CN108517547A - 一种Co3O4掺杂多孔PbO2电极共电沉积方法 - Google Patents

一种Co3O4掺杂多孔PbO2电极共电沉积方法 Download PDF

Info

Publication number
CN108517547A
CN108517547A CN201810295872.3A CN201810295872A CN108517547A CN 108517547 A CN108517547 A CN 108517547A CN 201810295872 A CN201810295872 A CN 201810295872A CN 108517547 A CN108517547 A CN 108517547A
Authority
CN
China
Prior art keywords
anode
electrode
porous
pbo
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810295872.3A
Other languages
English (en)
Inventor
刘博�
王姣
杨生春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810295872.3A priority Critical patent/CN108517547A/zh
Publication of CN108517547A publication Critical patent/CN108517547A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种Co3O4掺杂多孔PbO2电极共电沉积方法,步骤包括:以金属钛板为阳极,铜板为阴极,电解液组成为0.1‑0.2mol/L Pb盐和1‑10g/L Co3O4,pH为3‑4,Co3O4粒径50‑300nm,电流密度3000‑8000A/m2,在氧气泡析出过程中,电沉积2‑3小时,获得Co3O4掺杂的多孔二氧化铅阳极,Co3O4质量含量1‑30%。本发明的特点是在大电流密度电沉积多孔结构二氧化铅阳极催化电极的同时,在电解液中引入纳米Co3O4,获得了Co3O4掺杂多孔PbO2电极,既具有大的活性比表面积,又兼具优异的本质催化活性,并且掺杂量可控,制备简单。

Description

一种Co3O4掺杂多孔PbO2电极共电沉积方法
技术领域
本发明属于工业电化学领域,具体涉及一种高活性掺杂型多孔二氧化铅电极的电沉积方法。
背景技术
惰性阳极是电化学冶金和有机电合成等过程的关键。钛基贵金属涂层阳极是一种活性高、稳定性好的形稳阳极,已经获得了广泛的应用。然而,贵金属储量有限、价格高,造成工业应用成本高。因此,开发具有高析氧活性和良好稳定性的非贵金属阳极材料,具有重要的意义。
PbO2是一种催化活性高、导电性好、耐腐蚀性强、成本低的电极材料,被认为具有广阔的应用前景。然而,与贵金属涂层阳极相比,PbO2阳极的催化活性仍然偏低,其综合性能仍有待进一步提升。电极的催化活性取决于材料的本质活性和比表面积。阳极电沉积是制备PbO2阳极的常用方法,专利(201611117108)以阳极电沉积过程产生的氧气泡为模板,在钛板上直接电沉积获得了多孔结构的PbO2惰性阳极,可显著增大电极的比表面积,有望改善催化活性。然而,这种方法并没有改变PbO2的本质活性,这意味着PbO2惰性阳极的催化活性仍有较大的提升空间。另一方面,Co3O4是一种储量丰富、价格低廉并且具有优异催化活性的阳极材料。然而Co3O4电导率低,稳定差,特别是在酸性体系中,难以长期使用。
发明内容
为解决现有技术中存在的上述缺陷,本发明的目的在于提供一种Co3O4掺杂多孔二氧化铅电极的共电沉积方法,既具有大的活性比表面积,Co3O4与PbO2间的协同效应又能够显著提高阳极的本质活性,是一种高催化活性的惰性阳极材料。
本发明是通过下述技术方案来实现的。
一种Co3O4掺杂多孔PbO2电极共电沉积方法,包括以下步骤:
以金属钛板为阳极,铜板为阴极,在0.1-0.2mol/L Pb盐和1-10g/L Co3O4电解液中,调节pH为3-4,纳米Co3O4粒径50-300nm,控制电流密度为3000-8000A/m2,在氧气泡析出过程中,电沉积2-3小时,获得Co3O4掺杂的多孔二氧化铅阳极,阳极Co3O4质量含量达1-30%。
对于上述技术方案,本发明还有进一步优化的方案:
所述Pb盐为Pb(NO3)2、Pb(ClO4)2、PbCl2或Pb(CH3COO)2中的一种。
所述Co3O4电解液浓度优选为3-7g/L。
所述纳米Co3O4粒径优选为100-200nm。
所述电流密度优选为4000-6000A/m2
所述多孔阳极中Co3O4质量含量优选为5-20%。
本发明的有益效果是,本发明的Co3O4掺杂多孔二氧化铅电极的共电沉积方法,在大电流密度下进行阳极电沉积,在获得多孔二氧化铅以提高活性比表面积的同时,实现了纳米Co3O4共电沉积,利用Co3O4和PbO2的协同效应,提高阳极材料的本质催化活性。基于比表面积和本质活性的同步提高,可以获得具有极高催化活性的PbO2阳极。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
本发明的Co3O4掺杂多孔PbO2电极共电沉积方法,包括以下步骤:
以金属钛板为阳极,铜板为阴极,在0.1-0.2mol/L Pb盐和1-10g/L Co3O4电解液中,调节pH为3-4,纳米Co3O4粒径50-300nm,控制电流密度为3000-8000A/m2,在氧气泡析出过程中,电沉积2-3小时,获得Co3O4掺杂的多孔二氧化铅阳极,阳极Co3O4质量含量达1-30%。
下面给出具体实施例来进一步说明本发明。
实施例1
以金属钛板为阳极,铜板为阴极,电解液为0.1M Pb(NO3)2和1g/L Co3O4,pH为3,纳米Co3O4粒径50nm,电流密度3000A/m2,在氧气泡析出过程中,电沉积3小时,获得Co3O4掺杂的多孔二氧化铅阳极,阳极Co3O4质量含量1%,200mA cm-2电流密度下,析氧过电位为510mV。
实施例2
以金属钛板为阳极,铜板为阴极,电解液为0.2M PbCl2和3g/L Co3O4,pH为3,纳米Co3O4粒径100nm,电流密度6000A/m2,在氧气泡析出过程中,电沉积2小时,获得Co3O4掺杂的多孔二氧化铅阳极,阳极Co3O4质量含量5%,200mA cm-2电流密度下,析氧过电位为485mV。
实施例3
以金属钛板为阳极,铜板为阴极,电解液为0.2M Pb(NO3)2和7g/L Co3O4,pH为4,纳米Co3O4粒径200nm,电流密度8000A/m2,在氧气泡析出过程中,电沉积2.5小时,获得Co3O4掺杂的多孔二氧化铅阳极,阳极Co3O4质量含量7%,200mA cm-2电流密度下,析氧过电位为470mV。
实施例4
以金属钛板为阳极,铜板为阴极,电解液为0.15M Pb(ClO4)2和10g/L Co3O4,pH为3.5,纳米Co3O4粒径300nm,电流密度6000A/m2,在氧气泡析出过程中,电沉积3小时,获得Co3O4掺杂的多孔二氧化铅阳极,阳极Co3O4质量含量30%,200mA cm-2电流密度下,析氧过电位为495mV。
实施例5
以金属钛板为阳极,铜板为阴极,电解液为0.1M Pb(CH3COO)2和7g/L Co3O4,pH为4,纳米Co3O4粒径200nm,电流密度4000A/m2,在氧气泡析出过程中,电沉积3小时,获得Co3O4掺杂的多孔二氧化铅阳极,阳极Co3O4质量含量20%,200mA cm-2电流密度下,析氧过电位为450mV。
实施例6
以金属钛板为阳极,铜板为阴极,电解液为0.2M Pb(NO3)2,pH为4,纳米Co3O4粒径200nm,电流密度3000A/m2,在氧气泡析出过程中,电沉积2.5小时,获得多孔二氧化铅阳极,200mA cm-2电流密度下,析氧过电位为530mV。
从以上实施例可以看出,本发明利用了具有优异催化活性的阳极材料Co3O4掺杂多孔二氧化铅电极进行共电沉积,其具有大的活性比表面积,与PbO2间的协同效应又能够显著提高阳极的本质活性,在200mA cm-2电流密度下,析氧过电位不小于450mV,电沉积2-3小时,阳极Co3O4质量含量不小于1%。是一种高催化活性的电沉积方法。
需要说明的是,按照本发明上述各实施例,本领域技术人员是完全可以实现本发明独立权利要求及从属权利的全部范围的,实现过程及方法同上述各实施例;且本发明未详细阐述部分属于本领域公知技术。

