CN108499584A - Ni2P@C/石墨烯气凝胶析氢复合材料及制备方法 - Google Patents

Ni2P@C/石墨烯气凝胶析氢复合材料及制备方法 Download PDF

Info

Publication number
CN108499584A
CN108499584A CN201810073369.3A CN201810073369A CN108499584A CN 108499584 A CN108499584 A CN 108499584A CN 201810073369 A CN201810073369 A CN 201810073369A CN 108499584 A CN108499584 A CN 108499584A
Authority
CN
China
Prior art keywords
liberation
hydrogen
composite materials
graphene aerogel
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810073369.3A
Other languages
English (en)
Other versions
CN108499584B (zh
Inventor
谢吉民
赵文通
魏巍
杨赛赛
张凤卿
孙伟
胡慧慧
戴呈静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201810073369.3A priority Critical patent/CN108499584B/zh
Publication of CN108499584A publication Critical patent/CN108499584A/zh
Application granted granted Critical
Publication of CN108499584B publication Critical patent/CN108499584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明属于析氢复合材料,将多糖和石墨烯结合起来,利用多糖和金属离子的鳌合作用形成水凝胶,然后冷冻干燥形成气凝胶,进一步磷化形成Ni2P@C/石墨烯气凝胶高效析氢复合材料,用于酸性条件下高效析氢。本发明的优点在于绿色环保,成本低,制备工艺简便,制得的催化剂易于大规模工业化生产并具备优异的电催化活性及良好的析氢稳定性。多糖碳化形成的碳气凝胶,具有发达的网状结构,极大的增大了催化剂的比表面积,气凝胶的孔洞结构对Ni2P纳米粒的固定及分散起到了很好的作用,同时也极大的提高了电子迁移速率,能够显著提高Ni2P的电化学析氢性能。

Description

Ni2P@C/石墨烯气凝胶析氢复合材料及制备方法
技术领域
本发明属于材料合成技术领域,具体涉及了碳壳包裹的Ni2P纳米粒子镶嵌石墨烯气凝胶高效析氢复合材料及制备方法及其析氢性能的研究。
背景技术
近些年,环境污染和能源危机问题日益严重,当前开发环保生产工艺和利用清洁有效的能源是解决目前危机的重要挑战之一。从能源清洁及可循环的角度考虑,氢气作为一种能源,具有资源丰富,热值高,环保无污染,利用形式多样等特点,已被普遍认为是一种理想的可替代化石燃料的新能源,有着无可比拟的巨大优势和无限广阔的应用前景。然而如何通过有效的途径获得较为廉价的氢能源,是目前科研工作者研究的主要内容之一,地球上水资源丰富,通过水的电解获得氢气是有效的途径之一,但是水的电解能源转化效率低是制约其工业化生产的因素之一,因此设计和开发高性能,低成本的电解水的催化剂具有极其重要的意义。
这几年,过渡金属硫化物,磷化物在能源存储及在电催化中的潜在应用得到了研究工作者的广泛关注。过渡金属Co、Ni、Fe、Mo基硫化物、氮化物、磷化物是一类重要的HER催化剂,对MEx(M:Fe、Co、Ni;E:S、N、P)一系列催化剂析氢性能研究表明,在酸性电解液中,CoS2、NiS2、CoP、Ni2P等具有较好的电化学析氢性能。最近,磷化物在电化学析氢方面具有优越的电催化性能,其中Ni2P作为磷化物中的佼佼者,日益被研究者关注。但是Ni2P也存在一些问题,例如纳米粒子易于团聚,在酸性条件下易于失活,稳定性差等缺点,制约了它的发展。
天然多糖基气凝胶作为纳米粒子构成的三维网络结构的新型材料,因其具有典型的多孔网络结构、高比表面积、高孔隙率、低密度、低热导率、低介电常数、高吸附性能等特点,且因其骨架和孔隙的纳米尺度化所引起的尺寸效应、表面效应和宏观量子隧道效应,在力学、热学、光学等众多领域有着广泛的应用。海藻酸钠做为天然多糖中的一种,由于其良好的生物降解性和生物相容性,被广泛用于制药、化工、生物、食品等领域。海藻酸钠溶液与金属阳离子鳌合,形成的气凝胶,在治理环境污染,降解有机物方面被广泛报道,但在电化学析氢方面鲜有报道。本发明较为新颖的通过海藻酸钠溶液和金属Ni的鳌合作用,形成海藻酸盐水凝胶,冷冻干燥后进一步高温磷化得到碳壳包裹的Ni2P纳米粒子镶嵌石墨烯气凝胶复合催化剂(Ni2P@C/GA),Ni2P纳米粒子镶嵌在碳气凝胶网络结构中,很好的分散了纳米粒子;碳壳的包裹较好的改善了Ni2P纳米粒子在酸性电解质的循环稳定性;通过加入氧化石墨烯,进一步改善其电子传导速率,最终形成磷化钴石墨烯气凝胶,极大地的提高了其电化学催化性能。
发明内容
本发明旨在提供Ni2P@C/石墨烯气凝胶析氢复合材料的制备方法,该方法通过简单的溶胶凝胶法制得水凝胶,再通过高温磷化的方法获得Ni2P@C/石墨烯气凝胶析氢复合材料。本发明制备的Ni2P@C/石墨烯气凝胶析氢复合材料具有高效的电催化析氢性能,进一步拓展了以海藻酸盐为前驱体合成磷化物析氢复合材料的合成路线。
Ni2P@C/石墨烯气凝胶析氢复合材料的制备方法,具体包括以下步骤:
(1)称取Ni(NO3)2·6H2O溶解到去离子水中搅拌,形成质量分数为2.5wt%的Ni(NO3)2·6H2O溶液A。
(2)称取海藻酸钠SA倒入到去离子水中搅拌形成质量分数为1wt%的均一的海藻酸钠溶液B。
(3)量取氧化石墨烯溶液注入溶液B中,搅拌,在超声仪中超声,得到分散液C。
(4)在常温下将溶液A注入到溶液C中,形成水凝胶;形成的水凝胶陈化后用去离子水和乙醇分别浸泡、洗涤。
(5)将陈化,浸泡,洗涤过后的水凝胶在冷冻干燥机中冷冻干燥直至形成干凝胶。
(6)分别取干凝胶和红磷(P),红磷置于管式炉上游位置,GO形成的干凝胶置于下游,进行高温磷化,最终得到Ni2P@C/石墨烯气凝胶析氢复合材料 (Ni2P@C/GA)。
步骤(3)中,GO的质量分数mGO/(mGO+mSA)为5wt%;氧化石墨烯溶液的浓度为2mg/ml。
步骤(4)中,所述溶液A和溶液C的体积比是1:1;陈化时间为12h,浸泡3次,洗涤3次,每次浸泡时间为2h。
步骤(5)中,冷冻干燥时间为48h。
步骤(6)中,所述干凝胶和红磷的质量比为1:1(注:红磷的质量要小于 1g,红磷的质量越大,高温越易出现事故)。高温磷化温度区间为700-900℃,磷化时间为4h,通氮气作为保护气,升温速率2-8℃/min。
本发明的有益效果为:
(1)本发明制备的Ni2P@C/石墨烯气凝胶析氢复合材料,较为新颖的将多糖钴基气凝胶通过高温磷化合成,其制备工艺简单,成本低,易于大规模工业化生产,该材料具有良好的电化学稳定性和析氢性能,在解决环境污染和能源危机方面有良好的应用前景。
(2)电化学体系中高的比表面积和良好的导电性对催化剂好坏起着至关重要的作用,海藻酸钠基气凝胶具有发达的网络孔洞结构,将Ni2P纳米粒子镶嵌在石墨烯气凝胶上,极大的增大了催化剂的比表面积,发达的网络结构对Ni2P的固定和分散也起到了很好的作用,从而增加了催化剂与电解液的有效接触面积,增大催化剂的活性位点,提高析氢性能。Ni2P@C纳米粒子/石墨烯气凝胶高效析氢复合材料,塔菲尔斜率74mV·dec-1,电流密度为10mA/cm2时的过电位为305 mV;与其他文献单体Ni2P在析氢方面相比较性能有了明显的提高。
(3)Ni2P@C纳米粒子/石墨烯气凝胶高效析氢复合材料可作为性能优良的电化学析氢催化剂。石墨烯气凝胶(GA)结构具有良好的亲水性,可以使电解液接触更多的石墨烯边缘和表面,石墨烯优良的电导率极大的促进电荷的传输,有效地提升了复合后催化剂的稳定性。因此,Ni2P@C/石墨烯气凝胶析氢复合材料显著地提升了催化剂对电解水析氢性能,在电催化实际应用领域具有广阔的前景。
附图说明
图1为实施例1所制备的样品的XRD图谱,Ni2P/CA和Ni2P@C/GA的XRD 图的对比图;说明我们已经成功合成了磷化镍负载的石墨烯气凝胶。
图2为实施例1所制备Ni2P@C/GA的样品在不同倍率下的透射电镜图,(a) 图是Ni2P/CA在标尺为100nm条件下扫描电镜图,(b)图是Ni2P@C/GA标尺为 100nm条件下扫描电镜图,说明石墨烯很好的平铺到碳气凝胶结构中;(c)图是 Ni2P@C/GA在标尺为20nm条件下透射电镜图,显示了气凝胶多孔的结构,以及磷化镍很好的镶嵌在石墨烯气凝胶基底上;(d)图是Ni2P@C/GA的高分辨图,显示了磷化镍纳米粒子被碳壳包裹。
图3(a)为实施例1所制备的Ni2P/CA和Ni2P@C/GA在酸性溶液中线性扫描伏安图(LSV);图3(b)说明合成的Ni2P/CA和Ni2P@C/GA复合材料塔菲尔斜率图形,说明了碳气凝胶(CA)中引入氧化还原石墨烯能有效的提高复合材料的电化学活性,也表明了Ni2P@C/GA复合材料具有高效的析氢性能。
具体实施方式
下面结合说明书附图具体实施例对本发明作进一步说明。
实施例1:
制备Ni2P纳米粒子/碳气凝胶(Ni2P/CA)高效析氢复合材料
(1)称取一定量的Ni(NO3)2·6H2O溶解到去离子水中搅拌,形成质量分数为2.5wt%的Ni(NO3)2·6H2O溶液A。
(2)称取一定量的海藻酸钠(SA)倒入到去离子水中搅拌12h形成质量分数为1wt%的均一的海藻酸钠溶液B。
(3)在常温下将50ml的溶液A注入到50ml溶液B中,形成水凝胶。形成的水凝胶陈化12小时,然后用去离子水和乙醇分别浸泡3次,每次2h,洗涤3 次。
(4)将陈化,浸泡,洗涤过后的水凝胶在冷冻干燥机中冷冻干燥48小时,直至形成干凝胶。
(5)分别取质量比为1:1的干凝胶和红磷(P),红磷置于管式炉上游位置,不同质量分数GO形成的干凝胶置于下游,进行高温磷化,磷化温度为700-900℃,磷化时间为4h,最终得到Ni2P/CA。
实施例2:
制备Ni2P@C/石墨烯气凝胶(Ni2P@C/GA)高效析氢复合材料
(1)称取一定量的Ni(NO3)2·6H2O溶解到去离子水中搅拌,形成质量分数为2.5wt%的Ni(NO3)2·6H2O溶液A;
(2)称取一定量的海藻酸钠(SA)倒入到去离子水中搅拌足够长时间形成质量分数为1wt%的均一的海藻酸钠溶液B;
(3)量取质量分数为5%的2mg/ml的GO溶液注入溶液B中,搅拌,在超声仪中超声,得到分散液C,mGO/(mGO+mSA)为5wt%;
(4)在常温下将溶液A注入到溶液C中,溶液A和溶液C的体积比是1:1,形成水凝胶。形成的水凝胶陈化12h,然后用去离子水和乙醇分别浸泡3次,每次2h,洗涤3次。
(5)将陈化,浸泡,洗涤过后的水凝胶在冷冻干燥机中冷冻干燥48小时,直至形成干凝胶。
(6)分别取质量比为1:1的干凝胶和红磷(P),红磷置于管式炉上游位置,干凝胶置于下游,进行高温磷化,磷化温度为700-900℃,磷化时间为4h,最终得到Ni2P@C纳米粒子/石墨烯气凝胶(Ni2P@C/GA)。

Claims (8)

1.Ni2P@C/石墨烯气凝胶析氢复合材料,其特征在于,采用如下方法制备:
(1)称取Ni(NO3)2·6H2O溶解到去离子水中搅拌,形成质量分数为2.5wt%的Ni(NO3)2·6H2O溶液A;
(2)称取海藻酸钠SA倒入到去离子水中搅拌形成质量分数为1wt%的均一的海藻酸钠溶液B;
(3)量取氧化石墨烯GO溶液注入溶液B中,搅拌,在超声仪中超声,得到分散液C;
(4)在常温下将溶液A注入到溶液C中,形成水凝胶;形成的水凝胶陈化后用去离子水和乙醇分别浸泡、洗涤;
(5)将陈化,浸泡,洗涤过后的水凝胶在冷冻干燥机中冷冻干燥直至形成干凝胶;
(6)分别取干凝胶和红磷,红磷置于管式炉上游位置,GO形成的干凝胶置于下游,进行高温磷化,最终得到Ni2P@C/石墨烯气凝胶析氢复合材料。
2.如权利要求1所述的Ni2P@C/石墨烯气凝胶析氢复合材料,其特征在于,步骤(3)中,GO的质量分数mGO/(mGO+mSA)为5wt%;氧化石墨烯溶液的浓度为2mg/ml。
3.如权利要求1所述的Ni2P@C/石墨烯气凝胶析氢复合材料,其特征在于,步骤(4)中,所述溶液A和溶液C的体积比是1:1;陈化时间为12h,浸泡3次,洗涤3次,每次浸泡时间为2h。
4.如权利要求1所述的Ni2P@C/石墨烯气凝胶析氢复合材料,其特征在于,步骤(5)中,冷冻干燥时间为48h。
5.如权利要求1所述的Ni2P@C/石墨烯气凝胶析氢复合材料,其特征在于,步骤(6)中,所述干凝胶和红磷的质量比为1:1;红磷的质量要小于1g,红磷的质量越大,高温越易出现事故;高温磷化温度区间为700-900℃,磷化时间为4h,通氮气作为保护气,升温速率2-8℃/min。
6.如权利要求1所述的Ni2P@C/石墨烯气凝胶析氢复合材料,其特征在于,海藻酸钠基气凝胶具有发达的网络孔洞结构,将Ni2P纳米粒子镶嵌在石墨烯气凝胶上,增大了催化剂的比表面积,发达的网络结构对Ni2P的固定和分散也起到了很好的作用,从而增加了催化剂与电解液的有效接触面积,增大催化剂的活性位点,提高析氢性能;所述析氢复合材料,塔菲尔斜率74mV·dec-1,电流密度为10mA/cm2时的过电位为305mV。
7.如权利要求1所述的Ni2P@C/石墨烯气凝胶析氢复合材料,其特征在于,石墨烯气凝胶结构具有良好的亲水性,可以使电解液接触更多的石墨烯边缘和表面,石墨烯优良的电导率极大的促进电荷的传输,有效地提升了复合后催化剂的稳定性。
8.如权利要求1所述的Ni2P@C/石墨烯气凝胶析氢复合材料的用途,用于在酸性条件下电解水析氢。
CN201810073369.3A 2018-01-25 2018-01-25 Ni2P@C/石墨烯气凝胶析氢复合材料及制备方法 Active CN108499584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810073369.3A CN108499584B (zh) 2018-01-25 2018-01-25 Ni2P@C/石墨烯气凝胶析氢复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810073369.3A CN108499584B (zh) 2018-01-25 2018-01-25 Ni2P@C/石墨烯气凝胶析氢复合材料及制备方法

Publications (2)

Publication Number Publication Date
CN108499584A true CN108499584A (zh) 2018-09-07
CN108499584B CN108499584B (zh) 2020-06-09

Family

ID=63374976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810073369.3A Active CN108499584B (zh) 2018-01-25 2018-01-25 Ni2P@C/石墨烯气凝胶析氢复合材料及制备方法

Country Status (1)

Country Link
CN (1) CN108499584B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075885A (zh) * 2019-05-31 2019-08-02 中南林业科技大学 二元钴镍基-碳复合电催化剂及其制备方法
CN110952112A (zh) * 2019-12-24 2020-04-03 济南大学 一种石墨烯外层@磷化镍夹层@镍内层框架复合材料及其制备方法和应用
CN112591728A (zh) * 2020-12-15 2021-04-02 四川大学 废纸气凝胶、气凝胶衍生物及其制备方法
CN115463676A (zh) * 2022-08-15 2022-12-13 桂林电子科技大学 一种氧化石墨烯负载Ru-CoP基气凝胶及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495820A (zh) * 2014-12-17 2015-04-08 北京化工大学 一种多孔石墨烯气凝胶及其制备方法
CN105797685A (zh) * 2016-05-09 2016-07-27 江苏大学 一种海藻酸钠-氧化石墨烯宏观球体复合材料的制备方法
CN106853296A (zh) * 2016-12-30 2017-06-16 福建农林大学 一种油水分离型海藻酸钠/氧化石墨烯复合气凝胶及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495820A (zh) * 2014-12-17 2015-04-08 北京化工大学 一种多孔石墨烯气凝胶及其制备方法
CN105797685A (zh) * 2016-05-09 2016-07-27 江苏大学 一种海藻酸钠-氧化石墨烯宏观球体复合材料的制备方法
CN106853296A (zh) * 2016-12-30 2017-06-16 福建农林大学 一种油水分离型海藻酸钠/氧化石墨烯复合气凝胶及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XUEPING ZHANG 等: "3D grapheme aerogels decorated with cobalt phosphide nanoparticles as electrocatalysts for the hydrogen evolution reaction", 《CHEMSUSCHEM》 *
YU GU等: "Electronic Structure Tuning in Ni3FeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting", 《ACS NANO》 *
YUAN PAN 等: "Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as", 《JOURNAL OF POWER SOURCES》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075885A (zh) * 2019-05-31 2019-08-02 中南林业科技大学 二元钴镍基-碳复合电催化剂及其制备方法
CN110075885B (zh) * 2019-05-31 2022-03-15 中南林业科技大学 二元钴镍基-碳复合电催化剂及其制备方法
CN110952112A (zh) * 2019-12-24 2020-04-03 济南大学 一种石墨烯外层@磷化镍夹层@镍内层框架复合材料及其制备方法和应用
CN110952112B (zh) * 2019-12-24 2021-07-27 济南大学 一种石墨烯外层@磷化镍夹层@镍内层框架复合材料及其制备方法和应用
CN112591728A (zh) * 2020-12-15 2021-04-02 四川大学 废纸气凝胶、气凝胶衍生物及其制备方法
CN115463676A (zh) * 2022-08-15 2022-12-13 桂林电子科技大学 一种氧化石墨烯负载Ru-CoP基气凝胶及其制备方法和应用
CN115463676B (zh) * 2022-08-15 2023-05-23 桂林电子科技大学 一种氧化石墨烯负载Ru-CoP基气凝胶及其制备方法和应用

Also Published As

Publication number Publication date
CN108499584B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
Duan et al. Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction
Li et al. Core/shell cable-like Ni3S2 nanowires/N-doped graphene-like carbon layers as composite electrocatalyst for overall electrocatalytic water splitting
CN107899595A (zh) CoP/石墨烯气凝胶高效析氢复合材料及制备方法
Luo et al. Hierarchical nickel oxide nanosheet@ nanowire arrays on nickel foam: an efficient 3D electrode for methanol electro-oxidation
CN104857976B (zh) 一种三维二硫化钼纳米花‑石墨烯复合材料及其应用
CN104966842B (zh) 一种基于多孔碳材料的水氧化反应催化剂及其制备方法
CN109037704A (zh) 一种氮掺杂3d多孔碳材料及其制备方法与应用
CN107051550A (zh) 一种电催化水分解用MoSe2/Co0.85Se复合材料及其制备方法与应用
Zhu et al. Ru-modified silicon nanowires as electrocatalysts for hydrogen evolution reaction
CN107346826A (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
CN108499584A (zh) Ni2P@C/石墨烯气凝胶析氢复合材料及制备方法
CN109023416A (zh) NiCoP@石墨烯气凝胶高效析氢复合材料的制备方法
CN109967100A (zh) 一种金属掺杂的CoP3、其制备方法及应用
Shi et al. 3D nickel diselenide architecture on nitrogen-doped carbon as a highly efficient electrode for the electrooxidation of methanol and urea
CN107321372B (zh) CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
Luo et al. Glucose-derived carbon sphere supported CoP as efficient and stable electrocatalysts for hydrogen evolution reaction
Fu et al. Sn-doped nickel sulfide (Ni3S2) derived from bimetallic MOF with ultra high capacitance
CN110124687A (zh) 一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应上的应用
CN105618134A (zh) 一种离子液体包裹碳纳米管的复合材料及其制备方法和作为析氢催化剂的应用
Wei et al. Adenosine triphosphate induced transition-metal phosphide nanostructures encapsulated with N, P-codoped carbon toward electrochemical water splitting
Xue et al. 0D/2D heterojunction of graphene quantum dots/MXene nanosheets for boosted hydrogen evolution reaction
Mugheri et al. Electrospun fibrous active bimetallic electrocatalyst for hydrogen evolution
Liu et al. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation
Wang et al. Constructing a pn heterojunction in 3D urchin-like CoNixSy/g-C3N4 composite microsphere for high performance asymmetric supercapacitors
Lei et al. Self-generated FeSe2 and CoSe2 nanoparticles confined in N, S-doped porous carbon as efficient and stable electrocatalyst for oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant