CN108505020B - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
CN108505020B
CN108505020B CN201810165871.7A CN201810165871A CN108505020B CN 108505020 B CN108505020 B CN 108505020B CN 201810165871 A CN201810165871 A CN 201810165871A CN 108505020 B CN108505020 B CN 108505020B
Authority
CN
China
Prior art keywords
gas
region
gas ejection
turntable
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810165871.7A
Other languages
English (en)
Other versions
CN108505020A (zh
Inventor
小川淳
吹上纪明
大槻志门
尾谷宗之
辛川孝行
小山峻史
岩崎征英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017093978A external-priority patent/JP6816634B2/ja
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN108505020A publication Critical patent/CN108505020A/zh
Application granted granted Critical
Publication of CN108505020B publication Critical patent/CN108505020B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45538Plasma being used continuously during the ALD cycle
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及成膜装置,提供一种能够在成膜装置中抑制膜厚的不均的技术,该成膜装置遍及基板的径向地向载置于旋转台并进行公转的基板供给气体来进行成膜。在以沿旋转台的径向横跨晶圆的移动区域的方式供给气体、以包围气体喷出区域的周围的方式设置有排气口的气体供排气单元中,沿旋转台的径向将气体喷出区域划分为三个以上的区域。而且,在气体喷出区域中的内侧区域中,在与晶圆的通过区域的内侧的周缘相向的区域设置有气体喷出孔,在外侧区域中,在晶圆的通过区域的外侧的周缘设置有气体喷出孔。因此,能够使向晶圆的通过区域的缘部供给的气体的供给量增多,因此能够抑制晶圆的周缘的膜厚的降低。

Description

成膜装置
技术领域
本发明涉及一种在基板的表面形成膜的技术。
背景技术
在半导体制造工序中,有时进行在作为基板的半导体晶圆(以下称为“晶圆”)上形成例如SiN(氮化硅)膜等膜的成膜处理。该SiN膜期望形成为在晶圆的各部均匀性高的膜厚。作为形成SiN膜的成膜装置,例如专利文献1中记载的那样列举以下结构:在处理容器内设置有用于使多张晶圆沿周向排列并进行公转的旋转台。
在这种成膜装置中,向同进行公转的晶圆的通过区域对应的区域供给原料气体的区域与生成反应气体的等离子体的区域被分离地设置。而且,一边利用设置在旋转台的下方的加热部加热晶圆一边使旋转台进行旋转,来向晶圆的整面供给原料气体和反应气体各气体。
作为供给原料气体的气体供给部,已知一种如专利文献2中记载那样的朝向旋转台上的扇形的区域供给原料气体的气体供给部。该气体供给部从气体供给部中的与旋转台相向的多个气体喷出孔喷出原料气体,向从旋转台的中心侧到外周侧的晶圆所通过的范围供给气体。另外,以包围原料气体的喷出区域的周围的方式设置气体排气口,并且,以包围气体排气口的周围的方式设置有吹扫气体喷出部。而且,通过喷出原料气体和吹扫气体并从排气口排气来在旋转台的上方形成被供给由吹扫气体包围的原料气体的区域,通过使晶圆横穿该区域来向晶圆的整面供给原料气体并使原料气体吸附于该晶圆。
然而,在这种气体供给部中,形成于晶圆的斜面与用于载置晶圆的凹部的晶圆之间的间隙部分消耗气体,晶圆的周缘部的气体的浓度下降。因此,存在以下问题:在晶圆的周缘,气体的吸附量变少,膜厚变薄。
专利文献1:国际公开第2013/137115号
专利文献2:日本特开2016-92026号公报
发明内容
发明要解决的问题
本发明是基于这种情况而完成的,其目的在于提供一种能够在成膜装置中抑制膜厚的不均的技术,该成膜装置遍及基板的径向地向被载置于旋转台并进行公转的基板供给气体来进行成膜。
用于解决问题的方案
本发明涉及一种成膜装置,使向真空容器内依次供给第一处理气体和第二处理气体的周期进行多次来对基板进行成膜处理,该成膜装置的特征在于,具备:
旋转台,在所述旋转台的一面侧形成用于载置基板的基板载置区域,所述旋转台的用于使所述基板载置区域在所述真空容器内进行公转;
第一气体供给部,其在与所述旋转台相向的相向面上具备形成有多个孔径彼此一致的第一气体的喷出孔的气体喷出部、包围该气体喷出部的排气口以及包围该排气口的吹扫气体的喷出口;
第二气体供给部,其用于向相对于所述第一气体供给部沿所述旋转台的周向分离地设置的区域供给第二气体;以及
排气口,其用于对所述真空容器内进行真空排气,
其中,所述气体喷出部具备沿旋转台的径向分割得到的、且各自独立地被供给第一气体的三个以上的气体喷出区域,
如果将所述旋转台的中心侧定义为内侧、将外周侧定义为外侧,
