccgtatta ccgcctttga gtgagctgat accgctcgcc gcagccgaac 8100
gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcccaatac gcagggcccc 8160
ctgcttcggg gtcattatag cgattttttc ggtatatcca tcctttttcg cacgatatac 8220
aggattttgc caaagggttc gtgtagactt tccttggtgt atccaacggc gtcagccggg 8280
caggataggt gaagtaggcc cacccgcgag cgggtgttcc ttcttcactg tcccttattc 8340
gcacctggcg gtgctcaacg ggaatcctgc tctgcgaggc tggccggcta ccgccggcgt 8400
aacagatgag ggcaagcgga tggctgatga aaccaagcca accaggaagg gcagcccacc 8460
tatcaaggtg tactgccttc cagacgaacg aagagcgatt gaggaaaagg cggcggcggc 8520
cggcatgagc ctgtcggcct acctgctggc cgtcggccag ggctacaaaa tcacgggcgt 8580
cgtggactat gagcacgtcc gcgagctggc ccgcatcaat ggcgacctgg gccgcctggg 8640
cggcctgctg aaactctggc tcaccgacga cccgcgcacg gcgcggttcg gtgatgccac 8700
gatcctcgcc ctgctggcga agatcgaaga gaagcaggac gagcttggca aggtcatgat 8760
gggcgtggtc cgcccgaggg cagagccatg acttttttag ccgctaaaac ggccgggggg 8820
tgcgcgtgat tgccaagcac gtccccatgc gctccatcaa gaagagcgac ttcgcggagc 8880
tggtgaagta catcaccgac gagcaaggca agaccgatcg ggccc 8925
<210> 10
<211> 19
<212> DNA
<213> upstream primer (etfA-F)
<400> 10
acagaccaca aatggctac 19
<210> 11
<211> 20
<212> DNA
<213> downstream primer (etfA-R)
<400> 11
tgaatcttgc atacctgcta 20

Claims (8)

1. The recombinant clostridium butyricum for producing 1, 4-butanediol is characterized in that the recombinant clostridium butyricum is constructed by expressing 4-hydroxybutyryl coenzyme A dehydratase in clostridium butyricum;
wherein, the clostridium butyricum is ATCC 824;
wherein the expressed 4-hydroxybutyryl-CoA dehydratase is expressed by any one gene segment of cbei _2100, ckl _3020, abfD, lf65-02412 and ctk-c 07640; wherein the nucleotide sequences of the cbei _2100, ckl _3020, abfD, lf65-02412 and ctk-c07640 gene segments are respectively shown as SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4 and SEQ ID NO. 5.
2. The method of constructing recombinant clostridium butyricum producing 1, 4-butanediol of claim 1, comprising the steps of:
(1) inserting any one gene fragment of cbei _2100, ckl _3020, abfD, lf65-02412 and ctk-c07640 into the enzyme cutting site of the vector plasmid to obtain a recombinant plasmid;
(2) methylating the recombinant plasmid obtained in the step (1) to obtain a methylated recombinant plasmid;
(3) transferring the methylated recombinant plasmid obtained in the step (2) into clostridium acetobutylicum, and screening to obtain the recombinant plasmid.
3. The construction method according to claim 2, wherein in step (1), the vector plasmid is PSY8, and the nucleotide sequence thereof is shown in SEQ ID NO. 7.
4. The recombinant clostridium butyricum for producing 1, 4-butanediol according to claim 1, wherein the etfA gene in the recombinant clostridium butyricum is inactivated, and the nucleotide sequence of the etfA gene in the obtained recombinant clostridium butyricum is shown as SEQ ID No. 6.
5. The method for constructing the recombinant clostridium butyricum for producing 1, 4-butanediol of claim 4, wherein the method for constructing the recombinant clostridium butyricum with inactivated etfA gene is to insert an intron sequence shown in SEQ ID No.8 between the 639bp and 640bp of the etfA gene by using a two-type intron gene knockout technology.
6. The method of claim 5, wherein the knockout technique for the type II intron gene comprises the steps of:
(1) constructing an intron sequence shown in SEQ ID NO.8 into a gene knockout plasmid to obtain a recombinant plasmid;
(2) and (2) converting the recombinant plasmid obtained in the step (1) into clostridium acetobutylicum, and screening to obtain the strain with the inactivated etfA gene.
7. The construction method according to claim 6, wherein in the step (1), the gene knockout plasmid is PMTL007C-E2, and the nucleotide sequence is shown as SEQ ID NO. 9.
8. Use of the recombinant clostridium butyricum of claim 1 for preparing 1, 4-butanediol.
CN202010040929.2A 2020-01-15 2020-01-15 Recombinant clostridium butyricum for producing 1, 4-butanediol and construction method and application thereof Active CN111088209B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010040929.2A CN111088209B (en) 2020-01-15 2020-01-15 Recombinant clostridium butyricum for producing 1, 4-butanediol and construction method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010040929.2A CN111088209B (en) 2020-01-15 2020-01-15 Recombinant clostridium butyricum for producing 1, 4-butanediol and construction method and application thereof

Publications (2)

Publication Number Publication Date
CN111088209A CN111088209A (en) 2020-05-01
CN111088209B true CN111088209B (en) 2021-07-30

Family

ID=70399248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010040929.2A Active CN111088209B (en) 2020-01-15 2020-01-15 Recombinant clostridium butyricum for producing 1, 4-butanediol and construction method and application thereof

Country Status (1)

Country Link
CN (1) CN111088209B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395576B (en) * 2020-08-31 2023-11-14 南京工业大学 Method for improving protein expression efficiency in clostridium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813575A1 (en) * 2013-06-14 2014-12-17 Evonik Industries AG Method for the preparation of organic compounds from oxyhydrogen and CO2 using acetoacetyl-CoA as an intermediate product
BR112017021667A2 (en) * 2015-04-09 2018-07-24 Genomatica Inc modified microorganisms & methods for improved crotyl alcohol production
CN105505849B (en) * 2016-01-22 2019-09-20 南京工业大学 The genetic engineering bacterium and its construction method of co-producing butanol and 2,3- butanediol and application
CN110438056B (en) * 2019-08-12 2021-05-28 江南大学 Construction and application of escherichia coli engineering bacteria for producing n-butyric acid

Also Published As

Publication number Publication date
CN111088209A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
CN110117551B (en) Saccharomyces cerevisiae engineering bacterium for producing valencene, and construction method and application thereof
CN100540667C (en) Utilize rice-embryo milk cell to produce recombination human serum albumin as bio-reactor
CN108102940B (en) Industrial saccharomyces cerevisiae strain with XKS1 gene knocked out by CRISPR/Cas9 system and construction method
CN113046355B (en) Intermediate-temperature prokaryotic Argonaute protein PbAgo characterization and application
CN110438053B (en) Biological sequestration system suitable for synechococcus, construction method and application
CN108300671A (en) One plant of common fermentation xylose and glucose is with an industrial strain of S.cerevisiae strain of high yield xylitol and ethyl alcohol and construction method
CN112877351A (en) Recombinant plasmid for preventing and treating new coronavirus infection, recombinant lactobacillus expression system and application thereof
CN113308482B (en) Tetrahydropyrimidine synthetic gene cluster from Yunnan tengcong and application thereof
CN111088209B (en) Recombinant clostridium butyricum for producing 1, 4-butanediol and construction method and application thereof
CN110184292B (en) Method for improving yeast cell surface display functional Infliximab Fab fragment by utilizing molecular chaperone
CN111269869B (en) Construction method of recombinant clostridium acetobutylicum and application of recombinant clostridium acetobutylicum in preparation of butanol through semi-fiber fermentation
CN107475272B (en) A kind of tool thermal stability and halophilic agarase
CN110938648B (en) Fungus secretion expression vector, construction method and application thereof
CN109872774B (en) YESS-based method for analyzing protein interaction in prokaryote
CN114807194B (en) Method for improving protein expression efficiency in clostridium
CN111088204A (en) Recombinant escherichia coli expressing Caspase-3 recombinant scFv78 and functional verification method thereof
CN109735558B (en) Recombinant CAR19-IL24 gene, lentiviral vector, CAR19-IL24-T cell and application
CN107142259A (en) A kind of promoter of expression alien gene and its application
CN111909850B (en) Astaxanthin-producing engineering bacteria based on Dunaliella salina metabolic pathway and CBFD and HBFD of Adonis amurensis, construction and application thereof
CN111118051B (en) Saccharomyces cerevisiae-based double-stranded RNA synthesis optimization and application
CN112180087B (en) ELISA method for detecting riemerella anatipestifer antibody, kit and application thereof
CN115161294B (en) Newcastle disease vaccine strain, construction method thereof, poultry immune recognition method and application
CN110904142A (en) Construction technology and application method of diatom expressing shell surface anchoring protein
CN114134058A (en) Industrial saccharomyces cerevisiae strain for synchronously producing xylitol and ethanol and construction method thereof
KR100531672B1 (en) A Corynebacterium vector containing Gentamicin resistant gene for target gene amplification, a vector for disrupting a target gene in a host cell and method for selecting the transformed host cell using the above vectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant