CN108486497B - 一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法 - Google Patents

一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法 Download PDF

Info

Publication number
CN108486497B
CN108486497B CN201810205572.1A CN201810205572A CN108486497B CN 108486497 B CN108486497 B CN 108486497B CN 201810205572 A CN201810205572 A CN 201810205572A CN 108486497 B CN108486497 B CN 108486497B
Authority
CN
China
Prior art keywords
rolling
microalloyed steel
controlled
composite microalloyed
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810205572.1A
Other languages
English (en)
Other versions
CN108486497A (zh
Inventor
曹建春
刘鹏程
周晓龙
阴树标
杨银辉
高鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201810205572.1A priority Critical patent/CN108486497B/zh
Publication of CN108486497A publication Critical patent/CN108486497A/zh
Application granted granted Critical
Publication of CN108486497B publication Critical patent/CN108486497B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种Ti‑Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法,其主要是:本发明采用Ti含量为0.01~0.5%,Zr含量为0.01~0.5%,C含量为0.01~0.5%的Ti‑Zr复合微合金化钢。将上述Ti‑Zr复合微合金化钢加热到1150~1250℃,并保温300s,而后冷却至1050~1150℃开始第一道次轧制,应变速率1~10s‑1,压下量30%。间隔1~10s后,进行第二道次轧制,轧制参数为:应变速率1~10s‑1,压下量30%。间隔1~10s后,进行第三道次轧制,轧制参数为:应变速率1~10s‑1,压下量20%。终轧温度控制在1000℃以上,1~50s后迅速喷水冷却至室温。Ti‑Zr复合微合金化钢经三道次不同压下量、不同应变速率的轧制,促发多次完全奥氏体再结晶及少量的第二相析出,晶粒尺寸从100μm细化到10~20μm,得到均匀的超细化奥氏体晶粒组织。

Description

一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工 艺方法
技术领域
本发明属于轧钢技术领域,特别是涉及一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法。
背景技术
细晶强化是唯一一种在提高材料强度的同时又能提高材料塑性、韧性的方法,因而对于细化晶粒的研究一直都是关注的热点。Ti(钛)微合金化钢的原始奥氏体晶粒度对钢材的屈服强度、韧性和塑性等有很大影响,因而如何在轧制阶段控制奥氏体的晶粒度有着很重要的意义。
目前,各国科研工作者在实验室条件下研发出多种细化晶粒的方法,例如等径角挤压、累积叠轧和高压扭转等方法,但由于这一类方法所要求的大应变量,限制了其在实际生产中的进一步应用。从工业应用的角度考虑,细化晶粒的可行途径就是通过控轧阶段在奥氏体再结晶区进行小压下量、大应变速率变形促使多次奥氏体再结晶,并和形变诱导析出的TiC(碳化钛)、ZrC(碳化锆)及(Ti,Zr)C(碳化钛锆)可以钉扎奥氏体晶界的作用相结合,来获得细小的奥氏体再结晶晶粒。除此之外,Zr(锆)还可以促进TiC的析出,细化析出相的尺寸。有鉴于此,本发明提出一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法。
发明内容
本发明提供了一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法。本发明通过合金成分的设计、不同压下量和不同应变速率的组合轧制、控制各道次之间的组织关系和奥氏体再结晶的过程,从而获得均匀细小的奥氏体晶粒组织。
本发明的一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法的具体步骤如下:
1.本发明采用Ti含量为0.01~0.5%,Zr含量为0.01~0.5%,C含量为0.01~0.5%的Ti-Zr复合微合金化钢。
2.将所述Ti-Zr复合微合金化钢加热到1150~1250℃,并保温300s,而后冷却至1050~1150℃开始第一道次轧制,第一道次轧制参数为:应变速率1~10s-1,压下量30%;
3.间隔1~10s后,进行第二道次轧制,第二道次轧制参数为:应变速率1~10s-1,压下量30%。
4.间隔1~10s后,进行第三道次轧制,第三道次轧制参数为:应变速率1~10s-1,压下量20%。
5.终轧温度控制在1000℃以上,保温1~50s后迅速喷水冷却至室温。
上述工艺方案的工艺原理是通过多次不同压下量和不同应变速率,进而促发多次奥氏体再结晶,并结合形变诱导出的TiC、ZrC及(Ti,Zr)C,来阻止再结晶奥氏体的长大,使得奥氏体晶粒得到充分超细化。
本发明与现有的技术相比具有如下优点:
1.通过轧钢过程中的压下量、应变速率、温度和道次间隔时间的控制,使奥氏体达到均匀化的同时,又超细化奥氏体晶粒。
2.Ti-Zr复合微合金化钢经三道次不同压下量、不同应变速率的轧制,促发多次完全奥氏体再结晶,使奥氏体晶粒尺寸从100μm细化到10~20μm,显著细化了奥氏体晶粒尺寸。
附图说明
图1为未进行轧制的Ti-Zr复合微合金化钢奥氏体晶粒组织形貌;
图2为本发明经三道次轧制后的Ti-Zr复合微合金化钢奥氏体晶粒组织形貌。
具体实施方式
将Ti-Zr复合微合金化钢,加热到1200℃,并保温300s,而后冷却至1150℃开始第一道次轧制,应变速率5s-1,压下量30%。间隔10s后,进行第二道次轧制,第二道次轧制参数为:应变速率5s-1,压下量30%。间隔10s后,进行第三道次轧制,第三道次轧制参数为:应变速率5s-1,压下量20%。终轧温度控制在1000℃以上,保温10s后迅速喷水冷却至室温。经上述三道次轧制获得的平均晶粒尺寸约为14μm(如图2所示),其与未轧制组织(如图1所示)相比,晶粒得到显著细化。
其中,Ti-Zr复合微合金化钢成分优选为:Ti含量为0.01~0.5%,Zr含量为0.01~0.5%,C(碳)含量为0.01~0.5%。成分进一步优选为:Ti含量为0.1%,Zr含量为0.05%,C含量为0.05%。
此处,对Ti-Zr复合微合金化钢的形状不做限制,例如圆形、方形钢坯。
需要说明的是加热设备例如可以为加热炉,轧制设备例如可以为四辊双机架轧机。
由于Zr可以降低Ti-Zr复合微合金化钢的热脆性,使其在高温阶段可以进行较大的变形以获得更多的形变储能,为奥氏体再结晶提供了充足的能量。对Ti-Zr复合微合金化钢在奥氏体再结晶区进行不同压下量、不同应变速率变形,使得其在轧制过程中完成多次奥氏体的再结晶,并结合形变诱导析出的TiC能钉扎奥氏体晶界的作用,可以有效的阻止再结晶奥氏体的长大,细化奥氏体晶粒的尺寸。除此之外,在高温阶段Zr优先于Ti与钢中的N(氮)相结合生成ZrN(氮化锆),能够最大程度的保留Ti在低温轧制过程中,以TiC和(Ti,Zr)C的形式析出,以再结晶奥氏体的长大。Zr还可以促进TiC的析出,并细化析出相的尺寸。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (1)

1.一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法,其特征在于:
1)提供Ti含量为0.01~0.5%,Zr含量为0.01~0.5%,C含量为0.01~0.5%的Ti-Zr复合微合金化钢;
2)将所述Ti-Zr复合微合金化钢加热到1150~1250℃,并保温300s,而后冷却至1050~1150℃开始第一道次轧制,第一道次轧制参数为:应变速率1~10s-1,压下量30%;
3)间隔1~10s后,进行第二道次轧制,第二道次轧制参数为:应变速率1~10s-1,压下量30%;
4)间隔1~10s后,进行第三道次轧制,第三道次轧制参数为:应变速率1~10s-1,压下量20%;
5)终轧温度控制在1000℃以上,保温1~50s后迅速喷水冷却至室温;
奥氏体晶粒尺寸从100μm细化到10~20μm。
CN201810205572.1A 2018-03-13 2018-03-13 一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法 Active CN108486497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810205572.1A CN108486497B (zh) 2018-03-13 2018-03-13 一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810205572.1A CN108486497B (zh) 2018-03-13 2018-03-13 一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法

Publications (2)

Publication Number Publication Date
CN108486497A CN108486497A (zh) 2018-09-04
CN108486497B true CN108486497B (zh) 2020-11-27

Family

ID=63339103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810205572.1A Active CN108486497B (zh) 2018-03-13 2018-03-13 一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法

Country Status (1)

Country Link
CN (1) CN108486497B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161548B (zh) * 2022-05-25 2023-03-24 昆明理工大学 一种Ti-Zr复合微合金化700MPa级高强度高韧性钢板及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232868A (zh) * 2014-09-04 2014-12-24 东北大学 一种采用超快速冷却控制奥氏体组织的优化控制轧制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970001324B1 (ko) * 1994-03-25 1997-02-05 김만제 열간가공성이 우수한 고망간강 및 그 열간압연 방법
CN1078254C (zh) * 1999-06-16 2002-01-23 冶金工业部钢铁研究总院 一种超细组织微合金钢控制轧制方法
CN100513592C (zh) * 2006-05-30 2009-07-15 江苏大学 一种微合金超细晶铁素体热轧钢板的制备方法
CN100500880C (zh) * 2007-03-02 2009-06-17 北京科技大学 一种制备高强细晶双相钢的方法
CN102011045B (zh) * 2010-09-20 2012-11-07 南京钢铁股份有限公司 一种超细晶粒钢的制造方法
CN103805764B (zh) * 2014-01-23 2015-11-18 燕山大学 一种细化高锰奥氏体钢晶粒的热轧工艺方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232868A (zh) * 2014-09-04 2014-12-24 东北大学 一种采用超快速冷却控制奥氏体组织的优化控制轧制方法

Also Published As

Publication number Publication date
CN108486497A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN108486496B (zh) 一种Ti-Zr-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法
CN101480689B (zh) 两相钛合金盘形锻件的近等温锻造方法
US20200056267A1 (en) HIGH-STRENGTH AND LOW-MODULUS BETA-TYPE Si-CONTAINING TITANIUM ALLOY, PREPARATION METHOD THEREFOR AND USE THEREOF
CN107385329A (zh) 一种大厚度q500gje高强度建筑结构用钢板及其制造方法
CN107952794B (zh) Tc4钛合金中厚板的单火轧制方法
CN107385324A (zh) 一种大厚度q500gjcd高强度建筑结构用钢板及其制造方法
CN109454188A (zh) Ti55531钛合金大规格棒材自由锻造方法
CN105088118A (zh) 一种镍基高温合金板材的超细晶化方法
CN105506525A (zh) 一种Ti2AlNb基合金大规格均匀细晶棒材的制备方法
JP5873874B2 (ja) 近β型チタン合金の鍛造製品の製造方法
CN105441845B (zh) Tc18钛合金原材料异常组织的锻造工艺
JP2013533386A5 (zh)
CN102764838A (zh) 一种渗碳钢20CrMnTi为材料的齿轮热精锻加工工艺
CN110918845A (zh) 一种提高钛合金棒材成材率的锻造方法
CN111438317A (zh) 一种具有高强高韧近β型钛合金锻件锻造成形的制备方法
CN103272864A (zh) 一种tc21高强高韧钛合金丝材的加工方法
CN113649503A (zh) 一种航空发动机用高强度β锻钛合金锻件组织控制方法
CN111826594A (zh) 一种电弧增材制造高强钛合金的热处理方法和一种增强的高强钛合金
CN108486497B (zh) 一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法
CN103194581A (zh) 核反应堆用奥氏体不锈钢大型锻件组织的控制方法
CN110029294B (zh) 一种钛锆铌合金的加工方法
CN112391558B (zh) 一种强度与塑性匹配良好的近β型钛合金及其制备方法
CN108374131B (zh) 一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法
CN110453163A (zh) 一种提高7000系铝合金超大规格模锻件高向性能的方法
CN103805764A (zh) 一种细化高锰奥氏体钢晶粒的热轧工艺方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant