CN108468033B - 一种耐高温太阳能选择性吸收涂层及其制备方法 - Google Patents

一种耐高温太阳能选择性吸收涂层及其制备方法 Download PDF

Info

Publication number
CN108468033B
CN108468033B CN201810570793.9A CN201810570793A CN108468033B CN 108468033 B CN108468033 B CN 108468033B CN 201810570793 A CN201810570793 A CN 201810570793A CN 108468033 B CN108468033 B CN 108468033B
Authority
CN
China
Prior art keywords
film
target
substrate
layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810570793.9A
Other languages
English (en)
Other versions
CN108468033A (zh
Inventor
杨勇
姚婷婷
金克武
李刚
沈洪雪
彭赛奥
王天齐
杨扬
金良茂
马立云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Building Materials Glass New Materials Research Institute Group Co Ltd
Original Assignee
China Building Materials Glass New Materials Research Institute Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Building Materials Glass New Materials Research Institute Group Co Ltd filed Critical China Building Materials Glass New Materials Research Institute Group Co Ltd
Priority to CN201810570793.9A priority Critical patent/CN108468033B/zh
Publication of CN108468033A publication Critical patent/CN108468033A/zh
Application granted granted Critical
Publication of CN108468033B publication Critical patent/CN108468033B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种耐高温太阳能选择性吸收涂层及其制备方法,包括现有金属基底,其特征在于:在金属基底上,从下到上还分别有三层:高红外反射层、吸收层和减反射层;所述高红外反射层为Al、Au、Ag、Ti、Cr、Ni任一种金属的涂层;吸收层自下而上依次包括高折射率吸收层TiCrN膜和低折射率吸收层TiCrNxOy膜;减反射层自下而上依次包括Cr2O3膜和SiO2膜,采用磁控溅射法进行镀膜。本发明的有益效果:1.本发明制得的涂层,具有吸收效率高、发射率低、热稳定性好的特点;2.太阳光谱吸收率α与发射率ε(T)之比高,适合350℃以上的高温应用;3.制作工艺简便。

Description

一种耐高温太阳能选择性吸收涂层及其制备方法
技术领域
本发明属太阳能光热转换利用技术领域,涉及一种耐高温太阳能选择性吸收涂层及其制备方法。
背景技术
太阳能选择性吸收涂层是在可见-近红外波段(300-2500nm)具有高吸收率,在红外波段(2500-20000nm)具有低发射率的功能薄膜,是用于太阳能集热器,提高光热转换效率的关键。太阳能选择性吸收涂层通常由复合材料构成,通常该复合材料是在以金属为基底的承载上涂覆至少一个吸收层,且在吸收层上具有一个或多个减反射层。
随着太阳能热利用需求和技术的不断发展,太阳能集热器的应用范围从低温应用(≤100℃)向中温应用(100℃-350℃) 和高温应用(≥350℃)发展,以不断满足海水淡化、太阳能发电等中高温应用领域的使用要求。对于太阳能集热器使用的太阳能选择性吸收涂层也要求具备高温热稳定性,适应中高温环境的服役条件。
为了提高中高温服役条件下选择性吸收涂层的热稳定性,Mo-Al2O3/Cu、SS-AlN/SS等材料体系得到了研究和发展,采用了双靶或多靶金属陶瓷共溅射技术,其中Mo-Al2O3/Cu体系的特点是Mo-Al2O3吸收层具有成分渐变的多亚层结构, SS-AlN/SS体系的特点是吸收层采用了干涉膜结构,使热稳定性提高。以上两种材料体系虽在中高温环境中热稳定性有所提升,但热效率比依然不高,同时双靶或多靶共溅射工艺沉积速率低,生产周期长,工艺复杂,成本高。
发明内容
本发明的目的是为了解决Mo-Al2O3/Cu、SS-AlN/SS材料体系热效率比不高且工艺沉积速率低的问题,提供一种耐高温太阳能选择性吸收涂层及其制备方法。
为了实现上述目的,本发明采用的技术方案如下:
一种耐高温太阳能选择性吸收涂层,包括现有金属基底,其特征在于:在金属基底上,从下到上还分别有三层:高红外反射层、吸收层和减反射层;
所述高红外反射层为Al、Au、Ag、Ti、Cr、Ni任一种金属的涂层,厚度为20-40nm;
所述吸收层自下而上依次包括高折射率吸收层TiCrN膜和低折射率吸收层TiCrNxOy膜,其中TiCrN膜的厚度为70-100nm,TiCrNxOy膜的厚度为80-100nm;
所述减反射层自下而上依次包括Cr2O3膜和SiO2膜,其中Cr2O3膜的厚度为10-20nm,SiO2膜的厚度为20-30nm。
其中,在300-2500nm范围内,所述TiCrN膜的折射率为2.66-3.53,所述TiCrNxOy膜折射率为1.76-2.44;在300-2500nm范围内,所述TiCrN膜的消光系数为0.65-3.57,所述TiCrNxOy膜的消光系数为0.05-1.34。
一种耐高温太阳能选择性吸收涂层制备方法,采用磁控溅射法为镀膜方法,其特征在于包括以下步骤:
a.选择厚度为0.15-10mm的铝、铜或不锈钢基片材料;
b.选用靶材为铝靶、金靶、银靶或镍靶,工作气体为惰性气体氩气(Ar),控制脉冲直流电源溅射功率为2000-3000w,工作气压为2.2-2.5mTorr,工作气体Ar流量为150-200sccm,控制步骤a中基片传输速率为0.5~1.6m/min,基片在靶下往返运动10-15次,即可得涂覆有高红外反射层的基片;
c.选用靶材为钛铬合金靶(Ti、Cr的质量百分比为60-80%),工作气体为惰性气体氩气(Ar)、氮气和氧气,控制脉冲直流电源溅射功率为2000-3000w,工作气压为2.2-2.6mTorr,工作气体Ar流量为150-200sccm,反应气体N2流量为10-40sccm,控制步骤b制得的基片传输速率为0.5~1.6m/min,基片在靶下往返运动20-40次,可得涂覆有高折射率吸收层(TiCrN膜)的基片;
d.控制脉冲直流电源溅射功率为2000-3000w,工作气压为2.2-2.6mTorr,工作气体Ar流量为150-200sccm,反应气体N2流量为10-40sccm,反应气体O2流量为5-15sccm,步骤c制得的基片传输速率为0.5~1.6m/min,基片在靶下往返运动15-25次,可得涂覆有低折射率吸收层(TiCrNxOy膜)的基片;
e.选用靶材为硅靶和铬靶,工作气体为惰性气体氩气(Ar)和氧气,控制脉冲直流电源溅射功率为2000-3000w,工作气压为2.2-2.5mTorr,工作气体Ar流量为150-200sccm,反应气体O2流量为5-15sccm,步骤d制得的基片传输速率为0.5~1.6m/min,基片在靶下往返运动10-20次,可制得涂覆反射层(Cr2O3)的基片;
f.控制射频电源溅射功率为2000-3000w,工作气压为4.0-6.0mTorr, 工作气体流量为150-200sccm,反应气体O2流量为30-45sccm,步骤e制得的基片传输速率为0.5~1.6m/min,基片在靶下往返运动10-20次,可制得涂覆反射层(SiO2)的基片即得到一种耐高温太阳能选择性吸收涂层。
TiCrN膜和TiCrNxOy膜作为高低折射率吸收层,两种薄膜组合使整个膜系具有优异的光谱选择性,选择性吸收涂层的中高温(200℃-400℃)发射率ε<4%,吸收率α>90%;
TiCrN膜和TiCrNxOy膜热膨胀系数相近,在高温环境中热稳定性良好,能够保证涂层具有良好的高温热稳定性;
减反射层采用Cr2O3膜和SiO2膜依次叠加组成,薄膜的折射率依次递减,具有更加优异的减反射效果。
本发明的有益效果:1.本发明制得的涂层,具有吸收效率高、发射率低、热稳定性好的特点;2.太阳光谱吸收率α与发射率ε(T)之比高,适合350℃以上的高温应用;3.制作工艺简便。
附图说明
图1是一种耐高温太阳能选择性吸收涂层结构示意图;
图2是一种耐高温太阳能选择性吸收涂层制备流程示意图。
具体实施方式
结合图1,一种耐高温太阳能选择性吸收涂层,包括现有金属基底,在金属基底1上,从下到上还分别高红外反射层2、吸收层3和减反射层4;高红外反射层2为Al、Au、Ag、Ti、Cr、Ni任一种金属的涂层,厚度为20-40nm;吸收层3自下而上依次为高折射率吸收层TiCrN膜和低折射率吸收层TiCrNxOy膜,其中TiCrN膜的厚度为70-100nm,TiCrNxOy膜的厚度为80-100nm;减反射层自下而上依次为Cr2O3膜和SiO2膜,其中Cr2O3膜的厚度为10-20nm,SiO2膜的厚度为20-30nm。其中,在300-2500nm范围内,TiCrN膜的折射率为2.66-3.53,TiCrNxOy膜折射率为1.76-2.44;在300-2500nm范围内,TiCrN膜的消光系数为0.65-3.57,TiCrNxOy膜的消光系数为0.05-1.34。
结合图2,一种耐高温太阳能选择性吸收涂层及其制备方法,具体实施步骤如下:
实施例1
(1)选用厚度为0.5mm的铜箔片;
(2)金属基片表面的清洗:把铜箔片放入超声波清洗机内,先用丙酮超声20min,再用酒精超声20min,最后用去离子水超声20min,用高压N2吹干;
(3)取出铜箔片,放入磁控溅射设备中沉积高红外反射层Al薄膜,制备工艺参数如下:
靶材为Al靶(4N),脉冲直流电源溅射功率为3000w,工作气压为2.4mTorr,工作气体Ar流量为200sccm,铜箔片传输速率为0.8m/min,铜箔片在靶下往返运动10次,得涂覆有厚度为30nm的高红外反射层的铜箔片;
(4)磁控溅射设备中沉积吸收层TiCrN薄膜,制备工艺参数如下:
靶材为TiCr合金靶(4N,Ti:Cr(at%)=4:1),脉冲直流电源溅射功率为3000w,工作气压为2.4mTorr,工作气体Ar流量为200sccm,反应气体N2流量为20sccm,步骤(3)制得的涂覆有高红外反射层的铜箔片传输速率为1.0m/min,铜箔片在靶下往返运动25次,得涂覆有厚度为70nm的高折射率吸收层(TiCrN膜)的铜箔片;
(5)磁控溅射设备中沉积吸收层TiCrNxOy薄膜,制备工艺参数如下:
靶材为TiCr合金靶(4N,Ti:Cr(at%)=4:1),脉冲直流电源溅射功率为3000w,工作气压为2.4mTorr,工作气体Ar流量为200sccm,反应气体N2流量为15sccm,反应气体O2流量为5sccm,步骤(4)制得的涂覆有高折射率吸收层(TiCrN膜)的铜箔片传输速率为1.2m/min,铜箔片在靶下往返运动20次,得涂覆有厚度为80nm低折射率吸收层(TiCrNxOy膜)的铜箔片;
(6)磁控溅射设备中沉积减反射层Cr2O3薄膜,制备工艺参数如下:
靶材为Cr靶(4N),脉冲直流电源溅射功率为3000w,工作气压为2.4mTorr,工作气体Ar流量为200sccm,反应气体O2流量为10sccm,步骤(5)制得的涂覆有低折射率吸收层(TiCrNxOy膜)的铜箔片传输速率为0.8m/min,铜箔片在靶下往返运动15次,得涂覆有厚度为20nm的反射层(Cr2O3)的铜箔片;
(7)磁控溅射设备中沉积减反射层SiO2薄膜,制备工艺参数如下:
靶材为旋转Si靶(4N),射频电源溅射功率为3000w,工作气压为6.0mTorr,工作气体流量为200sccm,反应气体O2流量为40sccm,步骤(6)制得的涂覆反射层(Cr2O3)的铜箔片传输速率为0.9m/min,铜箔片在靶下往返运动14次,得涂覆有厚度为20nm反射层(SiO2)的铜箔片即得到一种耐高温太阳能选择性吸收涂层。
实施例2
(1)选用厚度为0.3mm的铝箔片;
(2)金属基片表面的清洗:把铝箔片放入超声波清洗机内,先用丙酮超声20min,再用酒精超声20min,最后用去离子水超声20min,用高压N2吹干;
(3)取出铝箔片,放入磁控溅射设备中沉积高红外反射层Ag薄膜,制备工艺参数如下:
靶材为Ag靶(4N),脉冲直流电源溅射功率为2500w,工作气压为2.5mTorr,工作气体Ar流量为180sccm,铝箔片传输速率为0.8m/min,铝箔片在靶下往返运动10次,得涂覆有厚度为25nm的高红外反射层的铝箔片;
(4)磁控溅射设备中沉积吸收层TiCrN薄膜,制备工艺参数如下:
靶材为TiCr合金靶(4N,Ti:Cr(at%)=3:2),脉冲直流电源溅射功率为2500w,工作气压为2.5mTorr, 工作气体Ar流量为200sccm,反应气体N2流量为25sccm,步骤(3)制得的得涂覆有高红外反射层的铝箔片传输速率为1.0m/min,铝箔片在靶下往返运动30次,得涂覆有厚度为90nm的高折射率吸收层(TiCrN膜)的铝箔片;
(5)磁控溅射设备中沉积吸收层TiCrNxOy薄膜,制备工艺参数如下:
靶材为TiCr合金靶(4N,Ti:Cr(at%)=3:2),脉冲直流电源溅射功率为2500w,工作气压为2.5mTorr,工作气体Ar流量为200sccm,反应气体N2流量为20sccm,反应气体O2流量为10sccm,步骤(4)制得的涂覆有高折射率吸收层(TiCrN膜)的铝箔片传输速率为0.8m/min,铝箔片在靶下往返运动25次,得涂覆有厚度为90nm的低折射率吸收层(TiCrNxOy膜)的铝箔片;
(6)磁控溅射设备中沉积减反射层Cr2O3薄膜,制备工艺参数如下:
靶材为Cr靶(4N),脉冲直流电源溅射功率为2500w,工作气压为2.5mTorr, 工作气体Ar流量为200sccm,反应气体O2流量为10sccm,步骤(5)制得的涂覆有低折射率吸收层(TiCrNxOy膜)的铝箔片传输速率为1.0m/min,铝箔片在靶下往返运动15次,得涂覆有厚度为15nm的反射层(Cr2O3)的铝箔片;
(7)磁控溅射设备中沉积减反射层SiO2薄膜,制备工艺参数如下:
靶材为旋转Si靶(4N),射频电源溅射功率为2500w,工作气压为6.0mTorr,工作气体流量为200sccm,反应气体O2流量为30sccm,步骤(6)制得的涂覆反射层(Cr2O3)的铝箔片传输速率为0.5m/min,铝箔片在靶下往返运动20次,得涂覆有厚度为30nm的反射层(SiO2)的铝箔片即得到一种耐高温太阳能选择性吸收涂层。

Claims (2)

1.一种耐高温太阳能选择性吸收涂层,包括现有金属基底,其特征在于:在金属基底上,从下到上还分别有三层:高红外反射层、吸收层和减反射层;
所述高红外反射层为Ti涂层,厚度为20-40nm;
所述吸收层自下而上依次包括高折射率吸收层TiCrN膜和低折射率吸收层TiCrNxOy膜,其中TiCrN膜的厚度为70-100nm,TiCrNxOy膜的厚度为80-100nm;所述减反射层自下而上依次包括Cr2O3膜和SiO2膜,其中Cr2O3膜的厚度为10-20nm,SiO2膜的厚度为20-30nm;
在300-2500nm范围内,TiCrN膜的折射率为2.66-3.53,TiCrNxOy膜折射率为1.76-2.44;在300-2500nm范围内,TiCrN膜的消光系数为0.65-3.57,TiCrNxOy膜的消光系数为0.05-1.34;
所述选择性吸收涂层的中高温200℃ -400℃发射率ε<4%,吸收率α>90%。
2.一种耐高温太阳能选择性吸收涂层制备方法,采用磁控溅射法为镀膜方法,其特征在于包括以下步骤:
a.选择厚度为0.15-10mm的铝、铜或不锈钢基片材料;
b.选用靶材为铝靶、金靶、银靶或镍靶,工作气体为惰性气体氩气(Ar),控制脉冲直流电源溅射功率为2000-3000w,工作气压为2.2-2.5mTorr,工作气体Ar流量为150-200sccm,控制步骤a中基片传输速率为0.5~1.6m/min,基片在靶下往返运动10-15次,即可得涂覆有高红外反射层的基片;
c.选用靶材为钛铬合金靶,工作气体为惰性气体氩气(Ar)、氮气和氧气,控制脉冲直流电源溅射功率为2000-3000w,工作气压为2.2-2.6mTorr,工作气体Ar流量为150-200sccm,反应气体N2流量为10-40sccm,控制步骤b制得的基片传输速率为0.5~1.6m/min,基片在靶下往返运动20-40次,可得涂覆有高折射率吸收层TiCrN膜的基片;
d.控制脉冲直流电源溅射功率为2000-3000w,工作气压为2.2-2.6mTorr,工作气体Ar流量为150-200sccm,反应气体N2流量为10-40sccm,反应气体O2流量为5-15sccm,步骤c制得的基片传输速率为0.5~1.6m/min,基片在靶下往返运动15-25次,可得涂覆有低折射率吸收层TiCrNxOy膜的基片;
e.选用靶材为硅靶和铬靶,工作气体为惰性气体氩气(Ar)和氧气,控制脉冲直流电源溅射功率为2000-3000w,工作气压为2.2-2.5mTorr,工作气体Ar流量为150-200sccm,反应气体O2流量为5-15sccm,步骤d制得的基片传输速率为0.5~1.6m/min,基片在靶下往返运动10-20次,可制得涂覆反射层Cr2O3的基片;
f.控制射频电源溅射功率为2000-3000w,工作气压为4.0-6.0mTorr, 工作气体流量为150-200sccm,反应气体O2流量为30-45sccm,步骤e制得的基片传输速率为0.5~1.6m/min,基片在靶下往返运动10-20次,可制得涂覆反射层SiO2的基片即得到一种耐高温太阳能选择性吸收涂层;
在300-2500nm范围内,TiCrN膜的折射率为2.66-3.53,TiCrNxOy膜折射率为1.76-2.44;在300-2500nm范围内,TiCrN膜的消光系数为0.65-3.57,TiCrNxOy膜的消光系数为0.05-1.34;
所述选择性吸收涂层的中高温200℃ -400℃发射率ε<4%,吸收率α>90%。
CN201810570793.9A 2018-06-05 2018-06-05 一种耐高温太阳能选择性吸收涂层及其制备方法 Active CN108468033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810570793.9A CN108468033B (zh) 2018-06-05 2018-06-05 一种耐高温太阳能选择性吸收涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810570793.9A CN108468033B (zh) 2018-06-05 2018-06-05 一种耐高温太阳能选择性吸收涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN108468033A CN108468033A (zh) 2018-08-31
CN108468033B true CN108468033B (zh) 2023-08-22

Family

ID=63260795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810570793.9A Active CN108468033B (zh) 2018-06-05 2018-06-05 一种耐高温太阳能选择性吸收涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN108468033B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643941B (zh) * 2019-10-11 2021-07-20 中国科学院兰州化学物理研究所 在空气中热稳定性能良好的太阳能吸收涂层及其制备方法
CN110701803B (zh) * 2019-10-11 2021-03-23 中国科学院兰州化学物理研究所 一种彩色太阳能吸收涂层及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737983A (zh) * 2009-11-25 2010-06-16 北京航空航天大学 一种太阳光谱选择性吸收涂层及其制备方法
CN102286720A (zh) * 2011-08-23 2011-12-21 北京天瑞星真空技术开发有限公司 一种具有SiO2和Cr2O3的双陶瓷结构高温太阳能选择性吸收涂层及其制备方法
CN104976802A (zh) * 2014-04-11 2015-10-14 太浩科技有限公司 一种太阳光谱选择性吸收涂层及其制备方法
CN106091445A (zh) * 2016-06-06 2016-11-09 南宁可煜能源科技有限公司 一种太阳能选择性吸收涂层
CN106884145A (zh) * 2016-12-28 2017-06-23 北京航空航天大学 一种太阳光谱选择性吸收涂层及其制备方法
CN208472182U (zh) * 2018-06-05 2019-02-05 中建材蚌埠玻璃工业设计研究院有限公司 一种耐高温太阳能选择性吸收涂层

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737983A (zh) * 2009-11-25 2010-06-16 北京航空航天大学 一种太阳光谱选择性吸收涂层及其制备方法
CN102286720A (zh) * 2011-08-23 2011-12-21 北京天瑞星真空技术开发有限公司 一种具有SiO2和Cr2O3的双陶瓷结构高温太阳能选择性吸收涂层及其制备方法
CN104976802A (zh) * 2014-04-11 2015-10-14 太浩科技有限公司 一种太阳光谱选择性吸收涂层及其制备方法
CN106091445A (zh) * 2016-06-06 2016-11-09 南宁可煜能源科技有限公司 一种太阳能选择性吸收涂层
CN106884145A (zh) * 2016-12-28 2017-06-23 北京航空航天大学 一种太阳光谱选择性吸收涂层及其制备方法
CN208472182U (zh) * 2018-06-05 2019-02-05 中建材蚌埠玻璃工业设计研究院有限公司 一种耐高温太阳能选择性吸收涂层

Also Published As

Publication number Publication date
CN108468033A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
CN101737983B (zh) 一种太阳光谱选择性吸收涂层的制备方法
CN201218622Y (zh) 一种太阳能选择性吸收涂层
CN104005003B (zh) 一种大气中耐高温、耐盐雾的太阳能选择性吸收涂层及其制备方法
CN102501459B (zh) 一种中高温太阳能选择性吸收涂层的制备方法
CN106884145B (zh) 一种太阳光谱选择性吸收涂层及其制备方法
CN111962023B (zh) 一种光谱选择性反射膜及其制备方法
CN108468033B (zh) 一种耐高温太阳能选择性吸收涂层及其制备方法
CN100532997C (zh) 一种太阳能选择性吸收涂层及其制备方法
CN105299935A (zh) 一种太阳光谱选择性吸收涂层及其制备方法和集热器
CN102569433A (zh) 薄膜太阳电池用复合背反射金属电极及其制备方法和应用
CN107270564B (zh) 一种太阳光热吸收涂层
CN103029374A (zh) 一种中高温太阳能光热选择性吸收涂层
CN204535163U (zh) 一种太阳光谱选择性吸收涂层和集热器
CN108917210A (zh) 一种自掺杂纳米复合光热转换涂层及其制备方法
CN103255377B (zh) 一种纳米复合Cr-Al-O太阳光谱选择吸收涂层及其制备方法
CN111172506A (zh) 一种Ti掺杂氧化钛复合太阳能选择性吸收涂层及其制备方法
CN106500374A (zh) 一种双相纳米复合太阳能吸收涂层及制造方法
CN109457219B (zh) 一种中低温太阳光谱选择性吸收涂层及其制备方法
CN109341116A (zh) 一种Cr-Si-N-O太阳能选择性吸收涂层及其制备方法
CN105568238B (zh) 具有太阳能选择性吸收薄膜膜系的制备方法
CN102305484A (zh) 具有陷光结构的太阳能集热管
CN1584445A (zh) NiCrOXNY太阳光谱选择性吸收薄膜及制备方法
CN208472182U (zh) 一种耐高温太阳能选择性吸收涂层
CN106403329A (zh) 高温太阳能选择性吸收涂层及其制备方法
CN108441836B (zh) 一种中高温太阳能选择性吸收涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 233010 Tushan Road 1047, Yuhui District, Bengbu City, Anhui Province

Applicant after: China Building Materials Glass New Materials Research Institute Group Co.,Ltd.

Address before: 233010 Tushan Road 1047, Yuhui District, Bengbu City, Anhui Province

Applicant before: CHINA BUILDING MATERIALS BENGBU GLASS INDUSTRY DESIGN & RESEARCH INSTITUTE Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant