CN108514888A - 一种多酸插层水滑石光催化材料的制备及光催化燃油深度脱硫体系 - Google Patents

一种多酸插层水滑石光催化材料的制备及光催化燃油深度脱硫体系 Download PDF

Info

Publication number
CN108514888A
CN108514888A CN201810339569.9A CN201810339569A CN108514888A CN 108514888 A CN108514888 A CN 108514888A CN 201810339569 A CN201810339569 A CN 201810339569A CN 108514888 A CN108514888 A CN 108514888A
Authority
CN
China
Prior art keywords
ldhs
desulfurization
preparation
mxn
photocatalysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810339569.9A
Other languages
English (en)
Other versions
CN108514888B (zh
Inventor
宋红艳
蔡英杰
何静
安哲
张健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201810339569.9A priority Critical patent/CN108514888B/zh
Publication of CN108514888A publication Critical patent/CN108514888A/zh
Application granted granted Critical
Publication of CN108514888B publication Critical patent/CN108514888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/20Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Catalysts (AREA)

Abstract

一种多酸插层水滑石光催化材料的制备及光催化燃油深度脱硫的应用,属于环境保护技术领域。该方法的核心是光催化剂ZnAl‑HPW‑LDHs的制备和结构调控,是提高光催化效率的关键,属于环境保护技术领域。其特征在于,首先将层状水滑石ZnAl‑NO3剥离为纳米片,通过调控pH和多酸的量,重组为具有较大比表面积和活性中心暴露的高活性的光催化剂。该体系以空气为氧化剂,绿色环保,成本低廉,反应条件温和,反应设备和工艺简单,脱硫率为95.3%,光催化剂可重复使用,且性能基本不变、易于回收。