Claims (6)

1.一种Co3O4掺杂多孔PbO2电极共电沉积方法,其特征在于,包括以下步骤:
以金属钛板为阳极,铜板为阴极,在0.1-0.2mol/L Pb盐和1-10g/L Co3O4电解液中,调节pH为3-4,纳米Co3O4粒径50-300nm,控制电流密度为3000-8000A/m2,在氧气泡析出过程中,电沉积2-3小时,获得Co3O4掺杂的多孔二氧化铅阳极,阳极Co3O4质量含量达1-30%。
2.根据权利要求1所述的一种Co3O4掺杂多孔PbO2电极共电沉积方法,其特征在于,所述Pb盐为Pb(NO3)2、Pb(ClO4)2、PbCl2或Pb(CH3COO)2中的一种。
3.根据权利要求1所述的一种Co3O4掺杂多孔PbO2电极共电沉积方法,其特征在于,所述Co3O4电解液浓度优选为3-7g/L。
4.根据权利要求1所述的一种Co3O4掺杂多孔PbO2电极共电沉积方法,其特征在于,所述纳米Co3O4粒径优选为100-200nm。
5.根据权利要求1所述的一种Co3O4掺杂多孔PbO2电极共电沉积方法,其特征在于,电流密度优选为4000-6000A/m2
6.根据权利要求1所述的一种Co3O4掺杂多孔PbO2电极共电沉积方法,其特征在于,多孔阳极中Co3O4质量含量优选为5-20%。
CN201810295872.3A 2018-04-03 2018-04-03 一种Co3O4掺杂多孔PbO2电极共电沉积方法 Pending CN108517547A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810295872.3A CN108517547A (zh) 2018-04-03 2018-04-03 一种Co3O4掺杂多孔PbO2电极共电沉积方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810295872.3A CN108517547A (zh) 2018-04-03 2018-04-03 一种Co3O4掺杂多孔PbO2电极共电沉积方法

Publications (1)

Publication Number Publication Date
CN108517547A true CN108517547A (zh) 2018-09-11

Family

ID=63431393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810295872.3A Pending CN108517547A (zh) 2018-04-03 2018-04-03 一种Co3O4掺杂多孔PbO2电极共电沉积方法

Country Status (1)

Country Link
CN (1) CN108517547A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026786A (en) * 1975-07-31 1977-05-31 The United States Of America As Represented By The Secretary Of The Interior Preparation of PbO2 anode
JPH01275797A (ja) * 1988-04-28 1989-11-06 Japan Carlit Co Ltd:The クロムメッキ用二酸化鉛電極
CN102586801A (zh) * 2012-03-09 2012-07-18 山东大学 一种新型Ti基体PbO2电极的制备方法
CN106396027A (zh) * 2016-12-07 2017-02-15 西安博岳环保科技有限公司 一种致密‑蜂窝状多孔梯度二氧化铅电极制备方法
CN107723747A (zh) * 2017-10-17 2018-02-23 昆明理工大学 锌电积用钛基二氧化铅/二氧化锰梯度电极及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026786A (en) * 1975-07-31 1977-05-31 The United States Of America As Represented By The Secretary Of The Interior Preparation of PbO2 anode
JPH01275797A (ja) * 1988-04-28 1989-11-06 Japan Carlit Co Ltd:The クロムメッキ用二酸化鉛電極
CN102586801A (zh) * 2012-03-09 2012-07-18 山东大学 一种新型Ti基体PbO2电极的制备方法
CN106396027A (zh) * 2016-12-07 2017-02-15 西安博岳环保科技有限公司 一种致密‑蜂窝状多孔梯度二氧化铅电极制备方法
CN107723747A (zh) * 2017-10-17 2018-02-23 昆明理工大学 锌电积用钛基二氧化铅/二氧化锰梯度电极及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN ZHAO等: ""Electro-catalytic degradation of bisphenol A with modified Co3O4/β-PbO2/Ti electrode"", 《ELECREOCHIMICA ACTA》 *
MARCO MUSIANI: ""Anodic deposition of PbO2/Co3O4 composites and their use as electrodes for oxygen evolution reaction"", 《CHEM.COMMUN》 *

Similar Documents

Publication Publication Date Title
Popić et al. Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3
US7993501B2 (en) Double contact bar insulator assembly for electrowinning of a metal and methods of use thereof
CN108172850B (zh) 一种析氢电极及其制备和应用
Hrapovic et al. Electrodeposition of nickel particles on a gas diffusion cathode for hydrogen production in a microbial electrolysis cell
Wu et al. Electrochemical preparation and characteristics of Ni–Co–LaNi5 composite coatings as electrode materials for hydrogen evolution
Park et al. Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis
Huang et al. Effect of added cobalt ion on copper electrowinning from sulfate bath using doped polyaniline and Pb-Ag anodes
Musiani et al. Oxygen evolution reaction at composite anodes containing Co3O4 particles
Sorour et al. Electrochemical studies of ionic liquid additives during the zinc electrowinning process
CN110284167A (zh) 一种制备泡沫镍钼合金的电沉积方法
Ren et al. An extrinsic faradaic layer on CuSn for high-performance electrocatalytic CO2 reduction
Quaiyyum et al. Underpotential deposition of Zn2+ ions on platinum, palladium and gold at various pH values
CN111634982A (zh) 一种高效苯酚废水降解用阳极材料的制备方法
Yang et al. Catalytic effects of NH4+ on hydrogen evolution and manganese electrodeposition on stainless steel
Thomassen et al. Supported nanostructured Ir and IrRu electrocatalysts for oxygen evolution in PEM electrolysers
Nikoloski et al. Addition of cobalt to lead anodes used for oxygen evolution—a literature review
Hori et al. Nickel and iron modified copper electrode for electroreduction of CO2 by in-situ electrodeposition.
CN109023420A (zh) 一种镍电积用铝基复合阳极及其制备方法
Jiao et al. The effect of cobalt ion on the hydrogen evolution reaction in sulfate solution
Du et al. Preparation of Ni–Mo–Co alloy electrodes and their electrocatalytic activities for hydrogen evolution
CN108517547A (zh) 一种Co3O4掺杂多孔PbO2电极共电沉积方法
CN108411349B (zh) 一种石墨烯掺杂多孔RuO2阳极的制备方法
Ko et al. Electrochemical deposition of platinum on fluorine-doped tin oxide: The nucleation mechanisms
CN110512229A (zh) 一种水电解用析氧电极的制备方法
CN111020675B (zh) 二氧化钛纳米管掺杂的钴钨合金电沉积镀层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180911

RJ01 Rejection of invention patent application after publication