则在位于最外侧位置的气体喷出区域中,设定为与基板的通过区域的外缘部相向的区域的气体喷出孔的排列密度DO1比从与所述外缘部相向的区域靠内偏离出的区域的气体喷出孔的排列密度DO2大,
在位于最内侧位置的气体喷出区域中,设定为与基板的通过区域的内缘部相向的区域的气体喷出孔的排列密度DI1比从与所述内缘部相向的区域靠外偏离出的区域的气体喷出孔的排列密度DI2大。
发明的效果
本发明在以沿旋转台的径向横跨基板的移动区域的方式供给气体、以包围气体喷出区域的周围的方式设置有排气口的第一气体供给部中,沿旋转台的径向将气体喷出区域划分为三个以上的区域。而且,在气体喷出区域中的分别位于旋转台的中心侧和外周侧位置的内侧区域和外侧区域中,使与基板的通过区域的缘部相向的区域(缘部区域)的气体喷出孔的排列密度比从该缘部区域偏离出的气体喷出孔的排列密度大(也包括仅在该缘部区域设置气体喷出孔的情况)。因此,能够使向基板的通过区域的缘部供给的气体的供给量增多,因此能够抑制基板的周缘的膜厚的降低。
附图说明
图1是本发明所涉及的成膜装置的截面图。
图2是本发明所涉及的成膜装置的俯视图。
图3是气体供排气单元的侧截面图。
图4是气体供排气单元的下表面侧的俯视图。
图5是表示利用以往的成膜装置形成的膜的膜厚分布的说明图。
图6是表示利用本发明的成膜装置形成的膜的膜厚分布的说明图。
图7是表示验证试验1-2中的气体喷出孔的分布的说明图。
图8是表示验证试验1-3中的气体喷出孔的分布的说明图。
图9是表示验证试验1中的膜厚分布的特性图。
图10是表示验证试验1中的膜厚分布的特性图。
图11是表示验证试验1中的膜厚分布的特性图。
图12是表示验证试验1中的气体的流量与膜厚的差的特性图。
图13是表示验证试验2-2中的气体喷出孔的分布的说明图。
图14是表示验证试验2-3中的气体喷出孔的分布的说明图。
图15是表示验证试验2-1中的膜厚分布的特性图。
图16是表示验证试验2-2中的膜厚分布的特性图。
图17是表示验证试验2-3中的膜厚分布的特性图。
附图标记说明
2:气体供排气单元;11:真空容器;12:旋转台;21:气体喷出孔;22:排气口;23:吹扫气体喷出口;24:气体喷出区域;24A:内侧区域;24B:中央区域;24C:外侧区域;41、42:气体供给部;51:排气口;I:内缘部区域;O:外缘部区域。
具体实施方式
分别参照图1的纵剖侧视图、图2的俯视图来说明本发明的实施方式所涉及的成膜装置。该成膜装置构成为通过ALD(Atomic Layer Deposition:原子层沉积)在作为基板的半导体晶圆(以下,记载为晶圆)W的表面形成SiN膜。在说明书中,与Si和N的化学计量比无关地将氮化硅记载为SiN。因而,在Si N这一记载中包含例如Si3N4
如图1所示,成膜装置具备扁平的大致圆形的真空容器11,真空容器11由构成侧壁和底部的容器主体11A以及顶板11B构成。在真空容器11内设置有水平地载置直径300mm的晶圆W的圆形的旋转台12。图中12A是用于支承旋转台12的背面中央部的支承部。在支承部12A的下方设置有旋转机构13,旋转台12在成膜处理中借助支承部12A以绕铅垂轴的方式从上方看沿顺时针方向进行旋转。图中X表示旋转台12的旋转轴。
如图2所示,在旋转台12的上表面,沿旋转台12的周向(旋转方向)设置有作为晶圆W的载置部的6个圆形的凹部14,在各凹部14中收纳晶圆W。也就是说,各晶圆W以随着旋转台12的旋转进行公转的方式被载置于旋转台12。返回到图1,构成为在真空容器11的底部的旋转台12的下方同心圆状地设置有多个加热器15来对被载置于旋转台12的晶圆W进行加热。另外,如图2所示,在真空容器11的侧壁,晶圆W的输送口16开口,且构成为利用未图示的闸阀开闭自如。真空容器11内的面对输送口16的位置为晶圆W的交接位置,在与该交接位置对应的部位设置有从旋转台12的下方侧贯通凹部14以用于从背面举起晶圆W的交接用的升降销及其升降机构(均未图示)。而且,晶圆W经由输送口16被设置于真空容器11的外部的未图示的基板输送机构输送到交接位置,通过基板输送机构与升降销的协作作用被交接到凹部14。
如图2所示,作为第一气体供给部的气体供排气单元2和第一~第三等离子体形成单元3A~3C沿旋转台12的旋转方向、在该例中为沿顺时针方向按该顺序被设置在旋转台12的上方。第一~第三等离子体形成单元3A~3C相当于第二气体供给部。另外,排气口51向真空容器11中的旋转台12的外侧的下方且第二等离子体形成单元3B的外侧开口,该排气口51连接于真空排气部50。
还参照作为纵截面图的图3和作为下表面侧俯视图的图4来说明气体供排气单元2。气体供排气单元2如图2所示那样形成为在俯视时随着从旋转台12的中心侧趋向外周侧沿旋转台12的周向扩展的扇状,如图3所示那样气体供排气单元2的下表面与旋转台12的上表面接近且被配置为相向。
气体喷出孔21、排气口22以及吹扫气体喷出口23向气体供排气单元2的下表面(与旋转台相向的相向面)开口。此外,图4针对由发明者制作的实际的气体供排气单元2示意性地示出了气体喷出孔21的布局、开口直径。另外,将排气口22和吹扫气体喷出口23分别用灰色示出。如图4所示,气体供排气单元2的下表面的靠中心的区域形成大致扇状的气体喷出区域24,在气体喷出区域24分散地配设有气体喷出孔21。而且,以如下方式设置:在使旋转台12进行了旋转时,被载置于凹部14的晶圆W位于气体喷出区域24的下方的用图4中虚线表示的区域。
气体喷出区域24被分割为从旋转台12的中心侧朝向旋转台12的外周侧排列的内侧区域24A、中央区域24B、外侧区域24C,沿线L2分别划分了各区域,该线L2相对于线L1朝向旋转台12的旋转方向的下游侧沿旋转台12的内周方向倾斜了10°,该线L1与气体喷出区域24中的通过旋转台12的旋转方向的上游侧的端部的旋转台12的直径正交。此外,在说明书中,将旋转台12的中心侧定义为内侧、将周缘侧定义为外侧来进行说明。
