CN108511522A - The enhanced HEMT device of p-GaN bases - Google Patents
The enhanced HEMT device of p-GaN bases Download PDFInfo
- Publication number
- CN108511522A CN108511522A CN201810220253.8A CN201810220253A CN108511522A CN 108511522 A CN108511522 A CN 108511522A CN 201810220253 A CN201810220253 A CN 201810220253A CN 108511522 A CN108511522 A CN 108511522A
- Authority
- CN
- China
- Prior art keywords
- barrier layer
- layer
- gan
- content
- hemt device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 101
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 230000007704 transition Effects 0.000 claims abstract description 13
- 229910002601 GaN Inorganic materials 0.000 claims description 50
- 239000000463 material Substances 0.000 claims description 32
- 229910052733 gallium Inorganic materials 0.000 claims description 13
- 229910052738 indium Inorganic materials 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910002704 AlGaN Inorganic materials 0.000 claims description 10
- 229910017083 AlN Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052594 sapphire Inorganic materials 0.000 claims description 3
- 239000010980 sapphire Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 238000005036 potential barrier Methods 0.000 abstract 1
- 238000013461 design Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910004140 HfO Inorganic materials 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
- H10D30/4732—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明涉及一种p‑GaN基增强型HEMT器件,包括:衬底;在所述衬底上的过渡层;在所述过渡层上的沟道层;在所述沟道层上的势垒层;在所述势垒层上的p‑GaN层;以及,在所述势垒层和所述p‑GaN层上的源极、漏极、栅极和介质层;所述势垒层包括势垒层A和势垒层B,所述势垒层A与所述势垒层B交替层叠;所述势垒层A的禁带宽度大于所述势垒层B的禁带宽度。在势垒层较厚的情况下,获得了较大正值的阈值电压,提高了HEMT器件的工作效率。
The invention relates to a p-GaN-based enhanced HEMT device, comprising: a substrate; a transition layer on the substrate; a channel layer on the transition layer; a potential barrier on the channel layer layer; a p-GaN layer on the barrier layer; and, a source electrode, a drain electrode, a gate and a dielectric layer on the barrier layer and the p-GaN layer; the barrier layer includes A barrier layer A and a barrier layer B, the barrier layer A and the barrier layer B are stacked alternately; the forbidden band width of the barrier layer A is greater than the forbidden band width of the barrier layer B. In the case of a thicker barrier layer, a larger positive threshold voltage is obtained, which improves the working efficiency of the HEMT device.
Description
技术领域technical field
本发明涉及半导体领域,特别是涉及p-GaN基增强型HEMT器件。The invention relates to the field of semiconductors, in particular to a p-GaN-based enhanced HEMT device.
背景技术Background technique
随着高压开关和高速射频电路的发展,氮化镓高电子迁移率晶体管(GaN HEMT)成为该领域研究的重点,常规的GaN HEMT器件均为耗尽型,阈值电压<0V,需要使用负的开启电压。在射频及微波芯片设计时,其负栅压的电源设计增加了设计成本;增强型HEMT的阈值电压为正值,实际应用中只需要一个正的偏压即可使其工作或夹断。这样可以消除负偏压的电路设计,使电路简单化,减少电路设计的复杂性和制备的成本。对大规模微波射频电路应用来说,其意义十分重大。对于功率开关电路,增强型HEMT器件保证在驱动电路失效时,HEMT器件处于关断状态,从而对功率开关系统提供了失效保护。With the development of high-voltage switches and high-speed radio frequency circuits, Gallium Nitride High Electron Mobility Transistor (GaN HEMT) has become the focus of research in this field. Conventional GaN HEMT devices are all depletion-type, with a threshold voltage <0V, and a negative Turn on the voltage. In the design of radio frequency and microwave chips, the power supply design of the negative grid voltage increases the design cost; the threshold voltage of the enhanced HEMT is positive, and only a positive bias voltage is needed in practical applications to make it work or pinch off. In this way, the circuit design of the negative bias voltage can be eliminated, the circuit can be simplified, and the complexity of the circuit design and the manufacturing cost can be reduced. For large-scale microwave radio frequency circuit applications, it is of great significance. For the power switching circuit, the enhanced HEMT device ensures that the HEMT device is in an off state when the driving circuit fails, thereby providing failure protection for the power switching system.
目前,通常采用刻蚀凹栅、F基离子注入等应对方法来耗尽栅极下方沟道的二维电子气(2DEG),以实现增强型器件。但凹栅刻蚀工艺难以精确控制,同时还容易带来损伤,会引起电流崩塌现象,恶化器件的可靠性,同时阈值电压也不高;F基离子注入也会带来一系列稳定性问题。无论是凹栅刻蚀还是F基离子注入都会对材料造成损伤,虽然经过退火能够消除一定的损伤,但是残留的损伤依然会对器件的稳定性和可靠性造成不利的影响,并且工艺的重复性也不高。Currently, methods such as etching recessed gates and F-based ion implantation are usually used to deplete the two-dimensional electron gas (2DEG) in the channel under the gate to realize an enhancement device. However, the concave gate etching process is difficult to control accurately, and it is easy to cause damage, which will cause current collapse and deteriorate the reliability of the device. At the same time, the threshold voltage is not high; F-based ion implantation will also bring a series of stability problems. Whether it is concave gate etching or F-based ion implantation will cause damage to the material, although a certain amount of damage can be eliminated after annealing, the residual damage will still adversely affect the stability and reliability of the device, and the repeatability of the process Not high either.
因此,现有方案中,较为普遍的一种实现P-GaN基增强型HEMT的方法是将势垒层设计更薄,同时在栅极金属与势垒层之间插入P-GaN层。通过这种设计,一般当势垒层厚度到达12nm-15nm时,阈值电压约为2V左右,但是,这样的设计会导致P-GaN中的Mg原子容易扩散到沟道层中,进而使器件的导通电阻增大,影响HEMT器件的工作效率。Therefore, in the existing schemes, a common method for realizing a P-GaN-based enhanced HEMT is to design the barrier layer to be thinner, and at the same time insert a P-GaN layer between the gate metal and the barrier layer. Through this design, generally when the thickness of the barrier layer reaches 12nm-15nm, the threshold voltage is about 2V. However, such a design will cause the Mg atoms in P-GaN to easily diffuse into the channel layer, thereby making the device’s The on-resistance increases, which affects the working efficiency of the HEMT device.
而在p-GaN基增强型HEMT器件中,为了有效的减少p-GaN中的Mg原子扩散到沟道层的数量,通常采用的手段是将势垒层变厚,但是,势垒层变厚,会带来阈值电压的值向负向移动,从而使阈值电压变小,甚至变负。In p-GaN-based enhancement mode HEMT devices, in order to effectively reduce the number of Mg atoms in p-GaN diffused into the channel layer, the usual method is to thicken the barrier layer, but the barrier layer becomes thicker , will bring the value of the threshold voltage to move to the negative direction, so that the threshold voltage becomes smaller or even negative.
发明内容Contents of the invention
基于此,本发明提供了一种增强型HEMT器件,增加势垒层厚度的同时,保持较大正值的阈值电压。Based on this, the present invention provides an enhanced HEMT device, which can maintain a larger positive threshold voltage while increasing the thickness of the barrier layer.
一种p-GaN基增强型HEMT器件,包括:A p-GaN-based enhancement mode HEMT device, comprising:
衬底;Substrate;
在所述衬底上的过渡层;a transition layer on said substrate;
在所述过渡层上的沟道层;a channel layer on the transition layer;
在所述沟道层上的势垒层;a barrier layer on the channel layer;
在所述势垒层上的p-GaN层;以及a p-GaN layer on the barrier layer; and
在所述势垒层和所述p-GaN层上的源极、漏极、栅极和介质层;a source, a drain, a gate and a dielectric layer on the barrier layer and the p-GaN layer;
所述势垒层包括势垒层A和势垒层B,所述势垒层A与所述势垒层B交替层叠;The barrier layer includes a barrier layer A and a barrier layer B, and the barrier layer A and the barrier layer B are alternately stacked;
所述势垒层A的禁带宽度大于所述势垒层B的禁带宽度。The forbidden band width of the barrier layer A is greater than the forbidden band width of the barrier layer B.
在其中一个实施例中,所述势垒层A为AlInGaN,其中Al的含量为0%-100%,In的含量为0%-100%,Ga的含量为0%-100%;所述Al、In和Ga的含量总和为100%;In one of the embodiments, the barrier layer A is AlInGaN, wherein the content of Al is 0%-100%, the content of In is 0%-100%, and the content of Ga is 0%-100%; the Al , the sum of In and Ga contents is 100%;
所述势垒层B为AlInGaN,其中,Al的含量为0%-100%,In的含量为0%-100%,Ga的含量为0%-100%;所述Al、In和Ga的含量总和为100%。The barrier layer B is AlInGaN, wherein the content of Al is 0%-100%, the content of In is 0%-100%, and the content of Ga is 0%-100%; the content of Al, In and Ga The sum is 100%.
在其中一个实施例中,所述势垒层A为AlInGaN,其中,Al的含量为0%-50%,In的含量为0%-50%,Ga的含量为0%-100%;所述Al、In、和Ga的含量总和为100%;In one of the embodiments, the barrier layer A is AlInGaN, wherein the content of Al is 0%-50%, the content of In is 0%-50%, and the content of Ga is 0%-100%; the The total content of Al, In, and Ga is 100%;
所述势垒层B为AlInGaN,其中,Al的含量为0%-50%,In的含量为0%-50%,Ga的含量为0%-100%;所述Al、In、和Ga的含量总和为100%。The barrier layer B is AlInGaN, wherein the content of Al is 0%-50%, the content of In is 0%-50%, and the content of Ga is 0%-100%; the content of Al, In, and Ga The sum of the contents is 100%.
在其中一个实施例中,所述势垒层厚度为10nm-50nm。In one embodiment, the thickness of the barrier layer is 10nm-50nm.
在其中一个实施例中,所述势垒层A的厚度为0.5nm-10nm;数量大于2。In one of the embodiments, the thickness of the barrier layer A is 0.5nm-10nm; the number is greater than 2.
在其中一个实施例中,所述势垒层B的厚度为0.5nm-10nm;数量大于2。In one of the embodiments, the thickness of the barrier layer B is 0.5nm-10nm; the number is greater than 2.
在其中一个实施例中,所述衬底材料选自硅、碳化硅、蓝宝石、GaN和AlN的一种或几种。In one embodiment, the substrate material is selected from one or more of silicon, silicon carbide, sapphire, GaN and AlN.
在其中一个实施例中,所述过渡层的材料选自AlN、GaN、AlGaN和InGaN的一种或几种。In one embodiment, the material of the transition layer is selected from one or more of AlN, GaN, AlGaN and InGaN.
在其中一个实施例中,所述沟道层的材料为选自GaN、AlGaN和InGaN的一种或几种。In one embodiment, the material of the channel layer is one or more selected from GaN, AlGaN and InGaN.
与现有方案相比,本发明具有以下有益效果:Compared with existing solutions, the present invention has the following beneficial effects:
本发明p-GaN基增强型HEMT器件中,将势垒层设计成势垒层A与势垒层B交替层叠的超晶格结构,相当于在禁带宽度较大的势垒层A中插入了多层禁带宽度较小的势垒层B,一方面,增加了势垒层的厚度,有效减少了Mg原子扩散到沟道层的数量,提高了HEMT器件的工作效率;另一方面,较小禁带宽度的势垒层B对阈值电压的影响较小,有利于获得正值的阈值电压,本发明势垒层的厚度约为10nm-50nm,阈值电压约为0.2V-3V。In the p-GaN-based enhanced HEMT device of the present invention, the barrier layer is designed as a superlattice structure in which barrier layers A and B are alternately stacked, which is equivalent to inserting A multi-layer barrier layer B with a small bandgap width is obtained. On the one hand, the thickness of the barrier layer is increased, which effectively reduces the number of Mg atoms diffused into the channel layer and improves the working efficiency of the HEMT device; on the other hand, The barrier layer B with a smaller bandgap width has less influence on the threshold voltage, which is beneficial to obtain a positive threshold voltage. The thickness of the barrier layer in the present invention is about 10nm-50nm, and the threshold voltage is about 0.2V-3V.
本发明的原理如下:Principle of the present invention is as follows:
本发明通过调整势垒层A、B材料中Al、In、Ga的组分含量,使势垒层A、B的禁带宽度不同。其中禁带宽度较大的材料具有较强的极化,因而其厚度对阈值电压影响较大。禁带宽度较小的材料具有较弱的极化,因而其厚度对阈值电压影响较小。通过插入禁带宽度较小的材料,可以增加势垒层的厚度,却不会对阈值电压造成显著的影响。In the present invention, the forbidden band widths of the barrier layers A and B are different by adjusting the composition contents of Al, In and Ga in the materials of the barrier layers A and B. Among them, the material with a larger forbidden band width has a stronger polarization, so its thickness has a greater influence on the threshold voltage. Materials with smaller band gaps have weaker polarization, so their thickness has less effect on threshold voltage. By inserting a material with a smaller bandgap, the thickness of the barrier layer can be increased without significantly affecting the threshold voltage.
附图说明Description of drawings
图1为本发明实施例1的P-GaN增强型HEMT器件的结构示意图。FIG. 1 is a schematic structural diagram of a P-GaN enhanced HEMT device according to Embodiment 1 of the present invention.
具体实施方式Detailed ways
为了便于理解本发明,下面将对本发明进行更全面的描述。本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明公开内容理解更加透彻全面。In order to facilitate the understanding of the present invention, the following will describe the present invention more fully. The present invention can be implemented in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of providing these embodiments is to make the understanding of the disclosure of the present invention more thorough and comprehensive.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of the invention. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
本发明的一个实施方式提供一种P-GaN增强型HEMT器件,结构如图1所示,One embodiment of the present invention provides a P-GaN enhanced HEMT device, the structure of which is shown in Figure 1,
包括衬底0121,所述衬底的材料选自硅、碳化硅、蓝宝石、GaN和AlN的一种或几种。优选为硅。It includes a substrate 0121, and the material of the substrate is selected from one or more of silicon, silicon carbide, sapphire, GaN and AlN. Silicon is preferred.
在衬底上生长的过渡层0122,所述过渡层的材料选自AlN、GaN、AlGaN和InGaN的一种或几种。优选为AlN、AlGaN、GaN的组合。The transition layer 0122 grown on the substrate, the material of the transition layer is selected from one or more of AlN, GaN, AlGaN and InGaN. A combination of AlN, AlGaN, and GaN is preferable.
在过渡层上生的长沟道层0125,所述沟道层的材料选自GaN、AlGaN和InGaN的一种或几种。优选为GaN。The long channel layer 0125 grown on the transition layer, the material of the channel layer is selected from one or more of GaN, AlGaN and InGaN. GaN is preferred.
在沟道层上生长的势垒层0124,所述势垒层包括势垒层A 0124A和势垒层B0124B,所述势垒层A与所述势垒层B交替排列。The barrier layer 0124 grown on the channel layer, the barrier layer includes a barrier layer A 0124A and a barrier layer B0124B, and the barrier layer A and the barrier layer B are arranged alternately.
所述势垒层A的禁带宽度大于所述势垒层B的禁带宽度。The forbidden band width of the barrier layer A is greater than the forbidden band width of the barrier layer B.
势垒层A为AlInGaN,Al的含量为0%-100%,In的含量为0%-100%,Ga的含量为0%-100%;所述Al、In、和Ga的含量总和为100%;厚度为0.5nm-10nm;数量大于2。The barrier layer A is AlInGaN, the content of Al is 0%-100%, the content of In is 0%-100%, and the content of Ga is 0%-100%; the total content of Al, In, and Ga is 100% %; the thickness is 0.5nm-10nm; the number is greater than 2.