Description

一种多酸插层水滑石光催化材料的制备及光催化燃油深度脱 硫体系
技术领域
本发明属于环境保护技术领域,涉及锌铝磷钨酸插层水滑石(如 ZnAl-PW12O40,简称MN-PW)剥离重组制备方法、以及一种以空气为氧化剂的光 催化氧化燃油深度脱硫方法。
背景技术
传统的加氢脱硫技术需要在较高的反应温度(300-400℃)和压力 (3-6MPa)下进行,大量消耗氢气,且难以脱除燃油中有空间位阻效应的噻吩 硫化物。吸附脱硫,氧化脱硫,萃取脱硫及上述脱硫组合技术作为加氢脱硫 的有益的补充,成为深度脱硫技术领域关注的焦点。研究和开发低能耗,不 消耗氢气的高选择性深度脱硫技术,不仅具有科学价值,而且具有重大的国 家需求和现实意义。
光催化氧化脱硫方法具有能耗低、条件温和、无二次污染、能深度脱硫 等优点,备受学者重视。其中高效光催化剂的研制是该技术的核心。通过对 光催化脱硫的研究文献和专利的跟踪,发现多酸作为一种具有酸性和氧化性 的双功能的光催化剂深受研究者青睐,但其具有比表面积小,易流失,分离 成本高,使用效率低,易腐蚀设备等缺点。为此,围绕多酸固载以及复合型 多酸光催化剂的研究成为热点,该类催化剂用于深度脱硫的研究已有文献报 道,但其载体多为二氧化钛,分子筛等。水滑石是一类新型绿色催化剂,具 有主体层板金属元素组成可调变,客体阴离子插层组成和结构可调控的特点, 有望形成结构多样,功能强大的复合多功能材料,在吸附、催化、医药、电 化学、光化学、磁性材料等许多领域已经或即将展现广阔的应用前景。据文 献研究,开发水滑石类材料作为光催化剂是可行的,本发明利用水滑石固载 多酸,制备水滑石、多酸协同光催化新型复合材料,并应用于以空气为氧化 剂的光催化燃油深度脱硫,未见报道。
发明内容
本发明的目的在于提供一种廉价易得的新型光催化剂,即MN-PW-LDHs, 在常温常压条件下,以空气为氧化剂,紫外灯为光源,光催化氧化燃油中的 含硫有机物成为极性更强的砜,再用乙腈萃取剂萃取,从而脱除油中的含硫 有机物,得到超低硫清洁油。
本发明所采用的技术方案为:
(1)共沉淀法制备层状水滑石MxN-NO3-LDHs
称取二价金属M硝酸盐、三价金属N硝酸盐溶于去CO2水中配得A溶液; 另称NaOH溶于去CO2水中配得B溶液,然后在氮气保护下,将A、B两溶液同 时加入到四口瓶中,搅拌反应;沉淀完毕后再于60-100℃温度下老化数小时, 用去CO2水抽滤洗涤,干燥,研磨后即得层状水滑石MxN-NO3-LDHs;
(2)剥离重组法制备磷钨酸插层水滑石MxN-PW-LDHs
称取步骤(1)制备的MxN-NO3-LDHs,加入装有甲酰胺的三口瓶中,常温 下通氮气搅拌数小时,形成溶胶;称取磷钨酸H3PW12O40溶于去CO2水,将磷钨 酸溶液pH值调至中性,在氮气保护下,将其滴入到三口瓶中,之后在常温下 搅拌数小时确保反应完成,再于60-100℃温度下老化数小时,用去CO2水离 心洗涤、真空干燥,研磨后即得ZnxAl-PW-LDHs。
其中步骤(1)为常规方法,步骤(2)溶胶中MxN-NO3-LDHs的浓度为0.5-3 g/L,磷钨酸/层状水滑石MxN-NO3-LDHs的质量比不大于6:1,优选(2-4):1。 磷钨酸溶液为每1.2g磷钨酸对应30-50ml去CO2水,优选对应40ml去CO2水。
其中二价金属M硝酸盐包括但不限于硝酸锌、硝酸镁等,三价金属N硝 酸盐包括但不限于硝酸铝。
本发明还公开了一种光催化燃油深度脱硫体系,其特征在于,以磷钨酸 插层水滑石MxN-PW-LDHs作为光催化氧化催化剂,以空气作为氧化剂,同时 加入乙腈,采用乙腈萃取反应生成的硫产物。
本发明上述脱硫体系进行光催化脱硫的方法:将制备的上述光催化剂加 入待脱硫的体系(如油)中,通入空气,同时加入乙腈作为萃取剂,在紫外 灯照射下,反应数小时;硫氮分析仪分析其脱硫率。乙腈:待脱硫的体系体 积比=1:1-1:1.5。待脱硫的体系中含有的硫物质为BT、DBT、4,6DMDBT中的 至少一种。
本发明光催化反应3小时,脱硫率约为93%~95.3%,重复性实验证明催化 剂性能稳定。实验证明本发明同一催化剂对不同含硫有机物的光催化氧化性 能是BT>DBT>4,6DMDBT。
本发明提供了利用剥离重组法制备ZnAl-PW-LDHs光催化剂,并用于光催 化深度脱硫的方法。该催化剂原料廉价易得,反应条件温和,反应设备和工 艺简单,催化剂具有光催化活性高和可重复使用的特点。本方法发现水滑石 类材料在光催化深度脱硫领域具有重要应用价值,也为以空气为氧化剂的深 度脱硫方法提供了新思路,具有重要的应用前景。
附图说明
图1实施例1所制备材料的电镜图(SEM)。
(左)Zn2Al-NO3的扫描电镜图(右)Z2AW4的扫描电镜图;
图2实施例1所制备材料的透射电镜图(TEM)。
图3所制备材料的X射线衍射图(XRD)。
(a)ZnAl-NO3(b)Z2AW1(c)Z2AW2(d)Z2AW4(e)Z2AW6
图4所制备材料的红外分析图(FTIR)。
(a)Zn2Al-NO3;(b)Z2AW2;(c)Z2AW4;(d)H-PW12
Z2AW1、Z2AW2、Z2AW4、Z2AW6分别代表原料投比,ZnAl摩尔比为1:2,磷钨 酸/层状水滑石MxN-NO3-LDHs的质量比为1:1、2:1、4:1、6:1。
具体实施方式