如果将晶圆W的通过区域的内缘与从内缘向外侧(朝向旋转台12的外缘的方向)靠近15mm的位置之间的带状的区域设为“晶圆W的通过区域的内缘部,”则在最靠近旋转台12的中心的位置的内侧区域24A中,在与该晶圆W的通过区域的内缘部相向的区域(内缘部区域I)中沿旋转台12的旋转方向并排地设置有9个气体喷出孔21。此外,在内侧区域24A中,将内缘部区域I中的气体喷出孔21的排列密度称为DI1,将从内缘部区域I偏离出的区域中的气体喷出孔21的排列密度称为DI2。此外,排列密度设为每单位面积的气体喷出孔21的个数(排列密度=该区域中的气体喷出孔21的个数/该区域的面积)。
在与内侧区域24A相邻的中央区域24B中均匀地分散配置有632个气体喷出孔21。另外,如果将晶圆W的通过区域的外缘与从外缘向内侧(朝向旋转台12的中心部的方向)靠近例如10mm的位置之间的带状的区域设为“晶圆W的通过区域的外缘部,”则在最靠近旋转台12的外周的位置的外侧区域24C中,气体喷出孔21以将21个气体喷出孔21排成2列的方式沿旋转台12的旋转方向配置在与该晶圆W的通过区域的外缘部相向的区域(外缘部区域O)。此外,在外侧区域24C,将外缘部区域O中的气体喷出孔21的排列密度称为DO1,将从外缘部区域O偏离出的区域中的气体喷出孔21的排列密度称为DO2
内侧区域24A、中央区域24B以及外侧区域24C各区域中设置的气体喷出孔21的孔径一致,例如所有的气体喷出孔21的上游侧的内径形成为0.3mm,并且下游侧的开口部的孔径形成为1.0mm。此外,气体喷出孔21的孔径一致是指在开口部的孔径存在偏差的情况下,最大的气体喷出孔21的开口部的孔径相对于最小的气体喷出孔21的开口部的孔径例如为1.5倍以下。
此外,在该例中,内缘部区域I中的相邻的各气体喷出孔21的间隔、外缘部区域O中的相邻的各气体喷出孔21的间隔以及中央区域24B中的相邻的各气体喷出孔21的间隔被设定为相同距离。另外,各气体喷出孔21被配置为从旋转台12的中心的位置到气体喷出孔21的中心部的位置的距离互不相同。因而,从各气体喷出孔21喷出的气体沿着在气体供排气单元2的下方公转的晶圆W处的旋转台12的径向向不同的位置喷出。因而,能够防止向晶圆W供给的气体汇集到相同的部位,从而能够均匀地进行成膜。此外,在图4中,为了避免记载变得复杂,没有正确地记载内缘部区域I、外缘部区域O以及中央区域24B各区域中的气体喷出孔21的排列。
如图3所示,在气体供排气单元2的内部形成有彼此分区的气体流路25A、25B、25C,使得能够向设置于内侧区域24A的气体喷出孔21、设置于中央区域24B的气体喷出孔21以及设置于外侧区域24C的气体喷出孔21各自独立地供给DCS气体。各气体流路25A、25B、25C的下游端连接于各个上述气体喷出孔21。
而且,在气体流路25A、25B、25C各自的上游侧端部分别经由配管27A、27B、27C连接有DCS气体供给源26,从气体流路25A、25B、25C侧向各配管27A、27B、27C插入设置各个阀V1~V3以及流量调整部M1~M3。连接于DCS气体供给源26的各气体流路25A、25B、25C、阀V1~V3以及流量调整部M1~M3相当于气体供给部。因而,能够各自独立地调整内侧区域24A、中央区域24B以及外侧区域24C中的气体的喷出流量。
接着,对上述的排气口22、吹扫气体喷出口23进行说明。如图3、图4所示,排气口22形成为包围气体喷出区域24的环状,且朝向旋转台12的上表面开口。另外,吹扫气体喷出口23形成为包围排气口22的外侧的环状,且朝向旋转台12的上表面开口。
吹扫气体喷出口23形成向旋转台12上喷出Ar(氩)气体来作为吹扫气体的气流帘,从吹扫气体喷出部喷出的Ar气体和从气体喷出孔21喷出的DCS气体经由设置在气体喷出区域24与吹扫气体喷出口23之间的排气口22被排气部55排出。这样,通过进行吹扫气体的喷出以及排气,气体喷出区域24的下方的气氛与外部的气氛分离,能够对该气体喷出区域24的下方限定性地供给DCS气体。
如图3所示,在气体供排气单元2的内部形成有相对于已述的原料气体的流路25A~25C被分别区分且彼此区分的排气流路52、气体流路53。排气流路52的上游侧端部连接于排气口22。排气流路52的下游侧端部经由排气管54连接于排气部55。另外,气体流路53的下游侧端部连接于吹扫气体喷出口23,气体流路53的上游侧端部与配管29的一端连接。配管29的另一端侧连接于Ar气体供给源28,从气体供排气单元2侧起,阀V4和流量调整部M4按该顺序设置在配管29中。
接着,对图2所示的等离子体形成单元3A~3C进行说明。等离子体形成单元3A~3C各自同样地构成,在此对等离子体形成单元3A进行说明。等离子体形成单元3A形成为从旋转台12的中心侧朝向外周侧扩展的大致扇状。如图1所示,等离子体形成单元3A具备用于供给微波的天线31,该天线31具备电介质板32和金属制的导波管33。
导波管33设置在电介质板32上,且具备沿旋转台12的径向延伸的内部空间35。在导波管33的下部侧以与电介质板32相接的方式设置有具备多个缝隙孔36A的缝隙板。导波管33上连接有微波发生器37,向导波管33供给例如约2.45GHz的微波。
另外,等离子体形成单元3A具备向电介质板32的下表面侧分别供给等离子体形成用气体的气体喷出孔41和气体喷出孔42。气体喷出孔41从旋转台12的中心部侧朝向外周部侧喷出等离子体形成用气体,气体喷出孔42从旋转台12的外周部侧朝向中心侧喷出例如H2(氢)气体和NH3(氨)气体的混合气体。图中43是H2气体的供给源,图中44是NH3气体的供给源。气体喷出孔41和气体喷出孔42经由具备气体供给设备45的配管系统40分别连接于H2气体供给源43和NH3气体供给源44。
该等离子体形成单元3A使被供给到导波管33的微波通过缝隙板36的缝隙孔36A,来将被喷出到该电介质板32的下方的等离子体形成用气体、即NH3与H2的混合气体进行等离子体化。
如图1所示,成膜装置中设置有由计算机构成的控制部10,在控制部10中存储有程序。关于该程序,向成膜装置的各部发送控制信号来控制各部的动作,编写步骤组以执行后述的成膜处理。具体地说,通过程序来控制由旋转机构13操纵的旋转台12的转数、向加热器15的供电等。从硬盘、压缩光盘、磁光盘、存储卡等存储介质向控制部10安装该程序。
对本发明的实施方式所涉及的成膜装置的作用进行说明。首先,利用基板输送机构将6张晶圆W载置于旋转台12的各凹部14,关闭闸阀。利用加热器15将被载置于凹部14的晶圆W加热至规定的温度、例如400℃。接着,利用真空排气部50经由排气口51进行排气,将真空容器11内设定为例如66.5Pa(0.5Torr)~665Pa(5Torr),使旋转台12以例如10rpm~30rpm进行旋转。
并且,以70sccm的流量向气体供排气单元2的内侧区域24A供给DCS气体,以260sccm的流量向中央区域24B供给DCS气体,以950sccm的流量向外侧区域24C供给DCS气体。并且,开始从排气口22进行排气,同时从吹扫气体喷出口23喷出吹扫气体。
另外,在第一~第三等离子体形成单元3A~3C中,从气体喷出孔41、气体喷出孔42各自以规定的流量喷出H2气体与NH3气体的混合气体。由此,向第一~第三等离子体形成单元3A~3C的下方供给H2气体与NH3气体的混合气体,并且从微波发生器37供给微波,利用微波将H2气体和NH3气体进行等离子体化。然后,使旋转台12旋转,来使各晶圆W依次通过气体供排气单元2的下方、第一~第三等离子体形成单元3A~3C的下方。此外,也可以是以下结构:第一和第三等离子体形成单元3A、3C将H2气体作为气体进行供给并将该H2气体进行等离子体化,第二等离子体形成单元3B供给NH3气体并将其进行等离子体化。
当关注某个晶圆W时,旋转台12进行旋转,晶圆W向气体供排气单元2的下方移动。此时,向由气体供排气单元2的下方的吹扫气体的气流围成的区域供给DCS气体,该DCS气体吸附于晶圆W的表面。
在此,在图4所示的气体供排气单元2中,在对与实施方式的结构对应的原料气体的流动进行说明之前,对比较方式中的原料气体的流动进行说明。在比较方式中,在内侧区域24A的整个下表面整面均匀地分散设置有115个气体喷出孔21,并且,在外侧区域24C的整个下表面整面均匀地分散设置有256个气体喷出孔21。设为比较方式中的成膜处理的DCS气体的供给流量与实施方式中的流量相同。气体供排气单元2从设置在气体喷出区域24的周围的排气口22进行排气。因此,在旋转台12的中心侧和外周侧,如图5的(a)所示那样,DCS气体被供给到从内侧(晶圆W的旋转台12的中心侧的周缘)到外侧(晶圆W的旋转台12的外周侧的周缘)的区域,DCS气体的一部分成为从晶圆W的中心侧朝向周缘侧经由晶圆W的内侧的周缘或者经由外侧的周缘从排气口22排出的气流。
因此,从上方供给的DCS气体吸附在晶圆W的中心部,在比晶圆W的中心部靠周缘侧的部位,除了存在从该部位的上方供给的DCS气体以外,还存在从晶圆W的中心部侧流过来的DCS气体,由此膜厚变厚。另一方面,在晶圆W的周缘附近,由于形成于晶圆W的斜面、晶圆W以及凹部24之间的细小的间隙导致DCS气体的消耗量变多,并且DCS气体进入排气口22,因此周围的DCS气体的浓度变低。因此,在这些的作用相互作用下,如图5的(b)所示那样,在与晶圆W的内侧的周缘部相距大致50mm附近的部位以及与晶圆W的外侧的周缘部相距大致50mm附近的部位,膜厚变厚,随着趋向晶圆W的内侧的周缘部和外侧的周缘部,膜厚逐渐变薄。而且,在晶圆W的内侧的周缘部和外侧的周缘部,所形成的膜厚处于极端变低的倾向。
本发明的实施方式所涉及的成膜装置如图6的(a)所示那样构成为在气体供排气单元2中设定的内侧区域24A中仅从旋转台12的中心侧的内缘部区域I喷出气体。另外,在外侧区域24C中仅从旋转台12的外周侧的外缘部区域O喷出气体。因此,在晶圆W的与旋转台12的内侧的周缘部相比靠近晶圆W的中心的部位以及与外侧的周缘部相比靠近晶圆W的中心的部位,由于上方没有设置气体喷出孔21,因此气体的供给量变少。因而,如图6的(b)所示,能够抑制晶圆W在旋转台12的内侧的周缘部和在外侧的周缘部的膜厚变厚,晶圆W的膜厚的面内均匀性变得良好。
另外,将向中央区域24B供给的DCS气体的流量设定为260sccm,与此相对地,将向内侧区域24A供给的DCS气体的流量设为50sccm~100sccm、例如70sccm。将设置于中央区域24B的气体喷出孔21的个数设为632个,与此相对地,内侧区域24A的气体喷出孔21较少为9个。因此,从内侧区域24A喷出的气体的流速成为从中央区域24B喷出的DCS气体的流速的2倍以上的速度。另外,将从外侧区域24C供给的DCS气体的流量设为900sccm~1000sccm、例如950sccm。在外侧区域24C,也将气体喷出孔21的个数较少地设为21个。因此,从外侧区域24C喷出的气体的流速成为从中央区域24B喷出的DCS气体的流速的2倍以上的速度。因此,向晶圆W的旋转台12的内侧的周缘部和外侧的周缘部供给的气体的流速变快,因此吸附于晶圆W的DCS气体的量增加,抑制所形成的膜的膜厚的降低。
之后,吸附有DCS气体的晶圆W随着旋转台12的旋转而依次通过等离子体形成区域P1~P3,含有从NH3气体产生的N(氮)的自由基等活性种被供给到各晶圆W的表面。由此,在晶圆W的表面形成氮化硅膜的晶种层。并且,之后使旋转台12继续旋转,由此晶圆W依次重复通过气体供排气单元2的下方、等离子体形成区域P1~P3。由此,SiN逐渐层叠,SiN膜的膜厚达到规定的膜厚。
根据上述的实施方式,在以沿旋转台12的径向横跨晶圆W的移动区域的方式供给气体、以包围气体喷出区域24的周围的方式设置有排气口22的气体供排气单元2中,将气体喷出区域24沿旋转台12的径向划分为3个以上的区域。而且,在气体喷出区域24中的内侧区域24A中,在与晶圆W的通过区域的内侧的周缘(从缘部向旋转台12的外周方向偏离15mm的区域)相向的区域设置有气体喷出孔21,在外侧区域24C中,在晶圆W的通过区域的外侧的周缘(从缘部向旋转台12的中心方向偏离10mm的区域)设置有气体喷出孔21。因此,能够使向晶圆W的通过区域的缘部供给的气体的供给量增多,因此能够抑制晶圆W的周缘的膜厚的降低。
另外,将从外侧区域24C喷出的DCS气体的流速设定为比从中央区域24B喷出的DCS气体的流速大,将从内侧区域24A喷出的DCS气体的流速设定为比从中央区域24B喷出的DCS气体的流速大。由此,在晶圆W的内侧的周缘的部位和外侧的周缘的部位以高流速供给DCS气体,因此能够抑制晶圆W的内侧的周缘和外侧的周缘处的膜厚的降低。
从此时的外侧区域24C喷出的DCS气体的流速优选为从中央区域24B喷出的DCS气体的流速的2倍以上的流速。另外,从内侧区域24A喷出的DCS气体的流速优选为从中央区域24B喷出的DCS气体的流速的2倍以上的流速。
并且,将外侧区域24C中的气体喷出孔21的平均排列密度设定为比中央区域24B中的气体喷出孔21的平均排列密度小,将内侧区域24A中的气体喷出孔21的平均排列密度设定为比中央区域24B中的气体喷出孔21的平均排列密度小。由此,与将从外侧区域24C和内侧区域24A各区域喷出的DCS气体的流速设定为比从中央区域24B喷出的DCS气体的流速大的情况同样地,在晶圆W的靠内侧的周缘的部位和靠外侧的周缘的部位,DCS气体的喷出量不会变得过多,能够抑制膜厚变厚。此时,外侧区域24C中的气体喷出孔21的排列密度优选被设定为中央区域24B中的气体喷出孔21的排列密度的五分之一以下。另外,外侧区域24A中的气体喷出孔21的排列密度优选被设定为中央区域24B中的气体喷出孔21的排列密度的五分之一以下。
另外,如上所述,在内侧区域24A中,在与晶圆W的通过区域中的内侧的缘部(内缘与从该内缘向旋转台12的外侧偏离15mm的位置之间的区域)相向的内缘部区域I设置有气体喷出孔21,在从该内缘部区域I偏离出的区域没有设置气体喷出孔21。然而,在内侧区域24A中,如果内缘部区域I的气体喷出孔21的排列密度DI1比从该内缘部区域I偏离出(向外侧偏离)的区域的气体喷出孔21的排列密度DI2大,则也可以在从所述内缘部区域I偏离出的区域设置气体喷出孔21。通过像这样设置气体喷出孔21,能够在晶圆W的靠近晶圆W的通过区域的内周的区域抑制膜厚变得过厚。此时,在内侧区域24A中,从缘部区域偏离出的气体喷出孔21的排列密度DI2优选为内缘部区域I的气体喷出孔21的排列密度DI1的五分之一以下。
并且,在外侧区域24C中,如果使与晶圆W的通过区域中的外侧的缘部(外缘部与从该外缘向旋转台12的中心侧偏离10mm的位置之间的区域)相向的外缘部区域O的气体喷出孔21的排列密度DO1比从该外缘部区域O偏离出的区域(向内侧偏离的区域)的气体喷出孔21的排列密度DO2大,则也可以在从所述外缘部区域O偏离出的区域设置气体喷出孔21。通过像这样设置气体喷出孔21,能够在晶圆W的靠近晶圆W的通过区域的外周的区域抑制膜厚变得过厚。此时,在外侧区域24C中,从外缘部区域O偏离出的区域的气体喷出孔21的排列密度DO2优选为外缘部区域O的气体喷出孔21的排列密度DO1的五分之一以下。
另外,在对气体喷出区域24进行划分时,在各区域的边界出现间隙,该间隙部分不能喷出气体,因此从间隙部分的下方通过的晶圆W的部位的膜厚变低。而且,在晶圆通过了沿旋转台12的径向划分出的气体喷出区域24的下方时,在晶圆W的移动方向与划分各个区域的间隙的方向接近的情况下,在晶圆W在气体喷出区域24的下方进行了移动时,晶圆W的相同部位重复位于间隙的下方,膜厚局部地变低。
在上述的实施方式中,沿着相对于线L1朝向旋转台12的旋转方向的下游侧沿旋转台12的内周方向倾斜了10°后的线来将气体喷出区域24分别划分为内侧区域24A、中央区域24以及外侧区域24C,该线L1与气体喷出区域24中的通过旋转台12的旋转方向的上游侧的端部的旋转台12的直径正交。因此,晶圆W移动的方向与划分各个区域时的间隙的方向分离,因此能够抑制晶圆W的局部的膜厚的降低。
并且,在沿旋转台12的径向划分气体喷出区域24时,也可以划分为3个以上的区域。
<验证试验1>
为了验证本发明的效果进行了以下的试验。首先,对内侧区域24A中的气体喷出孔21的个数及分布区域、基于向内侧区域24A供给的气体的流量而在晶圆W上形成的膜的膜厚分布进行了调查。
[验证试验1-1]
在图3、图4所示的气体供排气单元2中,将外侧区域24C的气体喷出孔21的个数设定为“256”个,并使它们分布在外侧区域24C的整个下表面。另外,将内侧区域24A的气体喷出孔21的个数设定为“124”个,并使它们分布在整个下表面,并且将中央区域24B的气体喷出孔21的个数设定为“632”个,并使它们分布在整个下表面。在实施方式所示的成膜装置中使用该气体供排气单元2,按照实施方式示出的成膜方法在晶圆W上形成了SiN膜。此外,在形成SiN膜时,关于气体供排气单元2中的气体的供给量,将向外侧区域24C供给的DCS气体的流量设定为950sccm,将向中央区域24B供给的DCS气体的流量设定为260sccm。而且,将向内侧区域24A供给的DCS气体的流量设定为50sccm、90sccm以及150sccm这三种流量,按照实施方式的成膜方法在晶圆W上形成SiN膜,按内侧区域24A的各流量测定出通过晶圆W的中心而沿着旋转台12的径向延伸的轴(Y轴)的SiN膜的膜厚分布。
[验证试验1-2]
将以下例子设为验证试验1-2:除了将内侧区域24A的气体喷出孔21的个数设定为“35”个、将气体喷出孔21设置在内侧区域24A的底面的旋转台12的中心侧的区域以外,与验证试验1同样地设定并在晶圆W上形成SiN膜。图7中的斜线区域表示验证试验1-2中的从下方侧看到的气体喷出区域24中的气体喷出孔21的排列区域。即,在验证试验1-2中,内缘部区域I的排列密度DI1比从内缘部区域I偏离出的区域的排列密度DI2大。
[验证试验1-3]
将以下例子设为验证试验1-3:除了将内侧区域24A的气体喷出孔21的个数设定为“9”个、将气体喷出孔21设置在内侧区域24A的底面的旋转台12的中心侧的区域以外,与验证试验1同样地设定并在晶圆W上形成SiN膜。图8中的斜线区域表示验证试验1-3中的从下方侧看到的气体喷出区域24中的气体喷出孔21的排列区域。即,在验证试验1-3中,仅在内缘部区域I中设置气体喷出孔21,将从内缘部区域I偏离出的区域的排列密度DI2设定为0。
图9~图11分别是表示将内侧区域24A的DCS气体的流量设定为50sccm、90sccm以及150sccm时的各晶圆W上的SiN膜的Y轴上的膜厚分布的特性图。图9~图11中的横轴表示沿旋转台12的径向的晶圆W上的位置,用原点0表示晶圆W的中心部,用+的值表示旋转台12的中心侧,用-的值表示旋转台12的外周侧。另外,纵轴是标准膜厚。此外,关于标准膜厚,将晶圆W的中心部的膜厚设为1、将各地点的膜厚设为用百分率表示的值。
另外,图12表示验证试验1-1~1-3中的向内侧区域24A供给的DCS气体的流量以及设定为该流量时的成膜后的晶圆W的膜厚最厚的部位的膜厚与膜厚最薄的部位的膜厚的差值。此外,在验证试验1-3中,还追加了将向内侧区域24A供给的DCS气体的流量设定为70sccm的情况下的成膜后的晶圆W的差值的值。
如图9所示,验证试验1-1的晶圆W处于靠旋转台12的中心的周缘的部位的膜厚变薄的倾向。另外,获知以下情况:随着向内侧区域24A供给的DCS气体的流量变少,靠旋转台12的中心的周缘的膜厚变薄。另外,如图10、图11所示那样获知以下情况:按验证试验1-2、验证试验1-3的顺序,晶圆W的靠旋转台12的中心的周缘部的膜厚变厚。另外,如图9~图11所示,根据向内侧区域24A供给的DCS气体的流量,从晶圆W的中心朝向晶圆W的旋转台12的中心侧100mm~150mm的区域的膜厚大幅地变化。还获知以下情况:从晶圆W的中心朝向旋转台12的中心侧150mm的地点的膜厚按验证试验1-1、验证试验1-2、验证试验1-3的顺序变厚。而且,获知以下情况:在向内侧区域24A供给的DCS气体的流量为90sccm以上的情况下,从晶圆W的中心朝向晶圆W的旋转台12的中心侧100mm~150mm的区域的膜厚变得过厚。而且,如图12所示那样获知以下情况:在验证试验1-3中的将向内侧区域24A供给的DCS气体的流量设为50sccm的情况下,膜厚的面内均匀性最良好。
根据该结果,可以说将除了向内侧区域24A中的晶圆W的在旋转台12的中心侧的周缘进行喷出的气体喷出孔21以外的气体喷出孔21进行堵塞,由此能够使晶圆W的旋转台12的中心侧的周缘的膜厚变厚。另外,可以说仅在内侧区域24A中的旋转台12的中心侧设置气体喷出孔21且将向内侧区域24A供给的DCS气体的流量设定为90sccm以下,由此晶圆W的靠旋转台12的中心的区域的膜厚的均匀性变得良好。
<验证试验2>
接着,对外侧区域24C中的气体喷出孔21的个数及分布区域与基于向外侧区域24C供给的气体的流量在晶圆W上形成的膜的膜厚分布之间的关联性进行了调查。
[验证试验2-1]
将除了将向内侧区域24A供给的DCS气体的流量设定为70sccm以外与验证试验1-3同样地进行处理的例子(内侧区域24A的气体喷出孔21的个数:9个、中央区域24B的气体喷出孔21的个数:632个、外侧区域24C的气体喷出孔21的个数:256个)设为验证试验2-1。此外,在验证试验2-1中,将向外侧区域24C供给的DCS气体的流量设定为950sccm、900sccm、840sccm这三种流量,在各个条件下对晶圆W进行了成膜。
[验证试验2-2]
将以下例子设为验证试验2-2:除了将外侧区域24C的气体喷出孔21的个数设为“204”个、将气体喷出孔21设置在外侧区域24C的靠近旋转台12的外周的区域以外,与验证试验2-1同样地进行设定。图13中的斜线区域表示验证试验2-2中的从下方侧看到的气体喷出区域24中的气体喷出孔21的排列区域。即,在验证试验2-2中,外缘部区域O的排列密度DO1比从外缘部区域O偏离出的区域的排列密度DO2大。在验证试验2-2中,将向外侧区域24C供给的DCS气体的流量设定为950sccm、840sccm这两种流量,并对各个晶圆W进行了成膜。
[验证试验2-3]
将以下例子设为验证试验2-3:除了将外侧区域24C的喷出孔21的个数设为“21”个且将喷出孔21设置在外侧区域24C的底面的靠近成膜装置的周缘的部位以外,与验证试验2-1同样地进行设定。图14中的斜线区域表示验证试验2-3中的从下方侧看到的气体喷出区域24中的气体喷出孔21的排列区域。即,在验证试验2-3中,仅在外缘部区域O设置气体喷出孔21,将从外缘部区域O偏离出的区域的排列密度DO2设定为0。在验证试验2-3中,关于向外侧区域24C供给的DCS气体的流量,将DCS气体的流量设定为950sccm、920sccm、900sccm、870sccm、840sccm这五种流量,并对各个晶圆W进行了成膜。
图15~图17分别是表示在验证试验2-1~2-3中在各晶圆W上形成的SiN膜的Y轴上的膜厚分布的特性图。图15~图17中的横轴表示晶圆W上的沿旋转台12的径向的位置,用原点0表示晶圆W的中心部,用+的值表示旋转台12的中心侧,用-的值表示旋转台12的外周侧。另外,纵轴表示膜厚
如图15、图16所示那样获知以下情况:验证试验2-1、验证试验2-2的晶圆W从晶圆W的中心朝向旋转台12的外周100mm~150mm的位置的区域的膜厚变薄。另外,获知即使DCS气体的供给量变化,膜厚分布也几乎不变。
另外,如图17所示那样获知以下情况:在验证试验2-3中,在将向外侧区域24C供给的DCS气体的流量设定为950sccm时,与验证试验2-1、验证试验2-2相比,从晶圆W的中心朝向旋转台12的外周100mm~150mm的位置的区域的膜厚变厚。
根据该结果,可以说将外侧区域24C的气体喷出孔21的个数变少、将气体喷出孔21设置在靠近旋转台12的外周的位置,由此能够使晶圆W的靠旋转台12的外周的周缘的膜厚变厚。
另外,在将DCS气体的供给量设定为840sccm时,与验证试验2-1、验证试验2-2相比,从晶圆W的中心朝向旋转台12的外周100mm~150mm的位置的区域的膜厚变薄。推测这是由于,在外侧区域24C中的旋转台12的中心区域没有气体喷出孔21,因此在晶圆W的靠近旋转台12的外周的周缘处从晶圆W的中心侧流过来的气体的流量变少。

Claims (4)

1.一种成膜装置,使向真空容器内依次供给第一处理气体和第二处理气体的周期进行多次来对基板进行成膜处理,该成膜装置的特征在于,具备:
旋转台,在所述旋转台的一面侧形成用于载置基板的基板载置区域,所述旋转台用于使所述基板载置区域在所述真空容器内进行公转;
第一气体供给部,其在与所述旋转台相向的相向面上具备形成有多个孔径彼此一致的第一气体的喷出孔的气体喷出部、包围该气体喷出部的排气口以及包围该排气口的吹扫气体的喷出口;
第二气体供给部,其用于向相对于所述第一气体供给部沿所述旋转台的周向分离地设置的区域供给第二气体;以及
排气口,其用于对所述真空容器内进行真空排气,
其中,所述气体喷出部具备沿旋转台的径向分割得到的、且各自独立地被供给第一气体的三个以上的气体喷出区域,
如果将所述旋转台的中心侧定义为内侧、将外周侧定义为外侧,
则在位于最外侧位置的气体喷出区域中,设定为与基板的通过区域的外缘部相向的区域的气体喷出孔的排列密度DO1比从与所述外缘部相向的区域靠内偏离出的区域的气体喷出孔的排列密度DO2大,
在位于最内侧位置的气体喷出区域中,设定为与基板的通过区域的内缘部相向的区域的气体喷出孔的排列密度DI1比从与所述内缘部相向的区域靠外偏离出的区域的气体喷出孔的排列密度DI2大,
所述位于最外侧位置的气体喷出区域的气体喷出孔的排列密度比与所述位于最外侧位置的气体喷出区域相邻的气体喷出区域的气体喷出孔的排列密度小,
所述位于最内侧位置的气体喷出区域的气体喷出孔的排列密度比与所述位于最内侧位置的气体喷出区域相邻的气体喷出区域的气体喷出孔的排列密度小,
设定为从位于最外侧位置的气体喷出区域喷出的原料气体的流速比从与所述位于最外侧位置的气体喷出区域相邻的气体喷出区域喷出的原料气体的流速大,
设定为从位于最内侧位置的气体喷出区域喷出的原料气体的流速比从与所述位于最内侧位置的气体喷出区域相邻的气体喷出区域喷出的原料气体的流速大。
2.根据权利要求1所述的成膜装置,其特征在于,
从位于最外侧位置的气体喷出区域喷出的原料气体的流速为从与所述位于最外侧位置的气体喷出区域相邻的气体喷出区域喷出的原料气体的流速的2倍以上,
从位于最内侧位置的气体喷出区域喷出的原料气体的流速为从与所述位于最内侧位置的气体喷出区域相邻的气体喷出区域喷出的原料气体的流速的2倍以上。
3.根据权利要求1所述的成膜装置,其特征在于,
所述位于最外侧位置的气体喷出区域的气体喷出孔的排列密度为与所述位于最外侧位置的气体喷出区域相邻的气体喷出区域的气体喷出孔的排列密度的五分之一以下,
所述位于最内侧位置的气体喷出区域的气体喷出孔的排列密度为与所述位于最内侧位置的气体喷出区域相邻的气体喷出区域的气体喷出孔的排列密度的五分之一以下。
4.根据权利要求1或2所述的成膜装置,其特征在于,
从与所述基板的通过区域的外缘部相向的区域靠内偏离出的区域的气体喷出孔的排列密度DO2为与基板的通过区域的外缘部相向的区域的气体喷出孔的排列密度DO1的五分之一以下,
从与所述基板的通过区域的内缘部相向的区域靠外偏离出的区域的气体喷出孔的排列密度DI2为与基板的通过区域的内缘部相向的区域的气体喷出孔的排列密度DI1的五分之一以下。
CN201810165871.7A 2017-02-28 2018-02-28 成膜装置 Active CN108505020B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-037325 2017-02-28
JP2017037325 2017-02-28
JP2017093978A JP6816634B2 (ja) 2017-02-28 2017-05-10 成膜装置
JP2017-093978 2017-05-10

Publications (2)

Publication Number Publication Date
CN108505020A CN108505020A (zh) 2018-09-07
CN108505020B true CN108505020B (zh) 2024-01-16

Family

ID=63245687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810165871.7A Active CN108505020B (zh) 2017-02-28 2018-02-28 成膜装置

Country Status (2)

Country Link
US (1) US20180245216A1 (zh)
CN (1) CN108505020B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200880B2 (ja) * 2019-08-19 2023-01-10 東京エレクトロン株式会社 成膜方法及び成膜装置
JP6987821B2 (ja) * 2019-09-26 2022-01-05 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1849410A (zh) * 2003-08-20 2006-10-18 维高仪器股份有限公司 用于竖流型转盘式反应器的烷基挤出流
CN102576661A (zh) * 2009-08-31 2012-07-11 圆益Ips股份有限公司 气体喷射装置和使用其的基底处理设备
CN104115261A (zh) * 2012-02-14 2014-10-22 东京毅力科创株式会社 成膜装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008487A1 (en) * 2000-07-24 2002-01-31 The University Of Maryland, College Park Spatially programmable microelectronics process equipment using segmented gas injection showerhead with exhaust gas recirculation
JP2004035971A (ja) * 2002-07-05 2004-02-05 Ulvac Japan Ltd 薄膜製造装置
US8083853B2 (en) * 2004-05-12 2011-12-27 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
US8066895B2 (en) * 2008-02-28 2011-11-29 Applied Materials, Inc. Method to control uniformity using tri-zone showerhead
JP5497423B2 (ja) * 2009-12-25 2014-05-21 東京エレクトロン株式会社 成膜装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1849410A (zh) * 2003-08-20 2006-10-18 维高仪器股份有限公司 用于竖流型转盘式反应器的烷基挤出流
CN102576661A (zh) * 2009-08-31 2012-07-11 圆益Ips股份有限公司 气体喷射装置和使用其的基底处理设备
CN104115261A (zh) * 2012-02-14 2014-10-22 东京毅力科创株式会社 成膜装置

Also Published As

Publication number Publication date
CN108505020A (zh) 2018-09-07
US20180245216A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP7343553B2 (ja) 空間的原子層堆積におけるガス分離制御
US20150184294A1 (en) Film deposition apparatus, film deposition method, and computer-readable storage medium
US10550467B2 (en) Film formation apparatus
JP5861583B2 (ja) 成膜装置及び成膜方法
US10519550B2 (en) Film formation apparatus
KR101668236B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법, 카트리지 헤드, 가스 공급 유닛 및 기록 매체
KR20180135803A (ko) 성막 장치, 성막 장치의 클리닝 방법 및 기억 매체
CN108505020B (zh) 成膜装置
KR20180020093A (ko) 성막 장치, 성막 방법 및 기억 매체
US9922820B2 (en) Film forming method and film forming apparatus
TWI659124B (zh) 成膜裝置
KR102324965B1 (ko) 성막 장치
JP6544232B2 (ja) 成膜方法及び成膜装置
US11515153B2 (en) Film forming apparatus and film forming method
KR102293635B1 (ko) 성막 방법, 성막 장치 및 기억 매체
JP6680190B2 (ja) 成膜装置
US20180237914A1 (en) Film forming apparatus
US11613811B2 (en) Film forming apparatus and method of operating film forming apparatus
JP2020012136A (ja) 成膜方法
US20240191357A1 (en) Shower head assembly and film forming apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant