CN115479906A - 基于rgb和高光谱图像融合的碎塑料和微塑料检测方法 - Google Patents
基于rgb和高光谱图像融合的碎塑料和微塑料检测方法 Download PDFInfo
- Publication number
- CN115479906A CN115479906A CN202211181644.6A CN202211181644A CN115479906A CN 115479906 A CN115479906 A CN 115479906A CN 202211181644 A CN202211181644 A CN 202211181644A CN 115479906 A CN115479906 A CN 115479906A
- Authority
- CN
- China
- Prior art keywords
- plastic
- micro
- plastics
- rgb
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920003023 plastic Polymers 0.000 title claims abstract description 119
- 239000004033 plastic Substances 0.000 title claims abstract description 119
- 238000001514 detection method Methods 0.000 title claims abstract description 20
- 230000004927 fusion Effects 0.000 title claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 40
- 229920000426 Microplastic Polymers 0.000 claims abstract description 32
- 239000002910 solid waste Substances 0.000 claims abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000010453 quartz Substances 0.000 claims abstract description 15
- 239000011159 matrix material Substances 0.000 claims abstract description 13
- 239000007790 solid phase Substances 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000001035 drying Methods 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 239000011248 coating agent Substances 0.000 claims abstract description 4
- 238000000576 coating method Methods 0.000 claims abstract description 4
- 239000012634 fragment Substances 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 12
- 239000006185 dispersion Substances 0.000 claims description 11
- -1 polyethylene Polymers 0.000 claims description 10
- 238000009210 therapy by ultrasound Methods 0.000 claims description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 230000003595 spectral effect Effects 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 239000010813 municipal solid waste Substances 0.000 claims description 4
- 238000012216 screening Methods 0.000 claims description 4
- 239000002689 soil Substances 0.000 claims description 4
- 238000012706 support-vector machine Methods 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 230000008014 freezing Effects 0.000 claims description 3
- 238000007710 freezing Methods 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 238000005054 agglomeration Methods 0.000 claims description 2
- 230000002776 aggregation Effects 0.000 claims description 2
- 239000002361 compost Substances 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 238000007781 pre-processing Methods 0.000 claims description 2
- 238000007637 random forest analysis Methods 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000010865 sewage Substances 0.000 claims description 2
- 238000010008 shearing Methods 0.000 claims description 2
- 239000002893 slag Substances 0.000 claims description 2
- 239000010802 sludge Substances 0.000 claims description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims description 2
- 238000005188 flotation Methods 0.000 abstract description 3
- 230000004907 flux Effects 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 abstract description 2
- 238000000926 separation method Methods 0.000 abstract description 2
- 238000013145 classification model Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 6
- 241000237502 Ostreidae Species 0.000 description 4
- 235000020636 oyster Nutrition 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000010806 kitchen waste Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920005586 poly(adipic acid) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/42—Low-temperature sample treatment, e.g. cryofixation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/94—Investigating contamination, e.g. dust
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/44—Resins; Plastics; Rubber; Leather
- G01N33/442—Resins; Plastics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/2813—Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1765—Method using an image detector and processing of image signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
- G01N2021/8874—Taking dimensions of defect into account
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8883—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/94—Investigating contamination, e.g. dust
- G01N2021/945—Liquid or solid deposits of macroscopic size on surfaces, e.g. drops, films, or clustered contaminants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/129—Using chemometrical methods
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Mathematical Physics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Signal Processing (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,包括以下步骤:获得碎塑料和微塑料;将其与固体废物混合得到固相基质;所得固相基质预处理后得到物料;将其烘干去除部分水分后涂布在石英窗片上,烘干至完全去除水分,用另一片石英窗片压平得到待测物料;利用高分辨率彩图扫描仪和高光谱相机分别得到所得待测物料的RGB图像和高光谱图像;融合所得RGB图像和高光谱图像;利用监督分类模型,自动分类识别碎塑料和微塑料。与现有技术相比,本发明提供的方法无需密度浮选等分离步骤,可减少预处理中碎塑料和微塑料的流失;检测耗时短,可实现大样本量高通量分析;能有效拓宽碎塑料和微塑料的识别尺寸范围并提高识别精度。
Description
技术领域
本发明涉及微塑料检测方法学领域,尤其是涉及一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法。
背景技术
微塑料是尺寸小于5mm的塑料碎片,作为一种新污染物其广泛分布于湖泊、海洋等自然水系中。陆域微塑料丰度是海洋的4~23倍,是水系环境中微塑料最主要的源头,所以从源头阻断陆域微塑料的释放至关重要。固体废物中存在着大量塑料垃圾,处置后产生的微塑料和大于等于5mm的塑料碎片(以下简称碎塑料)富集在产物中,随着产物后续资源化利用,碎塑料和微塑料可逸散、积存在土壤环境中,造成潜在的安全风险。
现阶段固相基质中碎塑料和微塑料的检测方法主要有两类:(1)参考土壤中微塑料的检测技术:消解、浮选固体废物样品分离其中的微塑料后利用震动光谱鉴定其中的碎塑料和微塑料。(2)参考德国、英国和奥地利等国家有机废物资源化加工产品质量标准中含杂率的检测方法,梯度筛分固体废物后人工挑选其中的碎塑料和微塑料。以上方法耗时久、通量极低、误差率高,且由于固体废物的异质性,小样品量的检测致使结果变异系数极高。针对固体废物有机质含量差异大、无机杂物种类复杂且碎塑料和微塑料尺寸范围宽泛(从厘米级至微米级)的特点,本专利将研发一种高通量的碎塑料和微塑料检测方法。
高光谱图像具有较高的光谱分辨率,可以有效识别目标物的化学成份,但由于高光谱相机空间分辨率较低,难以获得目标物的形态、纹理细节,这导致高光谱图像无法识别小尺寸或纤维状的微塑料。RGB图像即三原色光图像,其仅有三通道,但有较高的空间分辨率,可以获得微塑料清晰的形态特征。专利CN 108489910 A公开了一种基于高光谱技术的牡蛎体内微塑料快速检测方法,步骤如下:(1)利用可见近红外光谱技术快速将微塑料从牡蛎组织以及其他体内杂质中区分开来;(2)利用光谱技术结合支持向量机等监督分类的方法可实现牡蛎体内不同类型微塑料的识别;(3)结合高光谱的图像技术和光谱技术,可以实现牡蛎体内微塑料空间分布的可视化;但该方法仅使用高光谱相机检测微塑料,各种微塑料的分类精度小且识别尺寸范围小。
综上所述,亟需提供一种碎塑料和微塑料检测方法,以提高各种微塑料的分类精度并拓宽识别尺寸范围。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,采用图像融合技术,将高光谱图像和RGB图像重采样,使得生成的图像既有较高的空间分辨率,又具有多光谱特征,利用融合后的结果训练监督分类模型,实现固相基质中碎塑料和微塑料的高通量检测,能有效提高各种微塑料的分类精度并拓宽识别尺寸范围。
本发明的目的可以通过以下技术方案来实现:
本发明的目的是提供一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,包括以下步骤:
S1、将塑料原材料经液氮冷冻破碎后梯度筛分,剪成尺寸在100μm至50mm的微塑料和碎塑料,混合后加入固体废物中,得到固相基质;
S2、根据S1中所述固体废物的团聚度和级配,对S1中所得固相基质进行预处理,得到物料;
S3、将S2中所得物料烘干至含水率60-75wt%后涂布于石英窗片,进一步烘干至完全去除水分得到干燥物料,使用另一片石英窗片压平所得干燥物料,得到厚度为0.5-1.5mm的待测物料;
S41、翻转承载S3中所得待测物料和两片所述石英窗片的组合,使用高分辨率彩图扫描仪采集S3所得待测物料的RGB图像,选择“高级模式”,设置分辨率和色彩位,调整光密度值,得到高分辨率的RGB图像;
S42、使用高光谱相机采集S3中所得待测物料的高光谱图像,调整物距、曝光时间、帧数范围和光源强度,得到最清晰的高光谱图像;
S5、为S41中所得RGB图像添加图层坐标,得到基准RGB图像,将其作为图像配准的基准图,分别在所得基准RGB图像和S42中所得高光谱图像选择7-15个约束点,利用三次卷积插值法生成配准后高光谱图像,选择Gram-schmidt方法融合所得基准RGB图像和所得配准后高光谱图像,得到融合图像;
S6、在S5中所得融合图像上选取S1中所述碎塑料和微塑料以及S1中所述固相基质的感兴趣区域,获取各种感兴趣区域的标准化光谱曲线,采用监督分类方法识别碎塑料和微塑料,计算精确度、召回率和F1分数,根据投加量和检测结果计算检测率。
进一步地,S1中所述固体废物包括细级配低团聚度物料、粗级配高团聚度物料、粗级配低团聚度物料。
进一步地,所述细级配低团聚度物料包括干化的污水厂污泥或沼渣。
进一步地,所述粗级配高团聚度物料包括厨余垃圾、其他垃圾或堆肥。
进一步地,所述粗级配低团聚度物料包括填埋堆体、炉渣或农膜污染的土壤。
进一步优选地,S2中所述预处理包括以下步骤:
当S1中所述固体废物为细级配低团聚度物料时,加入分散液,然后超声处理当S1中所述固体废物为粗级配高团聚度物料时,加入消解剂,在45℃下反应12小时后,加入分散液,然后超声处理;当S1中所述固体废物为粗级配低团聚度物料时,过孔径为2mm的筛网后,将筛下物和分散液混合后超声处理,筛上物分拣出厘米级别的碎塑料后,将剩余筛上物和消解剂混合,在45℃下反应12小时后,加入分散液,然后超声处理。
进一步地优选地,所述消解剂为过氧化氢和氨水混合溶液,其中过氧化氢的浓度为125g/L,氨水浓度为105g/L。
进一步优选地,所述分散液为乙醇体积分数为65-75%的乙醇溶液。
进一步地,S1中所述塑料原材料包括聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯、聚酰胺、聚己二酸/对苯二甲酸丁二酯树脂中的一种或多种。
进一步地,S1中所述碎塑料和微塑料的形状包括块状、膜状、纤维状和球状中的一种或多种。
进一步地,S41中所述分辨率为1200dpi,所述色彩位为24bit,所述光密度值为3.8。
S41中所述翻转承载S3中所得待测物料和两片所述石英窗片的组合的原因是:高分辨率彩图扫描仪是将石英窗片放置扫描版后从下向上拍摄(扫描),高光谱相机是物品放置平台从上向下拍摄,为保证后续的配准,需翻转石英窗片。
进一步地,S42中所述物距为15-20cm,所述曝光时间为2.2-3.8ms,所述帧数范围为40-70Hz,所述光源强度为2000-2500lux。
进一步地,S6中所述监督分类方法包括支持向量机、随机森林。
进一步地,所述碎塑料为尺寸大于等于5mm的塑料碎片;所述微塑料为尺寸小于5mm的塑料碎片。
进一步地,步骤S41中所述RGB图像不仅限于RGB图像,也包括全色图光谱图、工业CCD(电荷耦合器件)相机拍摄的灰度图等包含目标纹理细节的高分辨率图像。
与现有技术相比,本发明具有以下有益效果:
1)本发明提供的方法,无需密度浮选等分离步骤,可减少预处理过程中微塑料的流失。
2)本发明提供的方法可以低损伤原位检测固相基质中碎塑料和微塑料。
3)本发明提供的方法检测耗时短,可同步获得碎塑料和微塑料的形貌信息和材质信息,实现大样本量高通量分析。
4)本发明提供的方法分类精度高且可识别尺寸范围广于单一检测器获取的图像分类方法。
附图说明
图1为本发明所提供的基于RGB和高光谱图像融合的碎塑料和微塑料检测方法的流程图。
图2为实施例1的碎塑料和微塑料的分类结果图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本技术方案中如未明确说明的制备手段、材料、结构或组成配比等特征,均视为现有技术中公开的常见技术特征。
实施例1
如图1所示,本实施例中基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,包括以下步骤:
S1、取聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯、聚氯乙烯、聚苯乙烯和聚己二酸/对苯二甲酸丁二酯(均购自Meryer公司)为塑料原材料,将塑料原材料经液氮冷冻破碎后梯度筛分,获得尺寸在100-250μm、250-500μm、250-500μm、500-1000μm、1-2mm、2-5mm、5-50mm的微塑料和碎塑料,每个尺寸级别挑选3个碎塑料和微塑料混合后加入沼渣中,得到固相基质;
S2、对S1中所得固相基质加入分散液65%(以乙醇体积分数计)乙醇溶液后340W超声处理10min,得到物料;
S3、将S2中所得物料倒入培养皿中45℃烘干至含水率60wt%后涂布于石英窗片,进一步烘干至完全去除水分得到干燥物料,使用另一片石英窗片压平所得干燥物料,得到厚度为1mm的待测物料;
S41、翻转承载S3中所得待测物料的石英窗片,使用高分辨率彩图扫描仪采集S3所得待测物料的RGB图像,选择“高级模式”,设置分辨率为1200dpi,色彩位为24bit,调整光密度值为3.8,得到高分辨率的RGB图像;
S42、使用高光谱相机采集S3中所得待测物料的高光谱图像,使用白色亚克力棒进行白校准后,物距为18cm、曝光时间2.8ms、帧数范围55Hz和光源强度为2200lux,得到最清晰的高光谱图像;
S5、为S41中所得RGB图像添加图层坐标,得到基准RGB图像,将其作为图像配准的基准图,分别在所得基准RGB图像和S42中所得高光谱图像选择12个约束点,利用三次卷积插值法生成配准后高光谱图像,选择Gram-schmidt方法融合所得基准RGB图像和所得配准后高光谱图像,得到融合图像;
S6、在S5中所得融合图像上选取S1中所述碎塑料和微塑料以及S1中所述固相基质的感兴趣区域,获取各种感兴趣区域的标准化光谱曲线,采用支持向量机的监督分类方法识别碎塑料和微塑料,精确度90%以上、召回率和F1分数85%以上。检测率为识别出碎塑料和微塑料的个数与S1加入的碎塑料和微塑料个数之比,各类碎塑料和微塑料检测率达90%以上。
分类结果如图2所示,黑色部分为分散后的沼渣,白色框中为识别出的微塑料和碎塑料。
应用传统检测方法验证本方法的可行性。利用消解、浮选提取沼渣中的微塑料至滤膜上,使用显微红外透射模式下检测疑似微塑料颗粒,计算识别出碎塑料和微塑料的个数和投加碎塑料和微塑料的个数之比,各类碎塑料和微塑料检测率在85-95%。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。
Claims (10)
1.一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,其特征在于,该方法包括以下步骤:
S1、将塑料原材料经液氮冷冻破碎后梯度筛分,剪成尺寸在100μm至50mm的微塑料和碎塑料,混合后加入固体废物中,得到固相基质;
S2、根据S1中所述固体废物的团聚度和级配,对S1中所得固相基质进行预处理,得到物料;
S3、将S2中所得物料烘干至含水率60-75wt%后涂布于石英窗片,进一步烘干至完全去除水分得到干燥物料,使用另一片石英窗片压平所得干燥物料,得到厚度为0.5-1.5mm的待测物料;
S41、翻转S3中所得待测物料和两片所述石英窗片的组合,使用高分辨率彩图扫描仪采集S3所得待测物料的RGB图像,选择“高级模式”,设置分辨率和色彩位,调整光密度值,得到高分辨率的RGB图像;
S42、使用高光谱相机采集S3中所得待测物料的高光谱图像,调整物距、曝光时间、帧数范围和光源强度,得到最清晰的高光谱图像;
S5、为S41中所得RGB图像添加图层坐标,得到基准RGB图像,将其作为图像配准的基准图,分别在所得基准RGB图像和S42中所得高光谱图像选择7-15个约束点,利用三次卷积插值法生成配准后高光谱图像,选择Gram-schmidt方法融合所得基准RGB图像和所得配准后高光谱图像,得到融合图像;
S6、在S5中所得融合图像上选取S1中所述碎塑料和微塑料以及S1中所述固相基质的感兴趣区域,获取各种感兴趣区域的标准化光谱曲线,采用监督分类方法识别碎塑料和微塑料,计算精确度、召回率和F1分数,根据投加量和检测结果计算检测率。
2.根据权利要求1所述的一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,其特征在于,S1中所述固体废物包括细级配低团聚度物料、粗级配高团聚度物料、粗级配低团聚度物料;
所述细级配低团聚度物料包括干化的污水厂污泥或沼渣;
所述粗级配高团聚度物料包括厨余垃圾、其他垃圾或堆肥;
所述粗级配低团聚度物料包括填埋堆体、炉渣或农膜污染的土壤。
3.根据权利要求2所述的一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,其特征在于,S2中所述预处理包括以下步骤:
当S1中所述固体废物为细级配低团聚度物料时,加入分散液,然后超声处理;
当S1中所述固体废物为粗级配高团聚度物料时,加入消解剂,在45℃下反应12小时后,加入分散液,然后超声处理;
当S1中所述固体废物为粗级配低团聚度物料时,过孔径为2mm的筛网后,将筛下物和分散液混合后超声处理,筛上物分拣出厘米级别的碎塑料后,将剩余筛上物和消解剂混合,在45℃下反应12小时后,加入分散液,然后超声处理。
4.根据权利要求3所述的一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,其特征在于,所述消解剂为过氧化氢和氨水混合溶液,其中过氧化氢的浓度为125g/L,氨水浓度为105g/L;
所述分散液为乙醇体积分数为65-75%乙醇溶液。
5.根据权利要求1所述的一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,其特征在于,S1中所述塑料原材料包括聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯、聚酰胺、聚己二酸/对苯二甲酸丁二酯树脂中的一种或多种。
6.根据权利要求1所述的一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,其特征在于,S1中所述碎塑料和微塑料的形状包括块状、膜状、纤维状和球状中的一种或多种。
7.根据权利要求1所述的一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,其特征在于,S41中所述分辨率为1200dpi,所述色彩位为24bit,所述光密度值为3.8。
8.根据权利要求1所述的一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,其特征在于,S42中所述物距为15-20cm,所述曝光时间为2.2-3.8ms,所述帧数范围为40-70Hz,所述光源强度为2000-2500lux。
9.根据权利要求1所述的一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,其特征在于,S6中所述监督分类方法包括支持向量机、随机森林。
10.根据权利要求1所述的一种基于RGB和高光谱图像融合的碎塑料和微塑料检测方法,其特征在于,所述碎塑料为尺寸大于等于5mm的塑料碎片;
所述微塑料为尺寸小于5mm的塑料碎片。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211181644.6A CN115479906A (zh) | 2022-09-27 | 2022-09-27 | 基于rgb和高光谱图像融合的碎塑料和微塑料检测方法 |
PCT/CN2022/144057 WO2024066118A1 (zh) | 2022-09-27 | 2022-12-30 | 基于rgb和高光谱图像融合的碎塑料和微塑料检测方法 |
US18/530,180 US20240125712A1 (en) | 2022-09-27 | 2023-12-05 | Macro plastic and micro plastic detection method based on rgb and hyperspectral image fusion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211181644.6A CN115479906A (zh) | 2022-09-27 | 2022-09-27 | 基于rgb和高光谱图像融合的碎塑料和微塑料检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115479906A true CN115479906A (zh) | 2022-12-16 |
Family
ID=84393933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211181644.6A Pending CN115479906A (zh) | 2022-09-27 | 2022-09-27 | 基于rgb和高光谱图像融合的碎塑料和微塑料检测方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240125712A1 (zh) |
CN (1) | CN115479906A (zh) |
WO (1) | WO2024066118A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116046692A (zh) * | 2023-03-23 | 2023-05-02 | 航天宏图信息技术股份有限公司 | 一种基于高光谱的土壤重金属污染监测方法和装置 |
WO2024066118A1 (zh) * | 2022-09-27 | 2024-04-04 | 同济大学 | 基于rgb和高光谱图像融合的碎塑料和微塑料检测方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118181794B (zh) * | 2024-05-15 | 2024-09-17 | 南方雄狮创建集团股份有限公司 | 一种面向节能保温的墙体材料制备方法 |
CN118392815B (zh) * | 2024-06-26 | 2024-09-03 | 四川新康意众申新材料有限公司 | 一种微塑料识别方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108489910A (zh) * | 2018-03-09 | 2018-09-04 | 大连理工大学 | 一种基于高光谱技术的牡蛎体内微塑料快速检测方法 |
CN114112945A (zh) * | 2021-12-31 | 2022-03-01 | 安徽大学 | 一种新型巢湖蓝藻水华监测系统 |
CN114577770A (zh) * | 2022-03-09 | 2022-06-03 | 广东工业大学 | 一种深海冷泉区沉积物中微塑料的全尺寸提取与检测方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11969764B2 (en) * | 2016-07-18 | 2024-04-30 | Sortera Technologies, Inc. | Sorting of plastics |
CN110390658B (zh) * | 2019-06-18 | 2021-04-27 | 中国地质大学(武汉) | 基于光谱形态和Gram-Schmidt变换约束的高光谱影像变分融合方法 |
CN113902622B (zh) * | 2021-11-08 | 2024-02-27 | 西北工业大学 | 基于深度先验联合注意力的光谱超分辨率方法 |
CN114170668A (zh) * | 2021-12-15 | 2022-03-11 | 光子集成(温州)创新研究院 | 一种高光谱人脸识别方法及系统 |
CN114972022B (zh) * | 2022-04-18 | 2024-06-07 | 北京理工大学 | 一种基于非对齐rgb图像的融合高光谱超分辨率方法和系统 |
CN114757831B (zh) * | 2022-06-13 | 2022-09-06 | 湖南大学 | 基于智能空谱融合的高分辨率视频高光谱成像方法、装置及介质 |
CN115479906A (zh) * | 2022-09-27 | 2022-12-16 | 同济大学 | 基于rgb和高光谱图像融合的碎塑料和微塑料检测方法 |
-
2022
- 2022-09-27 CN CN202211181644.6A patent/CN115479906A/zh active Pending
- 2022-12-30 WO PCT/CN2022/144057 patent/WO2024066118A1/zh unknown
-
2023
- 2023-12-05 US US18/530,180 patent/US20240125712A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108489910A (zh) * | 2018-03-09 | 2018-09-04 | 大连理工大学 | 一种基于高光谱技术的牡蛎体内微塑料快速检测方法 |
CN114112945A (zh) * | 2021-12-31 | 2022-03-01 | 安徽大学 | 一种新型巢湖蓝藻水华监测系统 |
CN114577770A (zh) * | 2022-03-09 | 2022-06-03 | 广东工业大学 | 一种深海冷泉区沉积物中微塑料的全尺寸提取与检测方法 |
Non-Patent Citations (1)
Title |
---|
YANG, Z等: "A Novel High-Throughput Detection Method for Plastic Debris in Organic-Rich Matrices Based on Image Fusion", 《ANALYTICAL CHEMISTRY》, vol. 96, no. 15, 3 April 2024 (2024-04-03), pages 6045 - 6054 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024066118A1 (zh) * | 2022-09-27 | 2024-04-04 | 同济大学 | 基于rgb和高光谱图像融合的碎塑料和微塑料检测方法 |
CN116046692A (zh) * | 2023-03-23 | 2023-05-02 | 航天宏图信息技术股份有限公司 | 一种基于高光谱的土壤重金属污染监测方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2024066118A1 (zh) | 2024-04-04 |
US20240125712A1 (en) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115479906A (zh) | 基于rgb和高光谱图像融合的碎塑料和微塑料检测方法 | |
Dioses-Salinas et al. | A methodological approach of the current literature on microplastic contamination in terrestrial environments: Current knowledge and baseline considerations | |
Zhao et al. | A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics | |
Corradini et al. | Microplastics occurrence and frequency in soils under different land uses on a regional scale | |
Junhao et al. | Extraction and identification methods of microplastics and nanoplastics in agricultural soil: a review | |
Rasmussen et al. | A complete mass balance for plastics in a wastewater treatment plant-macroplastics contributes more than microplastics | |
Möller et al. | Finding microplastics in soils: a review of analytical methods | |
Lu et al. | A systematic review of freshwater microplastics in water and sediments: recommendations for harmonisation to enhance future study comparisons | |
Schmidt et al. | Multi-temporal surveys for microplastic particles enabled by a novel and fast application of SWIR imaging spectroscopy–Study of an urban watercourse traversing the city of Berlin, Germany | |
Nematollahi et al. | Microplastic occurrence in urban and industrial soils of Ahvaz metropolis: a city with a sustained record of air pollution | |
Phuong et al. | Highlights from a review of microplastics in marine sediments | |
Lusher et al. | Testing of methodology for measuring microplastics in blue mussels (Mytilus spp) and sediments, and recommendations for future monitoring of microplastics (R & D-project) | |
Löder et al. | Methodology used for the detection and identification of microplastics—a critical appraisal | |
Perez et al. | Innovations in analytical methods to assess the occurrence of microplastics in soil | |
Pan et al. | Widespread occurrence of microplastic pollution in open sea surface waters: Evidence from the mid-North Pacific Ocean | |
Sholokhova et al. | Abundance and characteristics of microplastics in treated organic wastes of Kaunas and Alytus regional waste management centres, Lithuania | |
Leterme et al. | Microplastics in urban freshwater streams in Adelaide, Australia: A source of plastic pollution in the Gulf St Vincent | |
Raguso et al. | Extraction of microplastic from marine sediments: a comparison between pressurized solvent extraction and density separation | |
Hagenmuller et al. | Motion of dust particles in dry snow under temperature gradient metamorphism | |
CN113155753A (zh) | 农田表层土壤微塑料检测方法及系统 | |
Liu et al. | Characterization of microplastics in the septic tank via laser direct infrared spectroscopy | |
CN113640084B (zh) | 一种农田土壤微塑料的检测方法 | |
Luo et al. | Effects of lakeshore landcover types and environmental factors on microplastic distribution in lakes on the Inner Mongolia Plateau, China | |
Azeem et al. | Analytical challenges in detecting microplastics and nanoplastics in soil-plant systems | |
Beck et al. | Rapid shipboard measurement of net-collected marine microplastic polymer types using near-infrared hyperspectral imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |