CN108467428A - 一种清除rhNGF中N端截短及异常变异体的方法 - Google Patents

一种清除rhNGF中N端截短及异常变异体的方法 Download PDF

Info

Publication number
CN108467428A
CN108467428A CN201810253680.6A CN201810253680A CN108467428A CN 108467428 A CN108467428 A CN 108467428A CN 201810253680 A CN201810253680 A CN 201810253680A CN 108467428 A CN108467428 A CN 108467428A
Authority
CN
China
Prior art keywords
rhngf
buffer
cation
cleaning solution
elution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810253680.6A
Other languages
English (en)
Inventor
刘文超
孙洪亮
张怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xintrum Pharmaceuticals Ltd
Original Assignee
Xintrum Pharmaceuticals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xintrum Pharmaceuticals Ltd filed Critical Xintrum Pharmaceuticals Ltd
Priority to CN201810253680.6A priority Critical patent/CN108467428A/zh
Publication of CN108467428A publication Critical patent/CN108467428A/zh
Priority to PCT/CN2018/114563 priority patent/WO2019184370A1/zh
Priority to US17/030,306 priority patent/US20210002341A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/48Nerve growth factor [NGF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types

Abstract

一种清除rhNGF中N端截短及异常变异体的方法,使用阳离子交换层析进行,特别是采用了阶段电导升高的方法进行。实验证实,经过本发明方法的纯化,纯化产物中的N端截短及异常变异体含量大幅降低。

Description

一种清除rhNGF中N端截短及异常变异体的方法
技术领域:
本发明涉及一种清除rhNGF中N端截短及异常变异体的方法,特别是采用阶段电导升高的方法清除N端截短及异常分子变异体的方法。
背景技术:
从真核表达系统中国仓鼠卵巢(CHO)细胞表达的重组人神经生长因子(以下亦称rhNGF)中往往含有变异体,“变异体”指胞内分泌过程中翻译后修饰或分泌后氨基酸残基侧链发生化学反应或肽链降解而形成的一系列蛋白。
rhNGF在体内以前体形式合成。由于弗林蛋白酶或激素酶原转化酶加工不完全会产生完全或部分前体,统称为前体变异体。除前体外,由于真核细胞特性,还会产生诸如N端截短、氧化、脱酰胺、异构、C末端截短、异常等变异体。
其中“N端截短”,指由于翻译后加工导致N端部分氨基酸缺失的序列分子。在本文中,“N端截短”特指6-117序列分子。
“异常”,指由于翻译后加工导致结构异常(疏水核心暴露)、二硫键异常(错配)、异常氧化(疏水核心位点氧化)变异体的统称。一般而言,异常变异体在RP-HPLC分析中出现在主峰1-117后,在WCX-HPLC中出现在主峰1-117之前。
现有技术的层析方法虽然能够除去rhNGF中的许多过程相关杂质(如宿主细胞蛋白及核酸),但是很难除去作为产品相关杂质的rhNGF变异体,其中上文所述“N端截短”及“异常”变异体是主要种类。因为这些变异体通常与成熟rhNGF一同产生,与rhNGF产品理化性质相近,使得rhNGF大规模纯化比较困难。
目前,对rhNGF进行纯化的报道有:
专利CN102702341A采用阳离子交换及分子筛(Superdex 75)两步方法制备了纯度大于98%的rhNGF。但该阳离子交换步骤只用于清除宿主细胞蛋白等过程杂质。专利CN106478801A采用阳离子交换及疏水层析(优选苯基)两步方法制备的纯度大于99%的rhNGF。同样该阳离子交换步骤用于捕获产品,目的是清除宿主细胞蛋白等过程杂质。
专利CN1268639C采用高效阳离子交换以线性梯度洗脱方式分离rhNGF氧化、异构、脱酰胺等变异体,达到了较好的效果。
以上这些方法均未涉及清除N端截短及异常变异体,且层析步骤采用线性梯度的洗脱方式。而线性梯度洗脱方式通常需要双泵层析系统,对设备要求较高,不利于大规模工业生产。
发明内容
本发明的目的是清除重组人神经生长因子中N端截短及异常变异体。
N端截短及异常变异体是影响重组人神经生长因子质量最关键的杂质,必须加以清除。
本发明分析了rhNGF及其变异体的理化性质,发现在弱阳离子交换高效液相色谱(WCX-HPLC)分析中,N端截短及异常变异体出峰在主峰前,显示了其具有较低的等电点。因此,在本发明在用阳离子交换层析的纯化工艺中,采用阶段升高电导率的方法清除N端截短及异常变异体,效果良好。
具体操作方法如下:
一种清除rhNGF中N端截短及异常变异体的方法,其特征是:
1)先用清洗液对加载到阳离子交换材料上的rhNGF原料进行清洗,得到清除N端截短及异常变异体的原料;所述清洗液是电导率高于原料的清洗缓冲液;
2)用电导率高于步骤1)所述清洗液的洗脱缓冲液对步骤1)清洗过的原料进行的阳离子交换层析洗脱步骤,收集洗脱液,从中得到的rhNGF纯品.
步骤1)中所述清洗液的电导为20-30ms/cm。
步骤1)中所述清洗液是含NaCl的缓冲液,NaCl的含量是200~300mM;pH与rhNGF原料的pH范围相同,通常是5.5-6.5;
清洗体积为7-10CV,优选采用8CV。
步骤1)的方法是将所述rhNGF原料加载于层析柱阳离子交换材料中,用清洗液清洗,弃去流出的液体。
步骤1)中所述rhNGF原料,是将CHO细胞培养物经过一次或多次柱层析得到的初步纯化产物。所述CHO细胞培养物是中国仓鼠卵巢(CHO)细胞重组宿主细胞培养物表达的重组生产的人神经生长因子;
所述初步纯化产物虽然用现有技术方法经过至少一次柱层析纯化,仍含有常规手段难以去除的重组人神经生长因子变异体(如N端截短、前体及异常变异体等)以及其它大量污染物。所述柱层析的方式不限,按本领域技术人员熟知的所有柱层析方法均可进行。例如,疏水作用层析、阴离子交换层析、其它阳离子交换层析或混合模式离子交换层析。
步骤2)所用的洗脱缓冲液是含NaCl的缓冲液,洗脱缓冲液应同时满足以下条件:
A电导高于步骤1)中清洗液的电导;
B NaCl的含量是350~600mM。
洗脱缓冲液的电导为35-60ms/cm。
清洗液和洗脱缓冲液所用的缓冲盐选自乙酸钠、磷酸盐、MES或MOPSO。
通过加盐方式调节所述电导;所述盐选自氯化钠、氯化钾、硫酸钠或乙酸钠。
层析介质阳离子交换配基为丙磺基。
所述“清洗”,指清洗缓冲液流过阳离子交换材料,弃去流出的液体(可带走部分杂质)。
所述“洗脱”,指洗脱缓冲液流过阳离子交换材料,收集流出的液体(含纯化目标产品。
本发明人对层析材料进行了研究。本发明试验的阳离子交换材料包含高交联琼脂糖固相,例如来自GE的SP HP或苯乙烯-二乙烯基苯固相,例如来自Applied Biosystems的POROS 50HS柱,对于固相颗粒粒径较大的其它阳离子交换材料,例如来自GE的Capto S,对变异体的清除效果不明显。经实验发现,层析介质阳离子交换配基为丙磺基较好。
在本发明的一个实例中,阳离子交换纯化方案通常包括以下按序步骤:(1)平衡阳离子交换材料;(2)将组合物加载到阳离子交换材料;(3)使用平衡缓冲液进行顶洗;(4)使用清洗缓冲液进行中间清洗;(5)使用洗脱缓冲液洗脱,得到期望的重组人神经生长因子纯化产物。
通常,在将包含重组人神经生长因子和一种或多种分子变异体的粗品加载到阳离子交换材料上之前,使平衡缓冲液流过所述材料。在本发明的优选实施方案中,平衡缓冲液具有约5.5至6.5的pH,例如约pH 6.2。一种示例性的平衡缓冲液包含20mM MES,110mMNaCl,pH 6.2。
平衡后,将包含重组人神经生长因子和一种或多种分子变异体的组合物加载到阳离子交换材料上,所述组合物的pH在pH5.5至pH6.5范围中,例如pH5.8或pH6.2,电导在10-14ms/cm范围中,例如13ms/cm。在一个实施方案中,将来自疏水层析洗脱的组合物加载到阳离子交换层析,加载密度约1-5g/L树脂,重组人神经生长因子与变异体结合至阳离子交换填料,大部分宿主细胞蛋白(HCP)流穿。
加载后,使用平衡缓冲液进行顶洗,顶洗条件与平衡步骤相同,一般进行顶洗2-3个柱体积。
顶洗结束后,使用清洗缓冲液清洗阳离子交换材料。在清洗过程中清洗缓冲液流过阳离子交换材料。清洗缓冲液组成一般选择成自树脂洗脱尽可能多的分子变异体(N端截短及异常),而不洗脱期望的得到的重组人神经生长因子。清洗缓冲液pH控制在5.5-6.5范围内,例如约pH5.8或pH6.2,电导率控制在20-30ms/cm范围内,例如约29ms/cm。在此pH范围中缓冲的缓冲盐例子包括但不限于MES、MOPOS、乙酸钠、磷酸盐等。优选的清洗缓冲液包括20mM MES,290mM NaCl,pH5.8或20mM PB,220mM NaCl,pH6.2。
在所述清洗步骤后,自阳离子交换材料洗脱期望的重组人神经生长因子。重组人神经生长因子的洗脱可以通过提高电导率或离子强度来实现。洗脱缓冲液电导率需大于约35ms/cm,升高的电导率可以通过在洗脱缓冲液中包含相对较高的盐浓度来实现。用于此目的的盐的例子包括但不限于氯化钠、氯化钾、乙酸钠。在一个实施方案中,所述洗脱缓冲液包含约350至约6000mM NaCl。洗脱缓冲液一般与清洗缓冲液具有大致相同的pH。一种优选的洗脱缓冲液包含20mM MES,0.4M NaCl,pH 6.2。另一种优选的洗脱缓冲液包含20mM PB,0.5M NaCl,pH6.2。
虽然涵盖别的其它步骤,但优选的是,本文中的阳离子交换纯化方法只由下列步骤组成:平衡,加载包含重组人神经生长因子及分子变异体的组合物,用于洗脱分子变异体的清洗步骤,和洗脱重组人神经生长因子的洗脱步骤。
如果必要,依照本文中的阳离子交换层析方法获得的重组人神经生长因子制备物可以进行别的纯化。上文已经讨论了示例性的进一步纯化步骤。
本发明的优点:
采用阶段清洗+洗脱的方式,区别于现有技术的线性梯度洗脱;
通过阶段电导增加的方式(即,在清洗阶段,清洗缓冲液的电导率高于待纯化的粗品;在洗脱阶段,洗脱缓冲液的电导率高于清洗缓冲液)清除分子变异体。
经实验证实,用本发明方法对N端截短(6-117)及异常分子变异体的清除效果好(见实施例)。
附图说明
图1和图2:Capto S及SP HP填料清除变异体能力对比
两种离子交换层析材料清除变异体(N端截短及异常)能力的对比,相较于CaptoS,SP HP提供了卓越的变异体清除能力。
图3:阳离子交换材料纯化重组人神经生长因子过程图
提供了阳离子交换层析的纯化过程,该过程一般分为平衡、加载、清洗及洗脱。
图4:阳离子交换纯化过程清洗样品及洗脱样品RP-HPLC对比分析
提供了阳离子交换层析过程样品的RP-HPLC分析结果,结果显示清洗过程清除了N端截短及异常变异体。
图5:变异体清除率及样品回收率数据总结
提供了多批次阳离子交换层析数据统计结果,结果显示了良好的变异体清除率及产品回收率,显示本发明具有良好的工艺性能。
具体实施方式
以下实施例仅用于举例说明本发明的方法和装置,并不限定本发明的范围。
以下提到的术语,其意义如下:
“1-118”、“1-117”、“6-117”指重组人神经生长因子不同的序列分子,“1-118”指从第1位氨基酸至第118位氨基酸的序列分子,“1-117”指从第1位氨基酸至第117位氨基酸的序列分子,“6-117”指从第6位氨基酸至第117位氨基酸的序列分子。
“污染物”指与期望的重组人神经生长因子不同的过程相关杂质。污染物包括但不限于:宿主细胞物质,诸如中国仓鼠卵巢细胞蛋白质,核酸;内毒素;病毒污染物;细胞培养基成分。
“阳离子交换材料”指带有负电荷且有游离阳离子供与流过该固相的水溶液中阳离子交换的固相。商品化的阳离子交换材料包括在琼脂糖上固定化丙磺基(SP)、磺酰基(S)或经磺丙基官能化多羟基化聚合物包被的交联聚苯乙烯-二乙烯基苯固相颗粒等。
“载荷”指加载到阳离子交换材料上的组合物。
“平衡缓冲液”指用在将所述组合物加载到阳离子交换材料上之前平衡阳离子交换材料的缓冲液。
“再生缓冲液”可用于再生阳离子交换填料,使它能够再次使用。再生缓冲液具有自阳离子交换填料清除基本上所有污染物及重组人神经生长因子的电导率和pH。
“电导率”指水溶液在两个电极之间传导电流的能力。溶液电导率可以通过改变溶液的离子浓度来改变。
“顶洗”指在所述组合物加载后,使用平衡缓冲液将所述组合物从阳离子交换柱洗出的过程。
MES为2-(N-吗啉)乙磺酸,MOPOS是3-(N-吗啉)-2-羟基丙磺酸,RP-HPLC是反相高效液相色谱,WCX-HPLC为弱阳离子交换高效液相色谱,PB指磷酸盐缓冲液,TFA是三氟乙酸。
实施例1重组人神经生长因子的阳离子交换层析工艺
1.1此实施例描述用于纯化重组人神经生长因子的阳离子交换层析工艺。
此实例总结了对改良重组人神经生长因子阳离子交换步骤实施的发展研究。在这些研究中评估了两种阳离子交换填料:Capto S及SP Sepharose High Performance。对两种离子交换填料进行清除分子变异体(N端截短及异常)研究,发现SP Sepharose HighPerformance具有显著地清除分子变异体的工艺性能(见图1和图2),用于改良的纯化重组人神经生长因子的阳离子交换树脂。
以结合-洗脱模式操作层析柱,在环境温度中进行。所述层析柱使用阳离子交换树脂(SP Sepharose High Performance)。该树脂由偶联有带负电荷的官能团的高交联琼脂糖基质组成。将阳离子交换树脂装填入柱至9-11cm的床高度。在加载疏水层析洗脱产物前,使用平衡缓冲液将阳离子交换柱中的贮存液清洗出,并且进行柱平衡。将疏水层析洗脱产物加载到经过平衡的层析柱上,产物结合在树脂上。加载后,使用平衡缓冲液进行顶洗,将未结合载荷洗出。顶洗结束后,使用清洗缓冲液进行清洗,以清除分子变异体。然后使用更高电导率的洗脱缓冲液进行最多5CV的洗脱,收集洗脱产物。洗脱后,使用再生缓冲液(1MNaCl)及清洁液(0.5N NaOH)清洁柱子,之后在贮存液中贮存,直至下次使用(见图3)。
下表提供了本文中发明的重组人神经生长因子工艺条件的描述。
表1重组人神经生长因子工艺
1.2纯化产物分析
采用RP-HPLC方法分析重组人神经生长因子回收率及分子变异体清除率。具体方法为
使用Thermo UltiMate 3000二元HPLC系统分析。色谱柱为Agilent C3RRHD,规格为2.1*100mm。流动相A为含0.1%TFA的水溶液,流动相B为含0.1%TFA乙腈溶液,梯度以A相比例计为0min 95%,2min 95%,4min 73%,16min 63%,18min 5%,20min 5%,22min95%,24min 95%。流速0.5mL/min,检测波长280/214nm。比例计算采用面积归一化方法。重组人神经生长因子分子由两个亚基(肽链)通过非共价键结合而成。在反相分析中,由于有机溶剂,两个亚基会解离,故峰对应的是亚基类型。对纯化过程中的清洗及洗脱样品进行RP-HPLC分析。
结果如图4所示。由图中可见清洗样品与洗脱样品在N端截短及异常变异体上的差异,经过本发明方法的纯化,产品中的N端截短及异常变异体含量大幅降低。
1.3数据统计分析
根据RP-HPLC对上样前组合物及洗脱产物的分析,统计变异体的清除率及产品的回收率,按下式计算:
变异体清除率=(1-洗脱产物变异体比例/上样前组合物变异体比例)*100%;
产品回收率=(洗脱产物单位进样量主峰峰面积*洗脱体积)/(上样前组合物单位进样量主峰峰面积*装载上样体积)*100%。对多批次阳离子交换层析工艺进行数据分析。
分析结果为:对变异体的清除率52%±9%,产品回收率76%±7%。如图5所示。
结论:本发明的方法工艺性能良好。

Claims (10)

1.一种清除rhNGF中N端截短及异常变异体的方法,其特征是:
1)先用清洗液对加载到阳离子交换材料上的rhNGF原料进行清洗,得到清除N端截短及异常变异体的原料;所述清洗液是电导率高于原料的清洗缓冲液;
2)用电导率高于步骤1)所述清洗液的洗脱缓冲液对步骤1)清洗过的原料进行阳离子交换层析洗脱步骤,收集洗脱液,从中得到的rhNGF纯品。
2.权利要求1所述的方法,步骤1)中所述清洗液的电导为20-30ms/cm。
3.权利要求1所述的方法,步骤1)中所述清洗液是含NaCl的缓冲液,NaCl的含量是200~300mM。
4.权利要求1所述的方法,步骤1)的方法是将所述rhNGF原料加载于层析柱阳离子交换材料中,用清洗液清洗,弃去流出的液体。
5.权利要求1所述的方法,步骤1)中所述rhNGF原料,是将CHO细胞培养物经过一次或多次柱层析得到的初步纯化产物。
6.权利要求1所述的方法,步骤2)所用的洗脱缓冲液是含NaCl的缓冲液,洗脱缓冲液应同时满足以下条件:
A电导高于步骤1)中清洗液的电导;
B NaCl的含量是350~600mM。
7.权利要求6所述的方法,洗脱缓冲液的电导为35-60ms/cm。
8.权利要求1或3所述的方法,清洗液和洗脱缓冲液所用的缓冲盐选自乙酸钠、磷酸盐、MES或MOPSO。
9.权利要求1~7任一所述的方法,通过加盐方式调节所述电导;所述盐选自氯化钠、氯化钾、硫酸钠或乙酸钠。
10.权利要求1所述的方法,层析介质阳离子交换配基为丙磺基。
CN201810253680.6A 2018-03-26 2018-03-26 一种清除rhNGF中N端截短及异常变异体的方法 Pending CN108467428A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810253680.6A CN108467428A (zh) 2018-03-26 2018-03-26 一种清除rhNGF中N端截短及异常变异体的方法
PCT/CN2018/114563 WO2019184370A1 (zh) 2018-03-26 2018-11-08 一种清除rhNGF中N端截短及异常变异体的方法
US17/030,306 US20210002341A1 (en) 2018-03-26 2020-09-23 Method for removing n-terminal truncated and abnormal variants in rhngf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810253680.6A CN108467428A (zh) 2018-03-26 2018-03-26 一种清除rhNGF中N端截短及异常变异体的方法

Publications (1)

Publication Number Publication Date
CN108467428A true CN108467428A (zh) 2018-08-31

Family

ID=63265819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810253680.6A Pending CN108467428A (zh) 2018-03-26 2018-03-26 一种清除rhNGF中N端截短及异常变异体的方法

Country Status (3)

Country Link
US (1) US20210002341A1 (zh)
CN (1) CN108467428A (zh)
WO (1) WO2019184370A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237184A (zh) * 1996-11-15 1999-12-01 基因技术股份有限公司 神经营养蛋白的纯化
EP0994188A1 (de) * 1998-10-09 2000-04-19 Rainer Dr. Rudolph Verfahren zur Gewinnung von aktivem Beta-NGF
EP2135951A4 (en) * 2007-03-07 2010-09-08 Staidson Beijing Pharmaceutica TRANSGENIC NAILS WITH NGF BETA-GENE MUTANESES AND METHOD OF PREPARATION THEREOF, METHOD FOR PRODUCING SUCH MUTANT PROTEINS AND MUTANT PROTEINS OBTAINED
CN102702341A (zh) * 2012-06-18 2012-10-03 北京华安科创生物技术有限公司 基于cho细胞表达系统的重组人神经生长因子纯化方法
CN105315369A (zh) * 2014-07-25 2016-02-10 山东博安生物技术有限公司 利用阳离子交换层析纯化蛋白质
CN106478801A (zh) * 2016-10-10 2017-03-08 未名生物医药有限公司 一种从哺乳动物细胞培养物中分离重组人神经生长因子的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663899B2 (en) * 1997-06-13 2003-12-16 Genentech, Inc. Controlled release microencapsulated NGF formulation
US8053569B2 (en) * 2005-10-07 2011-11-08 Armagen Technologies, Inc. Nucleic acids encoding and methods of producing fusion proteins
CN103880943A (zh) * 2014-01-20 2014-06-25 厦门北大之路生物工程有限公司 一种rhNGF成熟肽的制备方法
CN108239146A (zh) * 2018-03-26 2018-07-03 江苏中新医药有限公司 一种高纯度rhNGF的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237184A (zh) * 1996-11-15 1999-12-01 基因技术股份有限公司 神经营养蛋白的纯化
EP0994188A1 (de) * 1998-10-09 2000-04-19 Rainer Dr. Rudolph Verfahren zur Gewinnung von aktivem Beta-NGF
EP2135951A4 (en) * 2007-03-07 2010-09-08 Staidson Beijing Pharmaceutica TRANSGENIC NAILS WITH NGF BETA-GENE MUTANESES AND METHOD OF PREPARATION THEREOF, METHOD FOR PRODUCING SUCH MUTANT PROTEINS AND MUTANT PROTEINS OBTAINED
CN102702341A (zh) * 2012-06-18 2012-10-03 北京华安科创生物技术有限公司 基于cho细胞表达系统的重组人神经生长因子纯化方法
CN105315369A (zh) * 2014-07-25 2016-02-10 山东博安生物技术有限公司 利用阳离子交换层析纯化蛋白质
CN106478801A (zh) * 2016-10-10 2017-03-08 未名生物医药有限公司 一种从哺乳动物细胞培养物中分离重组人神经生长因子的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANDREW A等: "Identification, purification, and characterization of truncated forms of the human nerve growth factor receptor.", 《THE JOURNAL OF BIOLOGICAL CHEMISTRY》 *
LI XU等: "Expression, purification, and characterization of recombinant mouse nerve growth factor in Chinese hamster ovary cells", 《PROTEIN EXPRESSION AND PURIFICATION》 *
PHILIPP KAHLE等: "The amino terminus of nerve growth factor is involved in the interaction with the receptor tyrosine kinase p140trkA.", 《THE JOURNAL OF BIOLOGICAL CHEMISTRY》 *
李佳楠等: "重组人β-神经生长因子在昆虫细胞中的表达、纯化及其生物学活性", 《中国生物制品学杂志》 *
高向东等: "离子交换树脂CM_FF在神经生长因子分离_纯化中的应用", 《离子交换与吸附》 *

Also Published As

Publication number Publication date
WO2019184370A1 (zh) 2019-10-03
US20210002341A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US20210070821A1 (en) Method for preparing highly pure rhngf
KR101482791B1 (ko) 약한 분배성 크로마토그래피법
EP3247718B1 (en) Modulation of charge variants in a monoclonal antibody composition
US7476722B2 (en) Methods for purifying protein
EP2791176B1 (en) A method of antibody purification
JP5036679B2 (ja) タンパク質精製方法
EP3040346B1 (en) Process for the purification of granulocyte colony stimulating factor, g-csf
EP0313343B1 (en) Method of purifying protein
EP2695889A1 (en) Protein purification by ion exchange
US5451662A (en) Method of purifying protein
KR20180081605A (ko) 개선된 단백질 분리를 위한 반대 pH-염 구배
Hagel et al. Properties, in theory and practice, of novel gel filtration media for standard liquid chromatography
CN108467428A (zh) 一种清除rhNGF中N端截短及异常变异体的方法
US11220525B2 (en) Method for dynamically removing recombinant human nerve growth factor precursor by hydrophobic interaction chromatography
DE69432706T2 (de) Verfahren zur reinigung von "basic" fibroblasten wachstumsfaktor
WO2019129877A1 (en) Process for providing pegylated protein composition
WO2010149367A1 (en) Characterization of re-useable chromatography equipment
CN113563469A (zh) 高回收率纯化阿达木单抗的方法
CA2592014C (en) Purified rhigf-i/rhigfbp-3 complexes and their method of manufacture
EP4234695A1 (en) Methods for the selective removal of contaminants during a process of purifying biologic agents
Adachi et al. Ion-exchange high-performance liquid chromatographic separation of protein variants and isoforms on MCI GEL ProtEx stationary phases
Olson et al. Applications of ultrafast HPLC to process development of recombinant DNA‐derived proteins
KR100400638B1 (ko) 재조합 인간 성장호르몬 유사체의 분리방법
Peters et al. Mixed-mode chromatography in downstream process development
Ng-Kwai-Hang et al. Semipreparative isolation of bovine casein components by high performance liquid chromatography

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Liu Wenchao

Inventor after: Sun Hongliang

Inventor after: Zhang Yi

Inventor after: Wang Yuesheng

Inventor before: Liu Wenchao

Inventor before: Sun Hongliang

Inventor before: Zhang Yi

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180831