优选的,势垒层A中,Al的含量为0%-50%,In的含量为0%-50%,Ga的含量为0%-100%;所述Al、In、和Ga的含量总和为100%;Preferably, in the barrier layer A, the content of Al is 0%-50%, the content of In is 0%-50%, and the content of Ga is 0%-100%; the total content of Al, In, and Ga is 100%;
势垒层B中,Al的含量为0%-100%,In的含量为0%-100%,Ga的含量为0%-100%;所述Al、In、和Ga的含量总和为100%。厚度为0.5nm-10nm;数量大于2。In the barrier layer B, the content of Al is 0%-100%, the content of In is 0%-100%, and the content of Ga is 0%-100%; the total content of Al, In, and Ga is 100% . The thickness is 0.5nm-10nm; the number is greater than 2.
优选的,势垒层B中,Al的含量为0%-50%,In的含量为0%-50%,Ga的含量为0%-100%;所述Al、In、和Ga的含量总和为100%;Preferably, in the barrier layer B, the content of Al is 0%-50%, the content of In is 0%-50%, and the content of Ga is 0%-100%; the total content of Al, In, and Ga is 100%;
对于AlInGaN,若固定Ga组分,那么Al组分越高,则材料禁带宽度越大。对于AlInGaN,若固定In组分,那么Al组分越高,则材料禁带宽度越大。对于AlInGaN,若固定Al组分,那么Ga组分越高,则材料禁带宽度越大。For AlInGaN, if the Ga composition is fixed, the higher the Al composition, the larger the band gap of the material. For AlInGaN, if the In composition is fixed, the higher the Al composition, the larger the band gap of the material. For AlInGaN, if the Al composition is fixed, the higher the Ga composition, the larger the band gap of the material.
所述势垒层的厚度为10nm-50nm。The thickness of the barrier layer is 10nm-50nm.
在势垒层上生长p-GaN层0102,对p-GaN层0102进行选择性刻蚀,定义栅极结构。之后,在势垒层B 0124B和p-GaN层0102上,制备源极0101、漏极0105、栅极0104,栅极窗口0103和介质层0125,得P-GaN增强型HEMT器件。A p-GaN layer 0102 is grown on the barrier layer, and the p-GaN layer 0102 is selectively etched to define a gate structure. Afterwards, on the barrier layer B 0124B and the p-GaN layer 0102, a source 0101, a drain 0105, a gate 0104, a gate window 0103 and a dielectric layer 0125 are prepared to obtain a P-GaN enhanced HEMT device.
所述介质层的材料选自常用的介质层材料,可以理解的,介质层材料包括但不限于SiN、SiO2、Al2O3、AlN、HfO2和Ga2O3的一种或几种。The material of the dielectric layer is selected from commonly used dielectric layer materials. It can be understood that the dielectric layer material includes but not limited to one or more of SiN, SiO 2 , Al 2 O 3 , AlN, HfO 2 and Ga 2 O 3 .
以下结合具体实施例对本发明的P-GaN增强型HEMT器件作进一步详细的说明。The P-GaN enhanced HEMT device of the present invention will be further described in detail below in conjunction with specific embodiments.
实施例1Example 1
本实施例提供一种P-GaN增强型HEMT器件,结构如图1所示,包括衬底0121、过渡层0122、沟道层0125、势垒层0124、p-GaN层0102、源极0101、漏极0105、栅极0104、栅极窗口0103和介质层0125;This embodiment provides a P-GaN enhanced HEMT device, the structure of which is shown in FIG. Drain 0105, gate 0104, gate window 0103 and dielectric layer 0125;
所述衬底材料为硅;所述介质层的材料为SiO2;所述沟道层的材料为GaN;所述过渡层的材料为AlN、AlGaN、GaN的组合。The material of the substrate is silicon; the material of the dielectric layer is SiO 2 ; the material of the channel layer is GaN; the material of the transition layer is a combination of AlN, AlGaN and GaN.
所述势垒层包括势垒层A 0124A和势垒层B 0124B,所述势垒层A与所述势垒层B交替排列,势垒层A的数量为3,厚度为5nm;势垒层B的数量为3,厚度为5nm;势垒层的总厚度为30nm。The barrier layer includes a barrier layer A 0124A and a barrier layer B 0124B, the barrier layer A and the barrier layer B are arranged alternately, the number of the barrier layer A is 3, and the thickness is 5nm; the barrier layer The number of B is 3, and the thickness is 5 nm; the total thickness of the barrier layer is 30 nm.
势垒层A的材料为AlGaN,Al的组分为25%;The material of the barrier layer A is AlGaN, and the composition of Al is 25%;
势垒层B的材料为GaN。The material of the barrier layer B is GaN.
势垒层A的禁带宽度大于所述势垒层B的禁带宽度。The forbidden band width of the barrier layer A is greater than the forbidden band width of the barrier layer B.
实施例2Example 2
本实施例提供一种P-GaN增强型HEMT器件,结构如图1所示,包括衬底0121、过渡层0122、沟道层0125、势垒层0124、p-GaN层0102、源极0101、漏极0105、栅极0104、栅极窗口0103和介质层0125;This embodiment provides a P-GaN enhanced HEMT device, the structure of which is shown in FIG. Drain 0105, gate 0104, gate window 0103 and dielectric layer 0125;
所述衬底材料为硅;所述介质层的材料为SiO2;所述沟道层的材料为GaN;所述过渡层的材料为AlN、AlGaN、GaN的组合。The material of the substrate is silicon; the material of the dielectric layer is SiO 2 ; the material of the channel layer is GaN; the material of the transition layer is a combination of AlN, AlGaN and GaN.
所述势垒层包括势垒层A 0124A和势垒层B 0124B,所述势垒层A与所述势垒层B交替排列,势垒层A的数量为4,厚度为4nm;势垒层B的数量为4,厚度为4nm;势垒层的总厚度为32nm。The barrier layer includes a barrier layer A 0124A and a barrier layer B 0124B, the barrier layer A and the barrier layer B are arranged alternately, the number of the barrier layer A is 4, and the thickness is 4nm; the barrier layer The number of B is 4, and the thickness is 4 nm; the total thickness of the barrier layer is 32 nm.
势垒层A的材料为AlInGaN,Al的组分为73%,In组分为17%;The material of the barrier layer A is AlInGaN, the composition of Al is 73%, and the composition of In is 17%;
势垒层B的材料为AlInGaN,Al的组分为2%,In的组分为1%。The material of the barrier layer B is AlInGaN, the composition of Al is 2%, and the composition of In is 1%.
势垒层A的禁带宽度大于所述势垒层B的禁带宽度。The forbidden band width of the barrier layer A is greater than the forbidden band width of the barrier layer B.
本发明p-GaN基增强型HEMT器件,势垒层较厚,有效减少了Mg原子扩散到沟道层的数量,提高了HEMT器件的工作效率;同时,较小禁带宽度的势垒层B对阈值电压的影响较小,有利于获得正值的阈值电压,本发明势垒层的厚度约为10nm-50nm,阈值电压约为0.2V-3V。The p-GaN-based enhanced HEMT device of the present invention has a thicker barrier layer, which effectively reduces the number of Mg atoms diffused into the channel layer and improves the work efficiency of the HEMT device; at the same time, the barrier layer B with a smaller band gap The impact on the threshold voltage is small, which is beneficial to obtain a positive threshold voltage. The thickness of the barrier layer in the present invention is about 10nm-50nm, and the threshold voltage is about 0.2V-3V.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810220253.8A CN108511522B (en) | 2018-03-16 | 2018-03-16 | P-GaN-based enhanced HEMT device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810220253.8A CN108511522B (en) | 2018-03-16 | 2018-03-16 | P-GaN-based enhanced HEMT device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108511522A true CN108511522A (en) | 2018-09-07 |
CN108511522B CN108511522B (en) | 2022-04-26 |
Family
ID=63375893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810220253.8A Active CN108511522B (en) | 2018-03-16 | 2018-03-16 | P-GaN-based enhanced HEMT device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108511522B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109950150A (en) * | 2019-03-07 | 2019-06-28 | 苏州汉骅半导体有限公司 | Semiconductor structure and method of making the same |
CN110600547A (en) * | 2019-09-19 | 2019-12-20 | 厦门市三安集成电路有限公司 | Gallium nitride-based semiconductor device and manufacturing method thereof |
CN111477536A (en) * | 2020-03-31 | 2020-07-31 | 华为技术有限公司 | A kind of semiconductor epitaxial structure and semiconductor device |
CN111863962A (en) * | 2020-09-07 | 2020-10-30 | 中国科学技术大学 | A Novel AlGaN-Based Multi-Channel Field Effect Transistor |
CN112563136A (en) * | 2020-11-19 | 2021-03-26 | 上海工程技术大学 | Novel preparation method of gallium nitride-based power device |
WO2022016390A1 (en) * | 2020-07-21 | 2022-01-27 | 苏州晶湛半导体有限公司 | Semiconductor structure |
CN117976708A (en) * | 2023-11-30 | 2024-05-03 | 润新微电子(大连)有限公司 | Epitaxial structure of semiconductor devices |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101019234A (en) * | 2004-09-13 | 2007-08-15 | 皮科吉加国际公司 | HEMT piezoelectric structures with zero alloy disorder |
US20100270591A1 (en) * | 2009-04-27 | 2010-10-28 | University Of Seoul Industry Cooperation Foundation | High-electron mobility transistor |
JP2012114320A (en) * | 2010-11-26 | 2012-06-14 | Nippon Telegr & Teleph Corp <Ntt> | Nitride semiconductor field effect transistor |
CN104916633A (en) * | 2014-03-14 | 2015-09-16 | 株式会社东芝 | Semiconductor device |
CN104979387A (en) * | 2014-04-10 | 2015-10-14 | 丰田自动车株式会社 | Switching device |
CN105895526A (en) * | 2016-04-26 | 2016-08-24 | 中国科学院微电子研究所 | GaN-based power electronic device and preparation method thereof |
CN106783994A (en) * | 2015-11-24 | 2017-05-31 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of enhanced HEMT device for suppressing current collapse effect and preparation method thereof |
CN206250202U (en) * | 2016-12-22 | 2017-06-13 | 成都海威华芯科技有限公司 | A kind of enhanced GaN HEMT epitaxial material structures |
-
2018
- 2018-03-16 CN CN201810220253.8A patent/CN108511522B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101019234A (en) * | 2004-09-13 | 2007-08-15 | 皮科吉加国际公司 | HEMT piezoelectric structures with zero alloy disorder |
US20100270591A1 (en) * | 2009-04-27 | 2010-10-28 | University Of Seoul Industry Cooperation Foundation | High-electron mobility transistor |
JP2012114320A (en) * | 2010-11-26 | 2012-06-14 | Nippon Telegr & Teleph Corp <Ntt> | Nitride semiconductor field effect transistor |
CN104916633A (en) * | 2014-03-14 | 2015-09-16 | 株式会社东芝 | Semiconductor device |
CN104979387A (en) * | 2014-04-10 | 2015-10-14 | 丰田自动车株式会社 | Switching device |
CN106783994A (en) * | 2015-11-24 | 2017-05-31 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of enhanced HEMT device for suppressing current collapse effect and preparation method thereof |
CN105895526A (en) * | 2016-04-26 | 2016-08-24 | 中国科学院微电子研究所 | GaN-based power electronic device and preparation method thereof |
CN206250202U (en) * | 2016-12-22 | 2017-06-13 | 成都海威华芯科技有限公司 | A kind of enhanced GaN HEMT epitaxial material structures |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109950150A (en) * | 2019-03-07 | 2019-06-28 | 苏州汉骅半导体有限公司 | Semiconductor structure and method of making the same |
CN110600547A (en) * | 2019-09-19 | 2019-12-20 | 厦门市三安集成电路有限公司 | Gallium nitride-based semiconductor device and manufacturing method thereof |
CN111477536A (en) * | 2020-03-31 | 2020-07-31 | 华为技术有限公司 | A kind of semiconductor epitaxial structure and semiconductor device |
WO2021196974A1 (en) * | 2020-03-31 | 2021-10-07 | 华为技术有限公司 | Semiconductor epitaxial structure and semiconductor device |
WO2022016390A1 (en) * | 2020-07-21 | 2022-01-27 | 苏州晶湛半导体有限公司 | Semiconductor structure |
CN111863962A (en) * | 2020-09-07 | 2020-10-30 | 中国科学技术大学 | A Novel AlGaN-Based Multi-Channel Field Effect Transistor |
CN112563136A (en) * | 2020-11-19 | 2021-03-26 | 上海工程技术大学 | Novel preparation method of gallium nitride-based power device |
CN117976708A (en) * | 2023-11-30 | 2024-05-03 | 润新微电子(大连)有限公司 | Epitaxial structure of semiconductor devices |
Also Published As
Publication number | Publication date |
---|---|
CN108511522B (en) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108511522B (en) | P-GaN-based enhanced HEMT device | |
CN104051519B (en) | Device, high electron mobility transistor, and method for controlling the transistor to work | |
CN102365747B (en) | Compensated gate misfet and method for fabricating the same | |
CN102683394B (en) | Enhanced device and manufacturing method thereof | |
CN105122456B (en) | III-th family nitride often closes the layer structure of transistor | |
US10224426B2 (en) | High-electron-mobility transistor devices | |
US20100084688A1 (en) | Enhancement-mode nitride transistor | |
TW201436008A (en) | Heterojunction transistor and method of manufacturing same | |
CN104167445B (en) | GaN-based enhancement/depletion mode heterojunction field effect transistor with buried gate structure | |
CN110061053A (en) | A kind of enhanced semiconductor transistor and preparation method thereof | |
CN104269433B (en) | Gallium-nitride-based enhancement type heterojunction field effect transistor with composite channel layer | |
CN106486363A (en) | Group III-nitride enhancement mode HEMT based on p-type layer and preparation method thereof | |
US20210359123A1 (en) | Semiconductor power device | |
CN113745332A (en) | Enhanced high electron mobility transistor based on ferroelectric group III nitride polarization reversal | |
CN111863948A (en) | A GaN-based P-GaN enhancement mode HEMT device with gate-source bridge and preparation method thereof | |
CN117766561A (en) | P-channel gallium nitride heterojunction transistor and preparation method thereof | |
CN110310981B (en) | Nitrogen face enhanced composite barrier layer gallium nitride based heterojunction field effect transistor | |
CN206116406U (en) | Normal pass type III V heterojunction field effect transistor with compound barrier layer structure | |
CN111584628A (en) | Enhancement mode GaN HEMT device and preparation method thereof | |
CN108461539B (en) | transistor | |
CN111370472A (en) | Mixed gate p-GaN enhanced gallium nitride based transistor structure and manufacturing method thereof | |
WO2025020428A1 (en) | Enhanced field effect transistor and manufacturing method therefor | |
Lu et al. | GaN power electronics | |
CN106449748A (en) | Epitaxial structure of gallium-nitride-based transistors with high electron mobility | |
TWI784460B (en) | Normally closed transistor and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: P-GaN based enhanced HEMT devices Effective date of registration: 20230504 Granted publication date: 20220426 Pledgee: Guangfa Bank Co.,Ltd. Zhuhai Yinhua Branch Pledgor: INNOSCIENCE (ZHUHAI) TECHNOLOGY Co.,Ltd. Registration number: Y2023980039776 |