下面所举实施例为优选例,在实际应用中应不限于以下实例。
实施例1:ZnAl-PW12O40的制备及光催化性能
(1)共沉淀法制备ZnAl-LDHs
称取5.9498g Zn(NO3)3·6H2O,3.7513g Al(NO3)3·9H2O,溶于200ml去 CO2水中配得A溶液;另称2.4g NaOH,溶于200ml去CO2水中配得B溶液, 然后在氮气保护下,将A、B两溶液同时滴入四口瓶中,保持pH为9。滴定完 毕后在60℃油浴中老化16h,之后用去CO2水洗涤3次,然后在50℃真空干 燥箱中干燥12h,研磨后即得。
(2)ZnAl-PW12O40的制备
称取0.3g ZnAl-LDHs,加入装有100ml甲酰胺的三口瓶中,常温下搅 拌24h。之后称取1.2g H3PW12O40,溶于40ml去CO2水,用一定量的NaOH 将磷钨酸溶液pH值调至7,在氮气保护下,将其缓慢滴入三口瓶中,然后在常 温下搅拌6h确保反应完成,之后置于60℃油浴锅中老化12h,用去CO2水洗涤3次,然后在50℃真空干燥箱中干燥12h,研磨后即得。
(3)模型油配制
称取0.1856g DBT溶于90ml正辛烷中,制得硫含量为500ppm的模 型油;称取0.1362g BT溶于90ml正辛烷中,制得硫含量为500ppm的模 型油;称取0.2142g 4,6DMDBT溶于90ml正辛烷中,制得硫含量为500ppm 的模型油。
(4)光催化氧化脱硫
取90ml模型油(500ppm DBT),90ml乙腈和0.18g ZnAl-PW12O40加入 到反应器中,暗中搅拌0.5小时达到吸附平衡,空气流量为25ml/min下, 光照反应3h后,硫含量为23ppm,脱硫率可达95.3%;模型油中的DBT换 为BT,保持硫含量相同时,脱硫率可达96.7%;模型油中的DBT换为4,6DMDBT, 保持硫含量相同时,脱硫率可达93.5%。
从XRD图,用Bragg方程2dhklsinΘhkl=λ中可知,对应的层间距变大,这 表明磷钨酸阴离子已成功插入到ZnAl-LDHs层板间。同时注意到, ZnAl–PW12O40复合材料出现了属于类水滑石层板的(110)衍射峰,这表明在经 过剥离和重堆积过程后,复合材料中的LDHs层板仍保持前驱体ZnAl-LDHs 中的二维层状结构。
FTIR图谱进一步证明已经成功的合成了ZnAl-PW12O40插层材料。
由电镜图SEM表明:ZnAl-LDHs具有比较完整的片状外貌。经磷钨酸柱 撑后的ZnAl–PW12O40复合材料仍具有比较明显的片状形貌,但在剥离和重堆 积作用下,破碎成形状不规则的片层,边缘钝化,随意地堆积在一起,形成 了柱撑复合材料特有的卡片房式介孔结构。
实施例2:MgAl-PW12O40的制备及其光催化性能
(1)共沉淀法制备MgAl-LDHs
称取5.1282g Mg(NO3)2·6H2O和3.7513g Al(NO3)3·9H2O,溶于200ml去 CO2水中配得A溶液;另称2.4g NaOH,也溶于200ml去CO2水中配得B溶液, 然后在氮气保护下,将A、B两溶液同时滴入四口瓶中,维持pH为9。滴定完 毕后在60℃油浴中老化16h,用去CO2水洗涤3次,然后在50℃真空干燥 箱中干燥12h,研磨后即得。
(2)MgAl-PW12O40的制备
称取0.3g MgAl-LDHs,加入装有100ml甲酰胺的三口瓶中,常温下搅 拌24h。之后称取1.2g H3PW12O40,溶于40ml去CO2水,用一定量的NaOH 将磷钨酸溶液pH值调至7,在氮气保护下,将其缓慢滴入三口瓶中,然后在 常温下搅拌6h确保反应完成。然后置于60℃油浴锅中老化12h,用去CO2水洗涤3次,在50℃真空干燥箱中干燥12h,研磨后即得。
(3)光催化氧化脱硫
取90ml模型油,90ml乙腈和0.18g MgAl-PW12O40加入到反应器中,暗 中搅拌0.5小时达到吸附平衡,空气流量为25ml/min下,光照反应3h后, 硫含量降为39ppm,脱硫率可达92.1%。
实施例3:ZnAl-PMo12O40的制备及其光催化性能
(1)共沉淀法制备ZnAl-LDHs
称取5.9498g Zn(NO3)2·6H2O和3.7513g Al(NO3)3·9H2O,溶于200ml去 CO2水中配得A溶液;另称2.4g NaOH,溶于200ml去CO2水中配得B溶液, 然后在氮气保护下,将A、B两溶液同时滴入四口瓶中,保持pH为9。滴定完 毕后在60℃油浴中老化16h,用去CO2水洗涤3次,然后在50℃真空干燥 箱中干燥12h,研磨后即得。
(2)ZnAl-PMo12O40的制备
称取0.3g ZnAl-LDHs,加入含有100ml去CO2水的三口瓶中,在氮气保 护下常温搅拌2h,称取1.2g H3PMo12O40溶于40ml去CO2水中,用NaOH溶 液将磷钼酸溶液pH值调至7,然后将其加入三口瓶中,将pH值调至5,在60℃ 油浴中老化12h,然后用去CO2水洗涤3次,在50℃真空干燥箱中干燥12h, 研磨后即得。
(3)光催化氧化脱硫
取90ml模型油,90ml乙腈和0.18g ZnAl-PMo12O40加入到反应器中,暗 中搅拌0.5小时达到吸附平衡,空气流量为25ml/min条件下,光照反应3h 后,硫含量降为37ppm,脱硫率可达92.5%。
表1所制备材料ICP元素分析

Claims (9)

1.一种多酸插层水滑石光催化材料的制备方法,其特征在于,包括以下步骤:
(1)共沉淀法制备层状水滑石MxN-NO3-LDHs
称取二价金属M硝酸盐、三价金属N硝酸盐溶于去CO2水中配得A溶液;另称NaOH溶于去CO2水中配得B溶液,然后在氮气保护下,将A、B两溶液同时加入到四口瓶中,搅拌反应;沉淀完毕后再于60-100℃温度下老化数小时,用去CO2水抽滤洗涤,干燥,研磨后即得层状水滑石MxN-NO3-LDHs;
(2)剥离重组法制备磷钨酸插层水滑石MxN-PW-LDHs
称取步骤(1)制备的MxN-NO3-LDHs,加入装有甲酰胺的三口瓶中,常温下通氮气搅拌数小时,形成溶胶;称取磷钨酸H3PW12O40溶于去CO2水,将磷钨酸溶液pH值调至中性,在氮气保护下,将其滴入到三口瓶中,之后在常温下搅拌数小时确保反应完成,再于60-100℃温度下老化数小时,用去CO2水离心洗涤、真空干燥,研磨后即得ZnxAl-PW-LDHs;步骤(2)溶胶中MxN-NO3-LDHs的浓度为0.5-3g/L,磷钨酸/层状水滑石MxN-NO3-LDHs的质量比不大于6:1,磷钨酸溶液为每1.2g磷钨酸对应30-50ml去CO2水。
2.按照权利要求1所述的一种多酸插层水滑石光催化材料的制备方法,其特征在于,磷钨酸/层状水滑石MxN-NO3-LDHs的质量比为(2-4):1。
3.按照权利要求1所述的一种多酸插层水滑石光催化材料的制备方法,其特征在于,磷钨酸溶液为每1.2g磷钨酸对应40ml去CO2水。
4.按照权利要求1所述的一种多酸插层水滑石光催化材料的制备方法,其特征在于,价金属M硝酸盐包括但不限于硝酸锌、硝酸镁,三价金属N硝酸盐包括但不限于硝酸铝。
5.权利要求1-4任一项所述的制备方法制备得到的多酸插层水滑石光催化材料的应用,作为光催化剂用于光催化脱硫。
6.一种光催化燃油深度脱硫体系,其特征在于,以磷钨酸插层水滑石MxN-PW-LDHs作为光催化氧化催化剂,以空气作为氧化剂,同时添加乙腈为萃取剂,萃取反应生成的硫产物,磷钨酸插层水滑石MxN-PW-LDHs为权利要求1-4任一项所述的制备方法制备得到。
7.采用权利要求6所述的光催化燃油深度脱硫体系进行光催化脱硫的方法,其特征在于,将光催化剂加入含有待脱硫的体系中,通入空气,同时加入乙腈作为萃取剂,在紫外灯照射下,反应数小时。
8.按照权利要求7所述的方法,其特征在于,乙腈:待脱硫的体系体积比=1:1-1:1.5。
9.按照权利要求7所述的方法,其特征在于,待脱硫的体系为油体系,待脱硫的体系中含有的硫物质为BT、DBT、4,6DMDBT中的至少一种。
CN201810339569.9A 2018-04-16 2018-04-16 一种多酸插层水滑石光催化材料的制备及光催化燃油深度脱硫体系 Active CN108514888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810339569.9A CN108514888B (zh) 2018-04-16 2018-04-16 一种多酸插层水滑石光催化材料的制备及光催化燃油深度脱硫体系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810339569.9A CN108514888B (zh) 2018-04-16 2018-04-16 一种多酸插层水滑石光催化材料的制备及光催化燃油深度脱硫体系

Publications (2)

Publication Number Publication Date
CN108514888A true CN108514888A (zh) 2018-09-11
CN108514888B CN108514888B (zh) 2020-12-11

Family

ID=63429469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810339569.9A Active CN108514888B (zh) 2018-04-16 2018-04-16 一种多酸插层水滑石光催化材料的制备及光催化燃油深度脱硫体系

Country Status (1)

Country Link
CN (1) CN108514888B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351365A (zh) * 2018-11-20 2019-02-19 北京化工大学 水滑石修饰g-C3N4新型高效光催化剂及其在燃油深度脱硫中的应用
CN113058543A (zh) * 2021-04-06 2021-07-02 浙江工业大学 仿“呼吸-光合作用”的分层TiO2/LDH吸附剂在降解水体中有机污染物中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772384A (zh) * 2005-10-24 2006-05-17 东南大学 磷钨酸阴离子插层铝锶水滑石烷基化固体酸催化剂制备方法
CN101376821A (zh) * 2007-08-27 2009-03-04 中国石油天然气股份有限公司 一种光催化氧化脱除汽柴油中硫的方法
US20130260990A1 (en) * 2012-03-28 2013-10-03 Samsung Electronics Co., Ltd. Adsorbent for carbon dioxide, method of preparing the same, and capture module for carbon dioxide including the same
CN103816929A (zh) * 2014-02-27 2014-05-28 南京工业大学 一种类水滑石催化剂、制备方法及其应用
CN104841487A (zh) * 2015-03-26 2015-08-19 北京化工大学 多酸插层水滑石催化材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772384A (zh) * 2005-10-24 2006-05-17 东南大学 磷钨酸阴离子插层铝锶水滑石烷基化固体酸催化剂制备方法
CN101376821A (zh) * 2007-08-27 2009-03-04 中国石油天然气股份有限公司 一种光催化氧化脱除汽柴油中硫的方法
US20130260990A1 (en) * 2012-03-28 2013-10-03 Samsung Electronics Co., Ltd. Adsorbent for carbon dioxide, method of preparing the same, and capture module for carbon dioxide including the same
CN103816929A (zh) * 2014-02-27 2014-05-28 南京工业大学 一种类水滑石催化剂、制备方法及其应用
CN104841487A (zh) * 2015-03-26 2015-08-19 北京化工大学 多酸插层水滑石催化材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙平: "插层改性ZnAl类水滑石复合材料的制备及光催化性能研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *
孙平等: "磷钨酸柱撑锌铝水滑石复合材料的制备及光催化性能研究", 《化学工程与装备》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351365A (zh) * 2018-11-20 2019-02-19 北京化工大学 水滑石修饰g-C3N4新型高效光催化剂及其在燃油深度脱硫中的应用
CN113058543A (zh) * 2021-04-06 2021-07-02 浙江工业大学 仿“呼吸-光合作用”的分层TiO2/LDH吸附剂在降解水体中有机污染物中的应用

Also Published As

Publication number Publication date
CN108514888B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
Guo et al. Reutilization of iron sludge as heterogeneous Fenton catalyst for the degradation of rhodamine B: Role of sulfur and mesoporous structure
CN109351365A (zh) 水滑石修饰g-C3N4新型高效光催化剂及其在燃油深度脱硫中的应用
Intarasuwan et al. Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4 (X= H, Na and NH4) and the cytotoxicity of the treated dye solutions
Jiang et al. Alkali-free synthesis of a novel heterostructured CeO2-TiO2 nanocomposite with high performance to reduce Cr (VI) under visible light
Ma et al. Preparation of highly dispersed WO3/few layer g-C3N4 and its enhancement of catalytic oxidative desulfurization activity
Ma et al. BiOCl dispersed on NiFe–LDH leads to enhanced photo-degradation of Rhodamine B dye
Wang et al. Photodegradation of rhodamine B with MoS2/Bi2O2CO3 composites under UV light irradiation
Dou et al. Removal of aqueous toxic Hg (II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite
Huo et al. Magnetic porous carbon composites for rapid and highly efficient degradation of organic pollutants in water
Gao et al. Visible light induced photocatalytic reduction of Cr (VI) by self-assembled and amorphous Fe-2MI
Parida et al. Visible light response photocatalytic water splitting over CdS-pillared zirconium–titanium phosphate (ZTP)
Mandal et al. Adsorption and catalytic degradation of organic dyes in water using ZnO/ZnxFe3− xO4 mixed oxides
Nuryadin et al. Phosphate adsorption and desorption on two-stage synthesized amorphous-ZrO2/Mg–Fe layered double hydroxide composite
Suppaso et al. Magnetically recoverable β-Ni (OH) 2/γ-Fe2O3/NiFe-LDH composites; isotherm, thermodynamic and kinetic studies of synthetic dye adsorption and photocatalytic activity
Sun et al. Synthesis of stable and easily recycled ferric oxides assisted by Rhodamine B for efficient degradation of organic pollutants in heterogeneous photo-Fenton system
Guo et al. Ag3PO4/rectorite nanocomposites: Ultrasound-assisted preparation, characterization and enhancement of stability and visible-light photocatalytic activity
Nezhad et al. One-step Preparation of graphene oxide/polypyrrole magnetic nanocomposite and its application in the removal of methylene blue dye from aqueous solution
Wang et al. Metastable facet-controlled Cu2WS4 single crystals with enhanced adsorption activity for gaseous elemental mercury
Naghmash et al. Transition metal ions doped Bi12SiO20 as novel catalysts for the decomposition of hydrogen peroxide (H2O2)
Zhu et al. Flower-like bentonite-based Co3O4 with oxygen vacancies-rich as highly efficient peroxymonosulfate activator for lomefloxacin hydrochloride degradation
Saleh et al. Photooxidation/adsorption of arsenic (III) in aqueous solution over bentonite/chitosan/TiO2 heterostructured catalyst
CN108514888A (zh) 一种多酸插层水滑石光催化材料的制备及光催化燃油深度脱硫体系
Nejati et al. Cobalt-based sandwich-type polyoxometalate supported on amino-silane decorated magnetic graphene oxide: A recoverable catalyst for extractive-catalytic oxidative desulfurization of model oil
Zhao et al. Magnetically retrievable Bi2WO6/Fe3O4/Na-MMT composite: fabrication and photocatalytic activity
Zhang et al. Microwave hydrothermal fabrication of CuFeCr ternary layered double hydroxides with excellent Cr (VI) adsorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant