CN108474697A - 导电复合材料 - Google Patents

导电复合材料 Download PDF

Info

Publication number
CN108474697A
CN108474697A CN201680073370.5A CN201680073370A CN108474697A CN 108474697 A CN108474697 A CN 108474697A CN 201680073370 A CN201680073370 A CN 201680073370A CN 108474697 A CN108474697 A CN 108474697A
Authority
CN
China
Prior art keywords
composite material
pressure sensitive
material according
conductive composite
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680073370.5A
Other languages
English (en)
Other versions
CN108474697B (zh
Inventor
D·卢塞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1522114.6A external-priority patent/GB201522114D0/en
Priority claimed from GBGB1611192.4A external-priority patent/GB201611192D0/en
Application filed by Individual filed Critical Individual
Priority to CN202110115954.7A priority Critical patent/CN112834090B/zh
Publication of CN108474697A publication Critical patent/CN108474697A/zh
Application granted granted Critical
Publication of CN108474697B publication Critical patent/CN108474697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/103Adjustable resistors adjustable by mechanical pressure or force by using means responding to magnetic or electric fields, e.g. by addition of magnetisable or piezoelectric particles to the resistive material, or by an electromagnetic actuator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/106Adjustable resistors adjustable by mechanical pressure or force on resistive material dispersed in an elastic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/12Adjustable resistors adjustable by mechanical pressure or force by changing surface pressure between resistive masses or resistive and conductive masses, e.g. pile type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element
    • H01C10/305Adjustable resistors the contact sliding along resistive element consisting of a thick film
    • H01C10/306Polymer thick film, i.e. PTF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • H01G4/206Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 inorganic and synthetic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种压敏导电复合材料包括一定含量的磁铁矿颗粒,其中磁铁矿颗粒的量包括在亚微米至数十微米之间的粒度分布,并且其中磁铁矿颗粒具有多个平面,相邻的平面在顶点处连接,每个颗粒具有多个顶点,其中磁铁矿颗粒的形状不规则并且具有低纵横比。

Description

导电复合材料
技术领域
本发明涉及一种导电复合材料,并特别涉及这样一种包括呈颗粒形式的磁铁矿的复合材料。
背景技术
在受到压缩力或张力时呈现出变化的电阻的导电复合材料是已知的。通常,这些复合材料包括带有孔洞的颗粒和可通过量子隧穿导电。
量子隧穿描述了当颗粒间距离减小致使相邻导电颗粒之间的绝缘阻挡层非常薄,以致穿过薄绝缘阻挡层发生量子隧穿的导电机制。填料颗粒中的尖峰和孔洞的存在放大了复合材料内的电场。大的电阻范围是量子隧穿的结果。
场增强量子隧穿发生在含有孔洞的填料颗粒上。通过考虑假想闭合表面来跟踪颗粒上的突起以限定孔洞。如果假想的闭合表面所包围的体积大于填料颗粒的体积,则表明填料颗粒上存在突起。这些突起是场增强隧穿的来源。场增强的程度取决于突起的数量和尖锐度。本说明书中提到的是外部突起之间的孔洞,而不是中空材料如碳纳米管中的孔洞。
带有孔洞的颗粒是诸如尖刺状镍的颗粒。
GB2450587描述了一种导电聚合物复合材料,其包括非导电聚合物粘合剂,带有孔洞的第一导电填料颗粒和针状的第二导电填料颗粒。
据称,GB2450587中描述的发明降低了噪声并且允许对压缩与电阻变化之间的关系的更好的控制。
尽管使用导电针状颗粒允许降低复合材料的起始电阻,但仍然保留起始电阻。此外,尽管使用导电针状颗粒可以降低噪声,但是电信号仍然是有噪声的,因为噪声与场增强量子隧穿相关联。
Weifenfeller,Hoffer和Schilling在(Thermal and Electrical Properties ofMagnetite Filled Polymers,Composites:Part A33(2002)1041-1053,2002年7月1日)中发现,当将仅包含有非常小比例的SiO2形式的其他物质的特别纯天然形式的磁铁矿(Fe3O4)与聚合物粘合剂通过挤出或注射成型混合时,当磁铁矿加载量大于30体积%,复合材料的电阻率下降,并且当磁铁矿加载量达到33体积%时达到渗透阈值。
生产对压力变化敏感、具有宽工作范围和表现为低噪声的导电聚合物是所需要的。
令人惊奇的是,已经发现Weifenfeller,Hoffer和Schilling使用的仅包含有非常小比例的SiO2形式的其他物质的特别纯天然形式的磁铁矿(Fe3O4)的复合材料,能够产生具有增强的性能特征的压敏导电复合材料。该发明采用的磁铁矿形式通常包含最少98.1%的磁铁矿和最多0.3%的SiO2
此外,已经发现,通过将上述特定形式的磁铁矿与不同形状的颗粒例如导电材料的树枝状或球形颗粒混合,可以获得更大的性能特征的增强。
发明内容
根据本发明的第一方面,提供了一种压敏导电复合材料,其包括一定含量的第一导电颗粒,该第一导电颗粒是磁铁矿颗粒,其中磁铁矿颗粒的量包括在亚微米和数十微米之间的粒度分布,并且其中磁铁矿颗粒具有多个平面,相邻的平面在顶点处连接,每个颗粒具有多个顶点,其中磁铁矿颗粒的形状不规则并具有低纵横比。
导电复合材料的电阻根据施加至其上的压力而变化,电阻随着施加压力的增大而减小并随着施加压力的减小而增大。
优选地,当复合材料收到施加的压力时,其电阻在没有压力的静态和导电状态之间变化。优选地,复合材料在静态时表现为绝缘体。
可以以多种不同的方式容纳导电复合材料。典型地,复合材料容纳在如下所述的粘合剂中。然而,其他容纳的方法是可能的。例如,不含粘合剂的颗粒形式的复合材料可以放置于两个元件之间,例如两个间隔开的板。可选地,不含粘合剂的颗粒形式的复合材料可以放置于织物内的袋或空隙中,或织物的层之间,或者可以在制造期间分布在纱线内。所需要的是容纳一定量的导电颗粒,使得当施加压力时颗粒之间的距离变化。这种变化可以通过相关的电极读取为电阻的变化。
该分布的颗粒的形状可能落在如下的颗粒形状定义内:“扁圆形”(即扁平形),和/或刃形(即平坦或细长形态)(参见Dictionary of Earth Sciences 1999)。
优选地,在d50处的粒度分布(使用旋流器方法)在50至75微米之间,优选地在60至65微米之间。在d50处的粒度分布可以在20至25微米之间。在d50处的粒度分布可以在5至15微米之间,并且优选地为10微米。
例如通过分类,粒度分布可以变窄以获得尺寸更相似的颗粒。例如,可以减少指定范围的粒度或指定尺寸的颗粒在分布内的比例,并且该减少可以达到去除特定尺寸或尺寸范围的颗粒的程度。可以从分布中减少或移除分布中低于特定尺寸(例如亚微米尺寸的颗粒)的颗粒比例。可选地或另外地,可以从分布中减少或移除分布中超过特定尺寸(例如大于10微米)的颗粒比例。
可以通过粉碎进一步减小单个颗粒的尺寸。
本发明的复合材料呈现的电阻变化受磁铁矿颗粒量中磁铁矿颗粒的尺寸和磁铁矿颗粒量中不同磁铁矿颗粒彼此间的相对尺寸的影响。因此,通过选择磁铁矿颗粒量中磁铁矿颗粒的尺寸,可以调整复合材料所呈现出的电阻变化。
导电复合材料可以包括第二类型导电颗粒,其与第一导电颗粒的形状不同。第二类型导电颗粒可以具有以下形状中的一个:球形、带有孔洞、板状、以及针状。
已经发现,包括不同形状的第二导电颗粒增加或降低复合材料的敏感性。同样已经发现,不同形状的颗粒的尺寸影响复合材料的敏感性。即,施加于复合材料的相似的力导致更大或降低的电阻变化。
第二导电颗粒可以由导电和半导电材料例如:铜、铁及其氧化物、银及其氧化物形成。可选地,它们可以是涂覆有导电或半导电材料的成形芯颗粒。
导电复合材料可以容纳在粘合剂中,该粘合剂优选地为弹性聚合物粘合剂。当容纳在粘合剂中时,产生的聚合物复合材料优选地不导电,即在无应力状态下不存在可检测到的起始电阻。当产生的聚合物复合材料通过例如施加力至表面而受到应力时,电流流动。当去除聚合物复合材料中应力的原因时,复合材料恢复至其无应力状态和与复合材料无应力状态相关的电阻特征。
通常,粘合剂是电绝缘体。
粘合剂可以是硅酮聚合物粘合剂,其可以包括至多十份重量的油漆溶剂油至一份重量的硅酮。
可选地,粘合剂可以包括聚氨酯,例如用至多五份重量的水比一份重量的聚氨酯稀释成的水基聚氨酯。
粘合剂可以包括聚乙烯。
粘合剂可以包括丙烯酸树脂,其可以是热塑性塑料或热固性塑料。
粘合剂可以是水基或溶剂基的。
粘合剂能够承受压力。在施加的压力变化时分隔导电颗粒的距离的变化导致复合材料的电阻变化。因此,当力施加至容纳于粘合剂中的复合材料时,粘合剂允许这些颗粒靠得更近,以使电阻变化。
当容纳在粘合剂中时,本发明的导电复合材料可以以许多不同的形式使用,下面的列表是示例性的而非限制性的:涂料、油漆、油脂、油墨、3D打印机进料材料;薄膜、板材、细丝、细丝涂层、纺织品。
颗粒之间的粘合剂厚度由粘合剂与颗粒的比例以及通过对用于提供用于混合的液态粘合剂的溶剂的选择来控制,其中液态粘合剂在混合后转变为半刚性状态。可以选择溶剂为使其蒸发以围绕颗粒留下薄聚合物层。为了蒸发溶剂,可以在混合阶段期间和/或之后施加热量(在90和100摄氏度之间)。当粘合剂是聚合物时,聚合物可以受到交联处理以在混合后产生半刚性物质。
有利地,粘合剂围绕颗粒分布中的每个颗粒形成薄层。层厚通常约为数十纳米。
优选地,第一或第一和第二导电颗粒与粘合剂的比例大于或等于33重量%,更优选地大于或等于75重量%,还更优选大于或等于90%。
通常对于热塑性聚合物粘合剂,第一或第一和第二导电颗粒与聚合物的比例大于或等于70%的导电颗粒对30%的聚合物粘合剂,更优选地大于或等于80%的导电颗粒对20%的聚合物,更优选地导电颗粒与聚合物粘合剂的比例大于或等于82%的导电颗粒对18%的聚合物粘合剂。
导电颗粒可以涂覆有包括硅酮聚合物的粘合剂。硅酮聚合物可以通过以10份的油漆溶剂油对1份的硅酮(按重量计)稀释。粘合剂可以形成为薄层。
包括磁铁矿颗粒或磁铁矿颗粒与第二导电颗粒和粘合剂的混合物的复合材料可以打印成二维的层,特别是在粒度中值较小的情况下,例如在下表1的实例1和2的尺寸范围内。具有较大的粒度中值,例如在下表1中的实例3的尺寸范围内,包含磁铁矿颗粒和粘合剂的复合材料可以形成用于三维打印的合适原料。
根据本发明的另一方面,提供了一种传感器,其包括由根据本发明第一方面的压敏导电复合材料层分隔的两层半导体,每层半导体具有至少一个与其接触的电极,并且其中一个半导体层的至少一个电极与另一个半导体层的至少一个电极正交布置。
每层半导体可以具有两个或多个附接至其上的两个电极,并且其中一个半导体层的两个或多个电极与另一个半导体层的两个或多个电极正交排布。
这种传感器能够检测在垂直于传感器平面的平面中施加的力的施加和大小。传感器可以配置成使得所施加的力的位置也可以被检测到。
根据本发明的另一方面,提供了一种制造根据本发明第一方面的压敏导电复合材料的方法,该方法包括以下步骤:
将导电颗粒与粘合剂混合直至其混合物均匀。
制造压敏导电复合材料的方法可以包括在混合导电颗粒与粘合剂的步骤之前和/或期间加热粘合剂以降低其粘度的附加步骤。
附图说明
在示出本发明优选实施例的附图中:
图1是传感器的第一布置的示意图;
图2是传感器的可选布置的示意图;
图3是磁铁矿颗粒分布的显微照片;
图4是图示了根据本发明的三种实例复合材料的施加的力与电阻之间的关系的曲线图;以及
图5是图示了根据本发明的另一实例复合材料的施加的力与电阻之间的关系的曲线图。
图6是图示了根据本发明的另一实例复合材料的施加的力与电阻之间的关系的曲线图;以及
图7是用于收集图4至6的曲线图中示出的数据的测试电极的示意图。
具体实施方式
图1和2均显示了压力传感器。
图1所示的传感器能够检测施加到传感器表面的力的x-y位置以及方向z上的力分量。
图1图示的传感器包括第一层,其包括一对间隔开的导电元件1,该导电元件1可以包括诸如银金属的电极条。导电元件1通过半导电材料5的层结合在一起。半导电材料5可以是填充有半导体的聚合物,涂覆或浸渍有半导体的薄膜或纸,或填充、涂覆或浸渍有半导体的织物。在此实施例中,该半导体是碳。跨越半导电材料5的导电元件之间的电阻约为5千欧姆,尽管取决于导电元件所附接的电子接口的输入要求,该电阻可能有很大变化。
传感器包括与第一层具有相同结构的第二层。然而,在组装的传感器中,位于半导电材料3的边缘处的导电元件2与第一层的导电元件1正交。
第三层4位于第一和第二层之间,第三层4由诸如聚乙烯的聚合物材料的片形成,其负载有如上和如下表1中所述类型的磁铁矿颗粒。第三层4是各向异性导电的。当压力施加在第三层4上或从其上去除时,第三层4根据施加的压力改变其电阻。导电仅发生在力的施加点周围的非常小的区域内。典型地,通过作用在第一层和第二层中之一的外侧上的力的方式,在第三层3上的z方向上施加力,该力通过第一层和第二层中的另一层反作用,导致第三层4在围绕在z方向上施加力的作用点处压缩。
例如,穿过电极2的电流通过层3传导,并可通过电极2检测到。第三层的材料对压力的敏感性意味着不仅可以建立z方向的力的位置,而且还可以建立z方向上的力分量的大小的指示。
图2所示的传感器与图1所示的不同之处在于,在第一层和第二层中分别存在更多的电极6、7。代替位于半导电材料8、10的外边缘处的电极,电极6、7设置在跨越半导电材料8、10的片上的规则间隔开的位置处。结果是一个网格的单元格。这种传感器可用于测量当分布式负载放置在传感器上时跨越传感器的负载变化。这是因为位置和力测量可以在传感器的每个单元格内确定。
表格1在其下示出了在下面的实例1至3中使用的不同规格的磁铁矿的颗粒分布:
在实例1至3中使用的磁铁矿来自LKAB Minerals,并包括由称为磁铁矿的天然氧化铁制造的磁铁矿粉。该磁铁矿包含至少98.1%的Fe3O4和不多于0.3%的SiO2
图3示出了颗粒的典型分布。
在用于实例1至3中的每一个的第一组样品中,磁铁矿颗粒涂覆有粘合剂,此粘合剂包括用至多五份水比一份聚氨酯(按重量计)稀释的水基聚氨酯薄层。使用的聚氨酯是用水1:1稀释的Witcobond 781分散体。聚合物(如上所述的用水稀释后)与磁铁矿的相对重量比为:对于实例1,7%聚合物对93%磁铁矿;对于实例2,6%聚合物对94%磁铁矿;以及对于实例3,5%的聚合物至95%的磁铁矿。
通过将涂覆材料和颗粒磁铁矿混合在一起来实现对颗粒的涂覆。磁铁矿颗粒相比于尖刺状镍颗粒明显不易受剪切力的影响,因此利用磁铁矿的复合材料可以混合更长时间以及具用更大的剪切力而不招致损坏。然而,使用了低剪切混合方式。
磁铁矿和粘合剂仅混合足够长的时间,直至混合物的均匀性肉眼可见。在这点上,在产生的复合材料被发现是电性各向异性的,并具有非常大的电阻范围时,其中处于静态的复合材料起始于绝缘体区域,并且可以通过对复合材料施加力而改变许多个数量级。本发明中使用的聚合物具有固有的柔韧性,并且当操作力被移除时回复至其静态。
通过在搅拌器(使用桨式搅拌器)的作用下将磁铁矿加入到容器中的液体聚合物中来实现水基聚合物复合材料的混合。只要看到部件完全结合就会结束混合。产生的复合材料液体可用作本发明的油墨、涂料或原料形式。Witcobond 781是用于本发明的热固性基聚合物。
适合于将磁铁矿与热塑性聚合物如聚乙烯混合的混合方案由装载有已知量的热塑性聚合物的经加热的单一动力金属辊组成。将一定量的磁铁矿滴到旋转聚合物的表面上,并与桨叶混合作业。当见到部件被彻底结合时,可以使用刮刀从辊上剥离产生的复合材料。这种或类似的方法可用于制造具有各向异性性质的复合材料形式,适合用作热成型原料和热熔胶。
以上的方法描述了将磁铁矿与聚合物混合直至见到组分完全结合。通过使用目测来重复混合程度以确定混合过程,可以在已知的混合条件下,就已知量的已知材料在时间或与混合复合材料有关的其他参数方面限定所需的混合物,由此消除了观察的需要。
发现实例2的磁铁矿粒度分布对压力的电反应比实例1的更大,并且实例3的电反应更大。这在图4中示出,其示出了施加至上表1中示出的三种不同复合材料上的力对电阻的效果,其中每个实例中的颗粒包含于并涂覆有如上所述的聚氨酯聚合物粘合剂的薄层。从图4所示的曲线图中也可以明显看出,对于实例1至3中的每一个,在仅施加很小的力时,电阻的下降非常迅速。
图5示出了施加到复合材料上的力对电阻的效果,其中实例1的复合材料具有按两份实例1的磁铁矿对一份银粉的重量比加入其中的一定比例的树枝状银粉。银粉的粒度主要在10至15微米的范围内。聚合物与磁铁矿/树枝状银粉的相对重量比为7%聚合物对93%磁铁矿/树枝状银粉。
磁铁矿/银复合材料表现出大的电阻范围,从没有施加力时的开路到施加7255克的力时小于1欧姆的电阻。此外,该复合材料表现出非常低的噪音,比与仅包含一种导电颗粒材料即磁铁矿的实例1至3的复合材料相比更低的噪音。
对于实例1至3以及将银粉和磁铁矿颗粒或者实例1混合在一起的实例中的每一个,将导电颗粒在如上所述的聚氨酯聚合物粘合剂中混合在一起,并放置到具有0.255mm厚度的50×50mm的细尼龙网上。样品的成品厚度约为0.30mm。
图6示出了施加至复合材料的力对电阻的影响,其中实例1的复合材料中添加有一定比例的球形磁铁矿。曲线图示出了人造磁铁矿降低了MAG1的敏感性。球形人造磁铁矿为Bayferrox 4330,人造磁铁矿与MAG1的比例为1:1。与上述实例一样,聚合物粘合剂是Witcobond 781与水1:1混合,施加到相同类型的织物试样上,即具有0.255mm厚度的细尼龙网。样品的成品厚度约为0.50mm。聚合物与MAG1/人造磁铁矿的相对重量比为10%聚合物对90%MAG1/人造磁铁矿。
实例中使用的测试电极在图7中示出并且包括以直径5mm镀金棒形导体为形式的上电极1,以直径10mm镀银金属盘为形式的下电极2以及样品3。使上和下电极与样品3接触,并且通过电极1、2向样品施加电位差。通过电极1、2向样品3施加增大的力。测量施加的力。测量电流的变化,计算变化的电阻。
本发明描述的导电复合材料相对于现有技术更具优势,因为:它们在制造中使用成本更低的材料;颗粒更坚固并且因此降低了对混合期间施加的剪切力的控制的要求;与现有技术的材料相比,它们对施加的压力提供各向异性的电阻变化响应并且降低了噪声。磁铁矿和银都可安全地用于接触人体皮肤和食品;镍和许多其他东西是不安全的。

Claims (25)

1.一种压敏导电复合材料,其包括一定含量的第一导电颗粒,所述第一导电颗粒是磁铁矿颗粒,其中所述磁铁矿颗粒的量包括在亚微米至数十微米之间的粒度分布,其中所述磁铁矿颗粒具有多个平面,相邻平面在顶点处连接,每个所述颗粒具有多个顶点,其中所述磁铁矿颗粒的形状不规则并具有低纵横比,其中所述导电复合材料的电阻根据施加至其上的压力改变,所述电阻随着施加的压力的增加而减小并随着施加的压力的减小而增加。
2.根据权利要求1所述的压敏导电复合材料,其中分布中的所述第一导电颗粒的形状落在如下的颗粒形状定义内:“扁圆形”即扁平形,和/或刃形即平坦或细长形态。
3.根据权利要求1或2所述的压敏导电复合材料,其中所述第一导电颗粒在d50处的粒度分布在50和70微米之间。
4.根据权利要求3所述的压敏导电复合材料,其中所述第一导电颗粒在d50处的粒度分布在60和65微米之间。
5.根据权利要求1或2所述的压敏导电复合材料,其中所述第一导电颗粒在d50处的粒度分布在20和25微米之间。
6.根据权利要求5所述的压敏导电复合材料,其中所述第一导电颗粒在d50处的粒度分布在5和15微米之间。
7.根据权利要求6所述的压敏导电复合材料,其中所述第一导电颗粒在d50处的粒度分布为10微米。
8.根据前述权利要求中任一项所述的压敏导电复合材料,其中磁铁矿颗粒的量在亚微米和数十微米之间的粒度分布包括亚微米尺寸颗粒和尺寸为数十微米的颗粒。
9.根据前述权利要求中任一项所述的压敏导电复合材料,进一步包括第二类型导电颗粒,其与所述第一导电颗粒的形状不同。
10.根据权利要求8所述的压敏导电复合材料,其中所述第二类型导电颗粒具有以下形状中的一个:带有孔洞、板状、针状和球形。
11.根据权利要求8或9所述的压敏导电复合材料,其中所述第二类型导电颗粒选自包括以下成分的组:银;镍;铜和铁。
12.根据权利要求8至10中任一项所述的压敏导电复合材料,其中所述第二类型导电颗粒的粒度在10和15微米之间。
13.根据前述权利要求中任一项所述的压敏导电复合材料,其中随着所施加的压力增加,所述复合材料的电阻降低超过一个数量级并且随着所施加的压力降低而朝静态增加。
14.根据前述权利要求中任一项所述的压敏导电复合材料,进一步包括粘合剂,所述导电颗粒包含在所述粘合剂中。
15.根据权利要求13所述的压敏导电复合材料,其中所述粘合剂是聚合物粘合剂。
16.根据权利要求14所述的压敏导电复合材料,其中所述聚合物是以下的一种:硅酮聚合物、聚氨酯聚合物;聚乙烯和丙烯酸类聚合物。
17.根据权利要求14至16中任一项所述的压敏导电复合材料,其中所述粘合剂围绕所述颗粒分布中的每个颗粒形成薄层。
18.根据权利要求17所述的压敏导电复合材料,其中所述薄层的厚度约为10纳米。
19.根据权利要求13至18中任一项所述的压敏导电复合材料,其中磁铁矿颗粒对粘合剂的比例大于或等于33重量%。
20.根据权利要求19所述的压敏导电复合材料,其中磁铁矿颗粒对粘合剂的比例大于或等于75重量%。
21.根据权利要求20所述的压敏导电复合材料,其中磁铁矿颗粒对粘合剂的比例并且还更优选地大于或等于90%。
22.一种传感器,包括由根据权利要求1至21中任一项所述的压敏导电复合材料层分隔的两层半导体,每层半导体具有至少一个附着至其上的电极,并且其中一层半导体的至少一个电极与另一半导体层的至少一个电极正交排布。
23.根据权利要求22所述的传感器,其中每层半导体具有两个或多个附着至其上的电极,并且其中一层半导体的两个或多个电极与另一半导体层的两个或多个电极正交排布。
24.一种制造根据权利要求14至21中任一项所述的压敏导电复合材料的方法,所述方法包括以下步骤:
将所述导电颗粒与所述粘合剂混合直至其混合物均匀。
25.根据权利要求24所述的制造压敏导电复合材料的方法,包括在混合所述导电颗粒与所述粘合剂的步骤之前和/或期间加热所述粘合剂以降低其粘度的附加步骤。
CN201680073370.5A 2015-12-15 2016-12-15 导电复合材料 Active CN108474697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110115954.7A CN112834090B (zh) 2015-12-15 2016-12-15 导电复合材料

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB1522114.6A GB201522114D0 (en) 2015-12-15 2015-12-15 Controlled conductive medium
GB1522114.6 2015-12-15
GBGB1611192.4A GB201611192D0 (en) 2016-06-28 2016-06-28 Electrically conductive composition
GB1611192.4 2016-06-28
PCT/GB2016/053943 WO2017103592A1 (en) 2015-12-15 2016-12-15 Electrically conductive composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110115954.7A Division CN112834090B (zh) 2015-12-15 2016-12-15 导电复合材料

Publications (2)

Publication Number Publication Date
CN108474697A true CN108474697A (zh) 2018-08-31
CN108474697B CN108474697B (zh) 2021-02-26

Family

ID=57995232

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680073370.5A Active CN108474697B (zh) 2015-12-15 2016-12-15 导电复合材料
CN202110115954.7A Active CN112834090B (zh) 2015-12-15 2016-12-15 导电复合材料

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110115954.7A Active CN112834090B (zh) 2015-12-15 2016-12-15 导电复合材料

Country Status (5)

Country Link
US (2) US10818406B2 (zh)
EP (1) EP3390998A1 (zh)
CN (2) CN108474697B (zh)
GB (2) GB2547516B (zh)
WO (1) WO2017103592A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533081A (zh) * 2020-05-18 2020-08-14 吉林大学 一种基于仿生微结构的复合式柔性压力传感器及其制备方法
CN113226991A (zh) * 2018-12-24 2021-08-06 D·卢塞 控制磁铁矿颗粒的电学性能的方法
CN115029866A (zh) * 2022-08-12 2022-09-09 江苏恒力化纤股份有限公司 一种柔性电子传感器复合材料的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201622299D0 (en) * 2016-12-27 2017-02-08 Lussey David And Lussey David Control Charge Composite
EP3689498A4 (en) * 2017-09-27 2021-03-24 DOWA Electronics Materials Co., Ltd. MIXTURE OF SILVER POWDER, ITS PRODUCTION PROCESS, AND CONDUCTIVE PASTE
CN112424579B (zh) * 2018-07-09 2022-02-25 鹰野株式会社 压敏传感器及其制造方法、使用压敏传感器的垫系统
GB201813857D0 (en) 2018-08-24 2018-10-10 Lussey David Composite Materials
GB2585349A (en) * 2019-05-03 2021-01-13 Hilsum Cyril Force or pressure sensing composite material
DE102021113903A1 (de) * 2021-05-28 2022-12-01 Carl Freudenberg Kg Elektrisch leitfähiger Vliesstoff, Erdungsring, umfassend einen solchen Vliesstoff und Anordnung damit
GB2609990A (en) * 2021-08-21 2023-02-22 Lussey David Electrically conductive assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541570A (en) * 1994-12-09 1996-07-30 Force Imaging Technologies, Inc. Force sensing ink, method of making same and improved force sensor
US6032542A (en) * 1997-07-07 2000-03-07 Tekscan, Inc. Prepressured force/pressure sensor and method for the fabrication thereof
CN1938677A (zh) * 2004-03-31 2007-03-28 皇家飞利浦电子股份有限公司 织物结构接触传感器
CN101776496A (zh) * 2009-01-09 2010-07-14 财团法人工业技术研究院 柔性电子压力感测装置及其制造方法
WO2014203446A1 (ja) * 2013-06-18 2014-12-24 本田技研工業株式会社 センサ装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1470501A (en) * 1973-03-20 1977-04-14 Raychem Ltd Polymer compositions for electrical use
JP3037454B2 (ja) * 1991-03-14 2000-04-24 ティーディーケイ株式会社 磁気記録媒体
US6048920A (en) 1994-08-15 2000-04-11 Xerox Corporation Magnetic nanocomposite compositions and processes for the preparation and use thereof
US5989700A (en) * 1996-01-05 1999-11-23 Tekscan Incorporated Pressure sensitive ink means, and methods of use
CA2374178A1 (en) * 1999-06-22 2000-12-28 Peratech Ltd. Conductive structures
GB0322057D0 (en) * 2003-09-20 2003-10-22 Lussey David Variable conductance materials
JP2005282652A (ja) 2004-03-29 2005-10-13 Valeo Unisia Transmission Kk 捩り振動低減装置
JP2008258153A (ja) * 2007-03-14 2008-10-23 Fukushima Univ 導電性複合材料およびその製造方法
GB0708702D0 (en) * 2007-05-04 2007-06-13 Peratech Ltd Polymer composition
US8191433B2 (en) * 2008-05-19 2012-06-05 The Hong Kong Polytechnic University Method for manufacturing fabric strain sensors
JP5623408B2 (ja) * 2008-09-30 2014-11-12 サビック イノベーティブ プラスチックスイーペー ベスローテン フェンノートシャップ X線および/または金属の検出可能物品並びにその製造方法
US20120073388A1 (en) * 2009-05-22 2012-03-29 University Of New Brunswick Force sensing compositions, devices and methods
JP2013232293A (ja) * 2012-04-27 2013-11-14 Fukushima Univ 触覚センサ
GB2539697A (en) * 2015-06-25 2016-12-28 Lussey David Improved conductive polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541570A (en) * 1994-12-09 1996-07-30 Force Imaging Technologies, Inc. Force sensing ink, method of making same and improved force sensor
US6032542A (en) * 1997-07-07 2000-03-07 Tekscan, Inc. Prepressured force/pressure sensor and method for the fabrication thereof
CN1938677A (zh) * 2004-03-31 2007-03-28 皇家飞利浦电子股份有限公司 织物结构接触传感器
CN101776496A (zh) * 2009-01-09 2010-07-14 财团法人工业技术研究院 柔性电子压力感测装置及其制造方法
WO2014203446A1 (ja) * 2013-06-18 2014-12-24 本田技研工業株式会社 センサ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BERND WEIDENFELLER: "Thermal and electrical properties of magnetite filled polymers", 《COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226991A (zh) * 2018-12-24 2021-08-06 D·卢塞 控制磁铁矿颗粒的电学性能的方法
CN111533081A (zh) * 2020-05-18 2020-08-14 吉林大学 一种基于仿生微结构的复合式柔性压力传感器及其制备方法
CN111533081B (zh) * 2020-05-18 2022-07-05 吉林大学 一种基于仿生微结构的复合式柔性压力传感器及其制备方法
CN115029866A (zh) * 2022-08-12 2022-09-09 江苏恒力化纤股份有限公司 一种柔性电子传感器复合材料的制备方法
CN115029866B (zh) * 2022-08-12 2022-11-22 江苏恒力化纤股份有限公司 一种柔性电子传感器复合材料的制备方法

Also Published As

Publication number Publication date
US20190362866A1 (en) 2019-11-28
GB2547516B (en) 2020-01-01
GB201621358D0 (en) 2017-02-01
CN112834090A (zh) 2021-05-25
CN112834090B (zh) 2022-11-29
GB2564337B (en) 2020-03-25
GB2564337A (en) 2019-01-09
US10818406B2 (en) 2020-10-27
EP3390998A1 (en) 2018-10-24
WO2017103592A1 (en) 2017-06-22
GB2547516A (en) 2017-08-23
US20210035703A1 (en) 2021-02-04
CN108474697B (zh) 2021-02-26
US11195636B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
CN108474697A (zh) 导电复合材料
KR101980388B1 (ko) 터치 스크린에 적합한 압력 민감 폴리머 복합 재료
CN110799834B (zh) 电荷存储介质
CN102138188B (zh) 电响应复合材料和其制造方法以及采用该材料制造的传感器
CN205879411U (zh) 压阻传感器和用于压阻传感器的压敏元件
EP3237865A1 (en) Piezoresistive device
US11972876B2 (en) Composite materials
EP2158594A1 (en) Polymer composition
US20130076371A1 (en) Adhesive with anisotropic electrical conductivity and methods of producing and using same
CN107560766A (zh) 压阻传感器和用于压阻传感器的压敏元件
Ghafoorianfar et al. Combined magnetic and mechanical sensing of magnetorheological elastomers
Webb et al. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity
JP7348959B2 (ja) 力又は圧力を感知する複合材料
JPS63260101A (ja) 電気抵抗体の製造方法
EP3084780A1 (en) A body comprising a particle structure and method for making the same
Gumfekar et al. Silver-polyaniline-epoxy electrical conductive adhesives-a percolation threshold analysis
Leyland et al. Lithographic printing of force-sensitive resistors
TWI550647B (zh) 非線性阻抗材料
Sancaktar et al. Conduction Behavior of Filled Polymer Films
Zanon et al. PM Non-Ferrous and Special Materials: The Conductive Behaviour of Copper and Silver-Coated Copper Powders
JPS63114005A (ja) 異方導電性ゴムシ−ト

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant