CN108485055A - 高压直流电缆用聚丙烯基纳米复合绝缘材料及制备方法 - Google Patents

高压直流电缆用聚丙烯基纳米复合绝缘材料及制备方法 Download PDF

Info

Publication number
CN108485055A
CN108485055A CN201810089740.5A CN201810089740A CN108485055A CN 108485055 A CN108485055 A CN 108485055A CN 201810089740 A CN201810089740 A CN 201810089740A CN 108485055 A CN108485055 A CN 108485055A
Authority
CN
China
Prior art keywords
polypropylene
nano
graphene
low density
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810089740.5A
Other languages
English (en)
Inventor
杜伯学
侯兆豪
李忠磊
李进
韩晨磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810089740.5A priority Critical patent/CN108485055A/zh
Publication of CN108485055A publication Critical patent/CN108485055A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/728Measuring data of the driving system, e.g. torque, speed, power, vibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本发明属于高压直流输电装备技术领域,为提出纳米石墨烯改性聚丙烯基复合绝缘材料空间电荷及耐击穿性能的方法。本发明,高压直流电缆用聚丙烯基纳米复合绝缘材料及制备方法,由聚丙烯和超低密度聚乙烯混合得到的共混物与纳米石墨烯进行复合而成,制备步骤如下:(1)称取一定质量的聚丙烯、超低密度聚乙烯及纳米石墨烯原材料,使其相应的质量分数比为85:15:0.01,并置于干燥箱中干燥后备用;(2)将步骤(1)中干燥后备用的聚丙烯与超低密度聚乙烯加入双辊混炼机中,混炼得到混合均匀的共混物;(3)将所述共混物加入双辊混炼机中,混炼得到聚丙烯基石墨烯纳米复合材料。本发明主要应用于高压直流电缆的设计制造。

Description

高压直流电缆用聚丙烯基纳米复合绝缘材料及制备方法
技术领域
本发明属于高压直流输电装备技术领域,具体讲,涉及改善复合绝缘材料空间电荷及耐击穿性能的方法。
背景技术
近年来,柔性直流输电技术已成为大容量远距离送电、电力能源区域互联领域的重点发展方向。在可见的未来,高压直流电缆作为直流输电技术的关键装备,在海岛送电、海洋资源开发与利用、城市电网改造与升级、分布式能源并网输电等方面更是有着有巨大的应用前景,因此发展高压直流电缆关键技术具有重要战略意义。以交联聚乙烯(XLPE)聚合物材料为绝缘介质的挤压型绝缘电缆具有良好的电气、机械和热性能,在高压电缆领域得到广泛应用。但生产XLPE电缆可能会将交联剂或交联副产物等杂质引入绝缘层内部、交联工艺能耗大、XLPE电缆绝缘废料的回收再利用难度很大,而且XLPE电缆只能工作在70℃下,限制了高压直流电缆大容量输电的发展需求。
目前,具有优异的电气和耐热性能、免交联可回收利用的聚丙烯基电缆绝缘材料,受到国内外研究人员及电缆生产厂商的关注。聚丙烯属于非极性材料,具有优良的电性能,几乎不吸水,故其绝缘性能受周围环境湿度的影响较小。另外聚丙烯熔点较高,可以满足电缆在较高的温度运行的需求,有助于提高电缆运行电压和线路载流量。聚丙烯耐低温冲击性能较差,通过引入热塑性弹性体可在一定程度上改性聚丙烯低温脆性,但改性后材料的电气性能有所下降,距离其在电缆领域的应用还有一定空间。
另外,高压直流电缆绝缘长期受单极性、强电场的作用,使得聚合物绝缘材料内部的缺陷或杂质容易发生极化或电离,导致绝缘介质内空间电荷的注入和积聚。空间电荷的积聚会在绝缘介质引起局部电场的畸变,畸变的电场严重时可引发介质内局部放电、加速绝缘老化和电树枝生长,进而影响电介质材料的介电强度,严重时可致使绝缘击穿故障,影响了电缆及系统的安全。
目前研究表明,在聚合物绝缘材料中引入一定量的无机纳米颗粒可以改善其空间电荷及介电性能。传统无机纳米颗粒的比表面积理论上约为数百m2/g,需在较大添加量(~1wt%质量分数)的前提下才能得到较为理想的改性效果。但较高含量的纳米添加会导致纳米在聚合物中的团聚,甚至会引起缺陷及电气、机械性能下降。因此,如何改善绝缘材料空间电荷及耐击穿性能且避免由于高纳米填充带来的性能下降,成为研发高压直流电缆用聚丙烯基电缆绝缘急需解决的关键问题。
发明内容
为克服现有技术的不足,本发明旨在提出纳米石墨烯改性聚丙烯基复合绝缘材料空间电荷及耐击穿性能的方法。为此,本发明采用的技术方案是,高压直流电缆用聚丙烯基纳米复合绝缘材料,由聚丙烯和超低密度聚乙烯混合得到的共混物与纳米石墨烯进行复合而成,聚丙烯、超低密度聚乙烯和纳米石墨烯质量分数比为85:15:0.01;其中,纳米石墨烯均匀地分散在共混物材料。
所述的聚丙烯为等规聚丙烯,等规度为97%,密度为2g/cm3;所述的超低密度聚乙烯密度为0.905g/cm3;所述的纳米石墨烯为单层石墨烯,直径为0.2~10um,比表面积约为2000m2/g。
高压直流电缆用聚丙烯基纳米复合绝缘材料制备方法,步骤如下:
(1)称取一定质量的聚丙烯、超低密度聚乙烯及纳米石墨烯原材料,使其相应的质量分数比为85:15:0.01,并置于干燥箱中干燥后备用;
(2)将步骤(1)中干燥后备用的聚丙烯与超低密度聚乙烯加入双辊混炼机中,混炼得到混合均匀的共混物;
(3)将步骤(1)中干燥后备用的纳米石墨烯与步骤(2)中得到的共混物加入双辊混炼机中,混炼得到混合均匀的聚丙烯基石墨烯纳米复合材料。
上述方法中,所述的聚丙烯为等规聚丙烯,等规度为97%,密度为2g/cm3
上述方法中,所述的超低密度聚乙烯密度为0.905g/cm3
上述方法中,所述的纳米石墨烯为单层石墨烯,直径为0.2~10um,比表面积约为2000m2/g。
在一个实例中,具体步骤如下:
(1)称取一定质量的聚丙烯、超低密度聚乙烯及纳米石墨烯原材料,使其相应的质量分数比为85:15:0.01,并置于50℃的干燥箱中干燥3小时后备用;
(2)将步骤(1)中干燥后备用的聚丙烯与超低密度聚乙烯加入双辊混炼机中,在190℃下以30转/分钟的速度混炼5分钟得到混合均匀的共混物;
(3)将步骤(1)中干燥后备用的纳米石墨烯与步骤(2)中得到的共混物加入双辊混炼机中,在200℃下以40转/分钟的速度混炼5分钟得到混合均匀的聚丙烯基石墨烯纳米复合材料。
本发明的特点及有益效果是:
本发明方法可制备出具能有效抑制空间电荷并提高耐击穿性能的高压直流电缆用聚丙烯基纳米复合绝缘材料。本方法制备复合材料所需纳米石墨烯添加量极少。本方法制备过程简单、经济效益好,所用聚丙烯、超低密度聚乙烯及纳米石墨烯不需交联处理,达到使用寿命后可回收。
附图说明:
图1是试样材料在60kV/mm电场强度下极化3600s后的空间电荷分布电场强度畸变情况示意图,其中(a)是纯聚丙烯材料,(b)是通过本发明方法制备的聚丙烯基复合绝缘材料;
图2是通过本发明方法对聚丙烯基复合绝缘材料的直流击穿特性图。
图3是本发明工艺流程图,并作为摘要附图。
具体实施方式
本发明涉及一种纳米石墨烯改性聚丙烯基复合绝缘材料空间电荷及耐击穿性能的方法,其特征在于将聚丙烯和超低密度聚乙烯混合得到的共混物与纳米石墨烯进行复合,并使纳米石墨烯均匀地分散在共混物材料中,进而制备出可有效抑制空间电荷并提高耐击穿性能的高压直流电缆用聚丙烯基纳米复合绝缘材料。
本发明提出的一种纳米石墨烯改性聚丙烯基复合绝缘材料空间电荷及耐击穿性能的方法,其特征在于,包括以下步骤:
(1)通过高精度电子天平分别称取一定质量的聚丙烯、超低密度聚乙烯及纳米石墨烯原材料,使其相应的质量分数比为85:15:0.01,并置于50℃的干燥箱中干燥3小时后备用;
(2)将步骤(1)中干燥后备用的聚丙烯与超低密度聚乙烯加入双辊混炼机中,在190℃下以30转/分钟的速度混炼5分钟得到混合均匀的共混物;
(3)将步骤(1)中干燥后备用的纳米石墨烯与步骤(2)中得到的共混物加入双辊混炼机中,在200℃下以40转/分钟的速度混炼5分钟得到混合均匀的聚丙烯基石墨烯纳米复合材料。
上述方法中,所述的聚丙烯为等规聚丙烯,等规度为97%,密度为2g/cm3
上述方法中,所述的超低密度聚乙烯密度为0.905g/cm3
上述方法中,所述的纳米石墨烯为单层石墨烯,直径为0.2~10um,比表面积约为2000m2/g。
本发明提出的一种纳米石墨烯改性聚丙烯基复合绝缘材料空间电荷及耐击穿性能的方法,其特征在于,包括以下步骤:
(1)通过高精度电子天平分别称取一定质量的聚丙烯、超低密度聚乙烯及纳米石墨烯原材料,使其相应的质量分数比为85:15:0.01,并置于50℃的干燥箱中干燥3小时后备用;
(2)将步骤(1)中干燥后备用的聚丙烯与超低密度聚乙烯加入双辊混炼机中,在190℃下以30转/分钟的速度混炼5分钟得到混合均匀的共混物;
(3)将步骤(1)中干燥后备用的纳米石墨烯与步骤(2)中得到的共混物加入双辊混炼机中,在200℃下以40转/分钟的速度混炼5分钟得到混合均匀的聚丙烯基石墨烯纳米复合材料。
上述方法中,所述的聚丙烯为等规聚丙烯,等规度为97%,密度为2g/cm3
上述方法中,所述的超低密度聚乙烯密度为0.905g/cm3
上述方法中,所述的纳米石墨烯为单层石墨烯,直径为0.2~10um,比表面积约为2000m2/g。
本发明将结合附图通过下面的具体实施例对所述技术方案作进一步说明,但本发明并不局限于以下提出的实施案例:
(1)通过高精度电子天平分别称取42.5g聚丙烯、7.5g超低密度聚乙烯、0.005g纳米石墨烯原材料,置于50℃的干燥箱中干燥3小时备用;(2)将步骤(1)中干燥后备用的聚丙烯与超低密度聚乙烯加入双辊混炼机中,在190℃下以30转/分钟的速度混炼5分钟得到混合均匀的共混物;(3)将步骤(1)中干燥后备用的纳米石墨烯与步骤(2)中得到的共混物加入双辊混炼机中,在200℃下以40转/分钟的速度混炼5分钟,得到一种高压直流电缆绝缘用聚丙烯基石墨烯纳米复合材料。
以上实施例中的样品采用高温硫化机压片制样,取5g上述步骤(3)中所得聚丙烯基石墨烯纳米复合材料放置于平板硫化机中,调节硫化机温度升至190℃预热5分钟后将硫化机压力升至25MPa,使复合材料在190℃和25MPa条件下热压10分钟后维持25MPa压力不变将硫化机温度冷却至30℃,利用两种不同厚度的模具可分别压得到250um的薄膜试样用于空间电荷测量、80um的薄膜试样用于直流击穿强度的测量。
上述实施例中得到的纳米石墨烯改性聚丙烯基复合绝缘材料空间电荷及电场强度畸变特性利用电声脉冲法测量,测量时对上述试样施加60kV/mm电场60分钟,其空间电荷特性及电场分布情况如图1所示,图中横坐标为压制的薄膜试样的厚度,纵坐标为相应位置处的空间电荷密度。从图1可以发现,纯聚丙烯在60kV/mm电场下极化60分钟后,试样表面出现异极性空间电荷积聚而且靠近试样表面的电场有所畸变,而经纳米石墨烯改性的聚丙烯基复合绝缘材料的空间电荷积聚和电场畸变得到改善,表明本发明方法制备的聚丙烯基石墨烯纳米复合绝缘材料具有优异的空间电荷抑制效果。
上述实施例中得到的纳米石墨烯改性聚丙烯基复合绝缘材料的直流击穿强度根据《绝缘材料电气强度试验方法(GB1408.1-2006)》测量得到,测量结果如图2所示,横坐标为击穿强度。从图2中可以发现经纳米石墨烯改性的聚丙烯基复合绝缘材料试样的直流击穿场强明显高于纯聚丙烯绝缘试样,表面本发明方法提出的一种纳米石墨烯改性聚丙烯基复合绝缘材料同时具备优异的耐击穿性能。

Claims (5)

1.一种高压直流电缆用聚丙烯基纳米复合绝缘材料,其特征是,由聚丙烯和超低密度聚乙烯混合得到的共混物与纳米石墨烯进行复合而成,聚丙烯、超低密度聚乙烯和纳米石墨烯质量分数比为85:15:0.01;其中,纳米石墨烯均匀地分散在共混物材料。
2.如权利要求1所述的高压直流电缆用聚丙烯基纳米复合绝缘材料,其特征是,所述的聚丙烯为等规聚丙烯,等规度为97%,密度为2g/cm3;所述的超低密度聚乙烯密度为0.905g/cm3;所述的纳米石墨烯为单层石墨烯,直径为0.2~10um,比表面积约为2000m2/g。
3.一种高压直流电缆用聚丙烯基纳米复合绝缘材料制备方法,其特征是,步骤如下:
(1)称取一定质量的聚丙烯、超低密度聚乙烯及纳米石墨烯原材料,使其相应的质量分数比为85:15:0.01,并置于干燥箱中干燥后备用;
(2)将步骤(1)中干燥后备用的聚丙烯与超低密度聚乙烯加入双辊混炼机中,混炼得到混合均匀的共混物;
(3)将步骤(1)中干燥后备用的纳米石墨烯与步骤(2)中得到的共混物加入双辊混炼机中,混炼得到混合均匀的聚丙烯基石墨烯纳米复合材料。
4.如权利要求3所述的高压直流电缆用聚丙烯基纳米复合绝缘材料制备方法,其特征是,所述的聚丙烯为等规聚丙烯,等规度为97%,密度为2g/cm3;所述的超低密度聚乙烯密度为0.905g/cm3;所述的纳米石墨烯为单层石墨烯,直径为0.2~10um,比表面积约为2000m2/g。
5.如权利要求3所述的高压直流电缆用聚丙烯基纳米复合绝缘材料制备方法,其特征是,在一个实例中,具体步骤如下:
(1)称取一定质量的聚丙烯、超低密度聚乙烯及纳米石墨烯原材料,使其相应的质量分数比为85:15:0.01,并置于50℃的干燥箱中干燥3小时后备用;
(2)将步骤(1)中干燥后备用的聚丙烯与超低密度聚乙烯加入双辊混炼机中,在190℃下以30转/分钟的速度混炼5分钟得到混合均匀的共混物;
(3)将步骤(1)中干燥后备用的纳米石墨烯与步骤(2)中得到的共混物加入双辊混炼机中,在200℃下以40转/分钟的速度混炼5分钟得到混合均匀的聚丙烯基石墨烯纳米复合材料。
CN201810089740.5A 2018-01-30 2018-01-30 高压直流电缆用聚丙烯基纳米复合绝缘材料及制备方法 Pending CN108485055A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810089740.5A CN108485055A (zh) 2018-01-30 2018-01-30 高压直流电缆用聚丙烯基纳米复合绝缘材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810089740.5A CN108485055A (zh) 2018-01-30 2018-01-30 高压直流电缆用聚丙烯基纳米复合绝缘材料及制备方法

Publications (1)

Publication Number Publication Date
CN108485055A true CN108485055A (zh) 2018-09-04

Family

ID=63343935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810089740.5A Pending CN108485055A (zh) 2018-01-30 2018-01-30 高压直流电缆用聚丙烯基纳米复合绝缘材料及制备方法

Country Status (1)

Country Link
CN (1) CN108485055A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110894320A (zh) * 2019-11-25 2020-03-20 天津大学 一种改善聚丙烯高压直流电缆绝缘空间电荷特性的方法
WO2020157254A1 (en) * 2019-01-31 2020-08-06 Borealis Ag Polyolefin composition comprising graphene nanoplatelets with invariant electrical conductivity
US10766167B1 (en) 2020-01-10 2020-09-08 Prince Mohammad Bin Fahd University Method of forming thermally and electrically conductive polyolefin-carbon nanomaterial composite having breakdown-induced electrical conduction pathways
CN113717466A (zh) * 2021-08-24 2021-11-30 湖北万锦科技有限公司 一种石墨烯增强的pp/ldpe纳米复合管材
CN115093641A (zh) * 2022-03-29 2022-09-23 武汉金发科技有限公司 一种耐电树枝老化的聚丙烯复合材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106009253A (zh) * 2016-05-20 2016-10-12 清华大学 具有抑制空间电荷的可回收高压直流电缆料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106009253A (zh) * 2016-05-20 2016-10-12 清华大学 具有抑制空间电荷的可回收高压直流电缆料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ATUL R. KHARE等: "Thermal and dynamic mechanical analysis on metallocene ULDPE/PP blends to optimize impact properties", 《THERMOCHIMICA ACTA》 *
YOUNG KEON LEE 等: "Ultralow Density Polyethylene Blends With Polypropylene", 《POLYMER ENGINEERING AND SCIENCE》 *
ZHONGLEI LI 等: "Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites", 《SCIENTIFIC REPORTS》 *
ZIANG JING 等: "Doping Effect of Graphene Nanoplatelets on Electrical Insulation Properties of Polyethylene:From Macroscopic to Molecular Scale", 《MATERIALS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157254A1 (en) * 2019-01-31 2020-08-06 Borealis Ag Polyolefin composition comprising graphene nanoplatelets with invariant electrical conductivity
CN110894320A (zh) * 2019-11-25 2020-03-20 天津大学 一种改善聚丙烯高压直流电缆绝缘空间电荷特性的方法
US10766167B1 (en) 2020-01-10 2020-09-08 Prince Mohammad Bin Fahd University Method of forming thermally and electrically conductive polyolefin-carbon nanomaterial composite having breakdown-induced electrical conduction pathways
US11072095B1 (en) 2020-01-10 2021-07-27 Prince Mohammad Bin Fahd University Method of applying voltage to a polymer/graphene composite to form a conductive polyolefin-carbon nanomaterial
US11213974B2 (en) 2020-01-10 2022-01-04 Prince Mohammad Bin Fahd University Method for making polyethylene/graphene composite
CN113717466A (zh) * 2021-08-24 2021-11-30 湖北万锦科技有限公司 一种石墨烯增强的pp/ldpe纳米复合管材
CN115093641A (zh) * 2022-03-29 2022-09-23 武汉金发科技有限公司 一种耐电树枝老化的聚丙烯复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN108485055A (zh) 高压直流电缆用聚丙烯基纳米复合绝缘材料及制备方法
CN109206731A (zh) 一种含石墨烯的电力电缆用屏蔽材料及其制备方法
CN109942932A (zh) 一种耐温高压电缆绝缘料及其制备方法
CN104992754A (zh) 含石墨烯的架空绝缘电缆用交联聚乙烯绝缘材料及电缆
Liu et al. Preparation and surface modification of PVDF-carbon felt composite bipolar plates for vanadium flow battery
CN109337231A (zh) 一种石墨烯阻燃屏蔽电缆材料及其制备方法
CN106099121A (zh) 双极板及其制备方法和应用
Zhou et al. Recyclable insulation material for HVDC cables in global energy interconnection
CN105602066B (zh) 一种聚乙烯/尼龙复合材料及其制备方法
Tefferi et al. Characterization of space charge and DC field distribution in XLPE and EPR during voltage polarity reversal with thermal gradient
CN108530726A (zh) 一种低温度敏感性的绝缘材料及其制备方法
CN109206748A (zh) 聚丙烯基复合绝缘材料及制备方法
Wu et al. Comparison of effects of ethylene-based and propylene-based copolymer on tailoring the properties of polypropylene
Zhang et al. DC dielectric properties of thermo-plastic polyolefin materials
CN105255022B (zh) 用于高压直流电缆附件的半导电三元乙丙橡胶材料及制备方法
CN204884602U (zh) 含石墨烯的架空绝缘电缆用交联聚乙烯绝缘材料的电缆
CN106893186A (zh) 高介电性能n‑乙基咔唑/聚乙烯复合材料及其制备方法
CN109206711A (zh) 一种高压直流电缆用可交联聚乙烯绝缘材料及其制备方法
CN109535463A (zh) 一种tpu导电薄膜的制备方法
CN106867077A (zh) 一种交联聚乙烯绝缘材料及其制备方法
Wan et al. Effect of thermal aging on threshold field strength and relative permittivity of cross-linked polyethylene with different cross-linking agent contents
CN108017860A (zh) 以橡胶组分添加制备高击穿强度和高储能密度的复合材料薄膜的方法
CN207781218U (zh) 一种110kV架空输电线路用架空绝缘电缆
CN101735765A (zh) 中压交联电缆外半导电屏蔽修补用半导电胶
CN104927175B (zh) 抑制内部空间电荷的交联聚乙烯复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180904

WD01 Invention patent application deemed withdrawn after publication