CN108489910B - 一种基于高光谱技术的牡蛎体内微塑料快速检测方法 - Google Patents

一种基于高光谱技术的牡蛎体内微塑料快速检测方法 Download PDF

Info

Publication number
CN108489910B
CN108489910B CN201810193429.5A CN201810193429A CN108489910B CN 108489910 B CN108489910 B CN 108489910B CN 201810193429 A CN201810193429 A CN 201810193429A CN 108489910 B CN108489910 B CN 108489910B
Authority
CN
China
Prior art keywords
micro
plastics
plastic
hyperspectral
technology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810193429.5A
Other languages
English (en)
Other versions
CN108489910A (zh
Inventor
单佳佳
张怡拓
赵军波
王雪
柳丽芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810193429.5A priority Critical patent/CN108489910B/zh
Publication of CN108489910A publication Critical patent/CN108489910A/zh
Application granted granted Critical
Publication of CN108489910B publication Critical patent/CN108489910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3572Preparation of samples, e.g. salt matrices

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明属于食品安全检测技术领域,一种基于高光谱技术的牡蛎体内微塑料快速检测方法,步骤如下:(1)利用可见近红外光谱技术快速将微塑料从牡蛎组织以及其他体内杂质中区分开来;(2)利用光谱技术结合支持向量机等监督分类的方法可实现牡蛎体内不同类型微塑料的识别;(3)结合高光谱的图像技术和光谱技术,可以实现牡蛎体内微塑料空间分布的可视化;同传统的微塑料检测方法相比,基于高光谱技术的检测方法无需对生物体进行酸或碱等消解处理,可节省大量酸、碱试剂,减少环境压力。此外,基于高光谱技术的检测方法耗时短,并可实现微塑料空间分布的可视化。

Description

一种基于高光谱技术的牡蛎体内微塑料快速检测方法
技术领域
本发明属于食品安全检测技术领域,涉及一种牡蛎体内微塑料快速检测的方法,具体是采用可见近红外高光谱技术对牡蛎体内不同的微塑料进行快速识别、检测,并实现牡蛎体内微塑料空间分布的可视化。
背景技术
近几年海洋环境中塑料垃圾堆积的问题引起越来越多人的关注。由于塑料自身的特性,难以降解的塑料在环境中会存在百年以上,因而会对环境造成持久的影响。海洋中的塑料在太阳辐射下产生光降解和破碎,形成粒径<5mm塑料,定义为微塑料。微塑料在环境中性质稳定,可存在百年甚至千年。海洋中的微塑料还可以富集多种有毒化学物质。海洋环境中的微塑料通过被海洋生物摄食,通过食物链的积累,甚至可以危害到人体的健康。因此,生物体内微塑料的检测是当务之急。目前海洋生物体内微塑料的检测主要包括两部分:(1)微塑料的提取;(2)微塑料物理形态和化学成分的检测。生物体内微塑料的提取是先利用酸性消解、碱性消解或酶消解等对样品进行预处理,从而排除生物组织的干扰。然后,利用饱和的食盐水使微塑料浮到溶液表面进行提取。微塑料物理形态的观察主要借助电子显微镜或扫描电镜等。而微塑料化学成分的确定主要借助红外光谱或拉曼光谱进行分析。
高光谱技术同时包含样本的光谱信息和空间图像信息。图像信息能对目标物的物理形态特征进行分析,光谱信息可以对目标物的化学成分进行鉴定。本发明开发了一种可见近红外高光谱技术对牡蛎体内的微塑料进行快速检测,并实现其体内微塑料空间分布可视化的方法。本发明拟结合化学计量学的方法,通过对高光谱图像上图像、光谱信号的分离来代替微塑料实际的分离提取过程,即采用“数理分离”代替“理化分离”,从高光谱图像上直接将微塑料从牡蛎体内识别,无需微塑料的提取过程,并实现微塑料在牡蛎体内空间分布的可视化。
发明内容
本发明的目的在于提供一种基于高光谱技术的牡蛎体内微塑料含量快速检测的方法。同现有的生物体内微塑料检测方法不同,高光谱技术可以实现牡蛎体内微塑料的快速检测,不需要对物体进行消解处理。且结合高光谱技术的图像特征,可以快速对微塑料的空间分布进行可视化。
本发明的技术方案:
一种基于高光谱技术的牡蛎体内微塑料快速检测方法,步骤如下:
将牡蛎内脏组织进行压片、风干处理,然后采集风干压片的可见近红外高光谱图像。采用支持向量机等监督分类方法,建立牡蛎内脏组织中微塑料的检测模型。最后,结合高光谱的图像特征,实现牡蛎内脏中微塑料分布的可视化。
所述的可见近红外高光谱的分析条件是指:光谱扫描范围为400-2500nm。
本发明的效果和益处:同传统的微塑料检测方法相比,基于高光谱技术的检测方法无需对生物体进行酸或碱等消解处理,可节省大量酸、碱试剂,减少环境压力。此外,基于高光谱技术的检测方法耗时短,并可实现微塑料空间分布的可视化。
附图说明
图1是高光谱采集系统图。
图2是微塑料的分类结果图。
具体实施方式
以下结合技术方案和附图,详细叙述本发明的具体实施方式。
一种基于高光谱技术的牡蛎体内微塑料快速检测方法,步骤如下:
(1)微塑料的准备
将几种常见的塑料材料:聚乙烯,聚丙烯,聚苯乙烯树脂,聚碳酸酯,聚对苯二甲酸乙二醇酯原料分别剪成粒径为0.1-5mm的微塑料若干,用不同目的筛子将微塑料按照尺度大小分成1-5mm、0.8-1mm、0.6-0.8mm、0.4-0.6mm、0.2-0.4mm以及0.1-0.2mm一共6个等级。
(2)牡蛎样本的准备
从市场上购买新鲜活的牡蛎样本,进行解剖,取其内脏、充分搅碎。取步骤(1)准备的每一粒径范围内每种微塑料各6个,将同一粒径范围内的5种塑料(总数30个)进行混合,共6个粒径尺度的混合微塑料样本。将同一尺度下的混合微塑料样品与搅碎后的内脏充分混合。
(3)含有微塑料内脏的前处理
为了便于微塑料高光谱信号的采集,本发现采用挤压的方法将步骤(2)中的内脏混合物挤压成薄薄的一片,厚度为0.1mm。由于水对可见近红外的光谱的干扰较大,本发明提出对挤压的样品在常温下进行自然风干处理。
(4)高光谱图像的采集
采集步骤(3)自然风干后样品的可见近红外高光谱图像,高光谱采集系统如附图1所示。采集光谱范围在400-2500nm。调整高光谱系统中摄像头距离样品的高度范围为11-13cm、曝光时间为1.4ms、帧数范围为641-758,在调试过程中选择最优的参数进行图像采集,获取最清晰高光谱图像;
(5)高光谱图像的处理
使用中值滤波(median filter,MF)、主成分分析(principal componentanalysis,PCA)、平滑(smooth)等方法对风干样品的高光谱图像进行平滑、去噪处理。从高光谱图像上选取各种不同类型微塑料以及牡蛎内脏组织的感兴趣区域,获取各种感兴趣区域的平均光谱曲线,对不同成分的光谱信号进行分析,采用支持向量机(Support vectormachine,SVM)等监督分类的方法对风干压片中的微塑料进行快速识别、分类。计算不同尺寸下,不同成分微塑料从内脏组织中的检出的概率。0.4-0.6mm样品检出率如附图2所示(高光谱图像上,每种塑料仅选取1粒作为相应感性区域的选取范围)。
采用传统检测方法对高光谱建立的方法进行验证
为验证该发明建立的方法是否可靠,风干的样本用酸性或碱性试剂消解12小时后,用饱和的食盐水提取消解液中的微塑料。采用拉曼光谱技术对提取出来的微塑料类似物进行成分鉴定。记录各风干样本中微塑料的数量,并将该结果与高光谱技术检测出来的微塑料数量进行对比,验证其准确性。
高光谱技术对实际样本中微塑料检测的应用
养殖含有微塑料的牡蛎,并用本发明的方法检测其体内微塑料的含量。养殖牡蛎用的容器为1000L钢化玻璃鱼缸,用海水洗刷后加满海水浸泡3-5天,然后用海水冲洗干净。将大约300L海水过滤,加入鱼缸中。从市场上购买活牡蛎若干。然后放入60只用海水洗刷干净的牡蛎。将微塑料与鱼饵混合,对活牡蛎进行喂食一周左右。每日换水,连续充气;一周之后,从实验池中取出牡蛎,利用步骤(1)-(5)建立的方法,对牡蛎内脏组织里的微塑料进行检测,并实现内脏组织中微塑料空间分布的可视化。

Claims (5)

1.一种基于高光谱技术的牡蛎体内微塑料快速检测方法,其特征在于,步骤如下:
(1)微塑料的准备
将塑料剪成粒径为0.1-5mm的微塑料,过不同目的筛子,得到不同尺度的微塑料;
(2)牡蛎样本的准备
将新鲜活的牡蛎进行解剖,取其内脏、充分搅碎;再加入步骤(1)得到的各尺度的微塑料搅碎,充分混合,形成多组含有微塑料的内脏混合物;
(3)含有微塑料内脏的前处理
将步骤(2)中的内脏混合物挤压成厚度为0.1mm的薄片,在常温下进行自然风干处理;
(4)高光谱图像的采集
采集步骤(3)自然风干后样品的可见近红外高光谱图像,采集光谱范围在400-2500nm;调整高光谱系统中摄像头距离样品的高度范围为11-13cm、曝光时间为1.4ms、帧数范围为641-758,在调试过程中选择最优的参数进行图像采集,获取最清晰高光谱图像;
(5)可见近红外高光谱图像的处理
对样品的可见近红外高光谱图像进行平滑、去噪处理;从可见近红外高光谱图像上选取各尺度的微塑料以及牡蛎内脏的感兴趣区域,获取感兴趣区域内所有像素点的平均光谱曲线,对光谱信号进行分析,采用支持向量机监督分类的方法对风干薄片中的微塑料进行快速识别、分类;
计算不同微塑料尺度下,不同成分微塑料从内脏组织中的检出的概率。
2.根据权利要求1所述的牡蛎体内微塑料快速检测方法,其特征在于,所述的塑料材料为聚乙烯、聚丙烯、聚苯乙烯树脂、聚碳酸酯或聚对苯二甲酸乙二醇酯。
3.根据权利要求1或2所述的牡蛎体内微塑料快速检测方法,其特征在于,所述的微塑料按照尺度大小分成1-5mm、0.8-1mm、0.6-0.8mm、0.4-0.6mm、0.2-0.4mm或0.1-0.2mm。
4.根据权利要求1或2所述的牡蛎体内微塑料快速检测方法,其特征在于,步骤(5)中,对于可见近红外高光谱图像进行平滑处理,采用的方法为中值滤波法、主成分分析法或平滑法。
5.根据权利要求3所述的牡蛎体内微塑料快速检测方法,其特征在于,步骤(5)中,对于可见近红外高光谱图像进行平滑处理,采用的方法为中值滤波法、主成分分析法或平滑法。
CN201810193429.5A 2018-03-09 2018-03-09 一种基于高光谱技术的牡蛎体内微塑料快速检测方法 Active CN108489910B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810193429.5A CN108489910B (zh) 2018-03-09 2018-03-09 一种基于高光谱技术的牡蛎体内微塑料快速检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810193429.5A CN108489910B (zh) 2018-03-09 2018-03-09 一种基于高光谱技术的牡蛎体内微塑料快速检测方法

Publications (2)

Publication Number Publication Date
CN108489910A CN108489910A (zh) 2018-09-04
CN108489910B true CN108489910B (zh) 2020-08-14

Family

ID=63338402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810193429.5A Active CN108489910B (zh) 2018-03-09 2018-03-09 一种基于高光谱技术的牡蛎体内微塑料快速检测方法

Country Status (1)

Country Link
CN (1) CN108489910B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211803B (zh) * 2018-09-17 2020-10-09 中国科学院生态环境研究中心 一种基于显微多光谱技术对微塑料进行快速识别的装置
CN109238949B (zh) * 2018-09-19 2019-12-24 浙江大学 一种检测海洋生物软组织中微塑料密度分布的方法
CN109682789A (zh) * 2018-12-20 2019-04-26 大连理工大学 一种微塑料表面吸附污染物的原位检测方法
CN110261346A (zh) * 2019-06-27 2019-09-20 浙江大学 一种基于近红外光谱快速检测土壤中pvc含量的方法
CN110487221B (zh) * 2019-08-20 2021-05-25 大连海事大学 全息条纹中央亮斑面积与尺寸比值微塑料检测装置及方法
CN113447466B (zh) * 2021-05-24 2022-11-01 暨南大学 一种检测水生生物体内微塑料丰度的方法
CN113588588B (zh) * 2021-07-12 2022-05-24 华南农业大学 一种基于地物谱仪的气载微塑料快速检测方法
CN115323029B (zh) * 2022-08-02 2024-06-14 大连理工大学 基于高光谱技术的苯扎溴铵共代谢降解菌的快速筛选方法
CN115479906A (zh) * 2022-09-27 2022-12-16 同济大学 基于rgb和高光谱图像融合的碎塑料和微塑料检测方法
CN117554319A (zh) * 2023-10-20 2024-02-13 广东省水利水电科学研究院 一种微塑料丰度的检测方法、系统、装置及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015856A (en) * 1990-03-28 1991-05-14 E. I. Du Pont De Nemours And Company Automated process for permeability determinations of barrier resins
CN101717525A (zh) * 2009-11-25 2010-06-02 北京航空航天大学 一种印度谷螟幼虫降解聚乙烯塑料的方法
CN104502307A (zh) * 2014-12-12 2015-04-08 山东省海洋资源与环境研究院 一种快速检测长牡蛎糖原和蛋白质含量的方法
CN105891081A (zh) * 2016-06-30 2016-08-24 华东师范大学 空气中微塑料浓度检测装置和方法
CN106018324A (zh) * 2016-08-15 2016-10-12 中国计量大学 一种基于近红外光谱分析的塑料识别装置和方法
CN106645049A (zh) * 2016-09-30 2017-05-10 大连海洋大学 一种检测海洋生物体内塑料含量的方法
CN107449655A (zh) * 2017-08-15 2017-12-08 浙江工业大学 一种鉴定海产品中微塑料的前处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015856A (en) * 1990-03-28 1991-05-14 E. I. Du Pont De Nemours And Company Automated process for permeability determinations of barrier resins
CN101717525A (zh) * 2009-11-25 2010-06-02 北京航空航天大学 一种印度谷螟幼虫降解聚乙烯塑料的方法
CN104502307A (zh) * 2014-12-12 2015-04-08 山东省海洋资源与环境研究院 一种快速检测长牡蛎糖原和蛋白质含量的方法
CN105891081A (zh) * 2016-06-30 2016-08-24 华东师范大学 空气中微塑料浓度检测装置和方法
CN106018324A (zh) * 2016-08-15 2016-10-12 中国计量大学 一种基于近红外光谱分析的塑料识别装置和方法
CN106645049A (zh) * 2016-09-30 2017-05-10 大连海洋大学 一种检测海洋生物体内塑料含量的方法
CN107449655A (zh) * 2017-08-15 2017-12-08 浙江工业大学 一种鉴定海产品中微塑料的前处理方法

Also Published As

Publication number Publication date
CN108489910A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN108489910B (zh) 一种基于高光谱技术的牡蛎体内微塑料快速检测方法
Phuong et al. Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: location, season and/or mode of life?
Lusher et al. Microplastic extraction from marine vertebrate digestive tracts, regurgitates and scats: A protocol for researchers from all experience levels
Kumar et al. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches
Wesch et al. Towards the suitable monitoring of ingestion of microplastics by marine biota: A review
Zhang et al. Hyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fish
Hara et al. Quantification of microplastic ingestion by the decapod crustacean Nephrops norvegicus from Irish waters
Lusher et al. Testing of methodology for measuring microplastics in blue mussels (Mytilus spp) and sediments, and recommendations for future monitoring of microplastics (R & D-project)
Wang et al. Microplastics in fish meals: An exposure route for aquaculture animals
CN1075927C (zh) 生产四倍体软体动物和三倍体软体动物的方法
Walkinshaw et al. Detection and characterisation of microplastics and microfibres in fishmeal and soybean meal
Masiá et al. Microplastics in seafood: Relative input of Mytilus galloprovincialis and table salt in mussel dishes
Yu et al. Occurrence and distribution characteristics of aged microplastics in the surface water, sediment, and crabs of the aquaculture pond in the Yangtze River Delta of China
López-Rosales et al. A reliable method for the isolation and characterization of microplastics in fish gastrointestinal tracts using an infrared tunable quantum cascade laser system
Piarulli et al. An effective strategy for the monitoring of microplastics in complex aquatic matrices: Exploiting the potential of near infrared hyperspectral imaging (NIR-HSI)
Lam et al. Microplastic contamination in edible clams from popular recreational clam-digging sites in Hong Kong and implications for human health
Enrique-de-la-Torre et al. Abundance and characteristics of microplastics in market bivalve Aulacomya atra (Mytilidae: Bivalvia).
KR101532870B1 (ko) 안정동위원소 분석법을 활용한 해산 어종의 원산지 판별 방법
Xiao et al. Estimation of contamination level in microplastic-exposed crayfish by laser confocal micro-Raman imaging
Ruangpanupan et al. Seasonal variation in the abundance of microplastics in three commercial bivalves from Bandon Bay, Gulf of Thailand
Yoganandham et al. Micro (nano) plastics in commercial foods: A review of their characterization and potential hazards to human health
Chen et al. Microplastics in coastal farmed oyster (Crassostrea angulata) shells: Abundance, characteristics, and diversity
Chik et al. Extraction and Characterization of Litopenaeus vannamei's Shell as Potential Sources of Chitosan Biopolymers.
Oanh et al. EFFICIENCY ASSESSMENT OF MICROPLASTIC EXTRACTION FROM GREEN MUSSEL Perna viridis Linnaeus.
Vu et al. A comprehensive and precise quantification of the calanoid copepod Acartia tonsa (Dana) for intensive live feed cultures using an automated ZooImage system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant