CN108463340B - 具有优异的可成形性的高强度钢板及其制造方法 - Google Patents

具有优异的可成形性的高强度钢板及其制造方法 Download PDF

Info

Publication number
CN108463340B
CN108463340B CN201780006864.6A CN201780006864A CN108463340B CN 108463340 B CN108463340 B CN 108463340B CN 201780006864 A CN201780006864 A CN 201780006864A CN 108463340 B CN108463340 B CN 108463340B
Authority
CN
China
Prior art keywords
steel sheet
less
temperature
equal
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780006864.6A
Other languages
English (en)
Other versions
CN108463340A (zh
Inventor
埃列娜·乌塔
韦罗尼克·赫伯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN108463340A publication Critical patent/CN108463340A/zh
Application granted granted Critical
Publication of CN108463340B publication Critical patent/CN108463340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种经冷轧并经热处理的钢板,其组成包含:0.17%≦碳≦0.24%、1.9%≦锰≦2.2%、0.5%≦铝≦1.2%、0.5%≦硅≦1%、0.05%≦铬≦0.2%、0.015%≦铌≦0.03%、硫≦0.003%、磷≦0.03%,并且任选地含有0.005%≦钛≦0.05%、0.001%≦钼≦0.05%,剩余组成由铁和由加工引起的不可避免的杂质构成,其中Si+Al≥1.3%,剩余部分由铁和产生不可避免的杂质组成,以面积分数计,经涂覆的钢板的显微组织包含10%至20%的残余奥氏体,所述奥氏体相的碳含量为0.9%至1.1%;40%至55%的多边形铁素体;15%至40%的粒状贝氏体和至少5%的回火马氏体,回火马氏体和残余奥氏体的总和为20%至30%。

Description

具有优异的可成形性的高强度钢板及其制造方法
本发明涉及适用于制造汽车的具有优异的机械特性的钢板及其制造方法,特别地本发明具有高可成形性以及高强度。
近年来,从全球环境保护的角度来看,对燃料经济性和碳足迹的增加的重视需要减轻汽车的重量;因此需要开发具有较高的强度、延伸率和可接受的机械特性的钢板。因此,要求汽车钢部件满足通常认为难以一起获得的两种特性:一方面高可成形性和延展性以及另一方面高抗拉强度。
已经进行了深入研究和开发努力以通过增加材料的强度来减小汽车重量的量。相反地,钢板强度的增加降低了可成形性,因此需要开发具有高强度和高可成形性二者的材料。
因此,已经开发了具有优异的可成形性的高强度钢例如TRIP(“转变诱导塑性”)钢。TRIP钢由于其复杂的组织(包含随应变逐步转变的奥氏体)而提供了机械强度与可成形性之间的良好平衡。TRIP钢还可以包含铁素体(其是延性组分)和诸如贝氏体以及马氏体和奥氏体(MA)岛的组分。TRIP钢具有非常高的固结能力,这使得在碰撞的情况下或甚至在汽车部件的成形期间良好的变形分布成为可能。因此可以制造与由常规钢制成的部件一样复杂但具有改善的机械特性的部件,这进而使得可以减小部件的厚度以符合机械性能方面的相同功能规格。因此,这些钢是对减轻车辆重量和提高安全性的要求的有效响应。在热轧或冷轧钢板领域中,其中,这种类型的钢可应用于机动车辆的结构和安全部件。已经进行了一些尝试以提供具有高强度和高可成形性的钢,这已经导致多种高强度和高可成形性钢以及用于生产高强度和高可成形性钢板的方法。
US9074272描述了具有以下化学组成的钢:0.1%至0.28%C、1.0%至2.0%Si、1.0%至3.0%Mn,剩余部分由铁和不可避免的杂质组成。显微组织包含9%至17%的残余奥氏体、40%至65%的贝氏体铁素体、30%至50%的多边形铁素体和小于5%的马氏体。其是指具有优异的延伸率的冷轧钢板,但US9074272中描述的发明未能实现现在对于许多结构汽车部件所要求的900MPa的抗拉强度。
US 2015/0152533公开了用于生产高强度钢的方法,该钢包含C:0.12%至0.18%,Si:0.05%至0.2%,Mn:1.9%至2.2%,Al:0.2%至0.5%,Cr:0.05%至0.2%,Nb:0.01%至0.06%,P:≦0.02%,S:≦0.003%,N:≦0.008%,Mo:≦0.1%,B:≦0.0007%,Ti:≦0.01%,Ni:≦0.1%,Cu:≦0.1%,以及作为剩余部分的铁和不可避免的杂质。钢板的显微组织由50体积%至90体积%的铁素体(包括贝氏体铁素体)、5体积%至40体积%的马氏体、最多至15体积%的残余奥氏体和最多至10体积%的其他组织成分组成。即使US2015/0152533中公开的钢包含大量马氏体(即最多至40%),该钢也未能实现900MPa的抗拉强度水平。
此外,文献JP 2001/254138描述了具有以下化学组成的钢:0.05%至0.3%C、0.3%至2.5%Si、0.5%至3.0%Mn和0.001%至2.0%Al,剩余部分由铁和不可避免的杂质组成。组织包含其中碳的质量浓度大于或等于1%且体积分数为3%至50%的残余奥氏体以及50%至97%的量的铁素体。本发明不能用于制造需要与高延展性有关的特定机械强度以形成用于机动车辆的复杂结构部件的钢。
此外,EP2765212提出了具有优异的延展性和拉伸凸缘性的高强度钢板,以面积比计,所述钢板的显微组织由以下组成:5%至70%的马氏体、5%至40%的面积比的残余奥氏体、5%或更大的面积比的上贝氏体中的贝氏体铁素体,其总计为40%或更多,25%或更多的马氏体为回火马氏体,多边形铁素体面积比高于10%且低于50%。
因此,鉴于上述公布,本发明的目的是提供使得能够获得较高的重量减轻与适应当前的汽车制造实践以生产复杂的汽车部件和构件的能力的钢板。
本发明的目的是通过制造同时具有以下的可用的冷轧钢板来解决这些问题:
-大于或等于980MPa并且优选高于1050MPa,或甚至高于1100MPa的最终的抗拉强度TS,
-高于550MPa的屈服强度,
-等于或高于0.60的屈服比,
-大于或等于17%并且优选高于19%的总延伸率TE,
-高于或等于18%的扩孔率(根据ISO标准16630:2009测量)。
优选地,这样的钢具有良好的成形适用性(特别是对于轧制)以及良好的可焊接性和良好的涂覆性能。
本发明的另一个目的是制造耐液体金属脆化开裂性优异的钢。
本发明的另一个目的还在于使用于制造这些板的方法可用,所述方法与常规的工业应用相容,同时对于制造参数的一些小变化不太敏感。
图1是示出了本发明的钢的显微组织的显微照片。回火马氏体和奥氏体呈现为浅色成分,剩余部分为铁素体和粒状贝氏体。
图2A示出了本发明的钢板中的回火马氏体的均匀分布,而图2B示出了参考钢板中的马氏体的非均匀分布。
根据本发明的钢板显示出将详述的特定组成。
碳以0.17%至0.24%存在于本发明的钢中。碳在显微组织的形成以及通过TRIP效应的强度和延展性中发挥重要作用:当碳低于0.17%时,不可能获得显著的TRIP效应。高于0.24%,可焊接性降低。碳含量有利地为0.20%至0.24%(包括端值)以同时获得高强度和高延伸率。
在本发明的钢中以1.9%至2.2%(包括端值)的含量添加锰。锰是通过铁素体中的固溶置换来提供硬化的元素。需要1.9重量%的最小含量以获得期望的抗拉强度。然而,高于2.2%,锰阻碍了贝氏体的形成并进一步增强了具有减少的碳量的奥氏体的形成,该奥氏体在后期转变为马氏体而不是残余奥氏体,这对所要求的特性是不利的。
将硅以0.5%至1%的量添加到本发明的钢中。硅通过在一次冷却后的均衡步骤期间减缓碳化物的析出(这使得可以将碳浓缩在奥氏体中以用于其稳定)而在显微组织的形成中发挥重要作用。硅与铝组合发挥有效作用,对于指定的特性,由该组合产生的最佳结果是在高于0.5%的含量水平下获得的。然而,以大于1%的量添加硅通过促进粘附于产品表面的氧化物的形成来降低可焊接性而对热浸涂覆性能具有不利影响。其也可通过在点焊期间液体锌渗入奥氏体晶界而导致液体金属脆化。小于或等于1%的含量同时提供了非常好的焊接适用性以及良好的涂覆性能。硅含量优选为0.7%至0.9%(包括端值)以限制形成脆性马氏体而不是贝氏体。
铝通过大大减缓碳化物的析出并使残余奥氏体稳定而在本发明中发挥重要作用。当铝含量为0.5%至1.2%时,获得了该效果。铝含量优选小于或等于0.9%且大于或等于0.7%。通常还认为,高的Al含量会增加耐火材料的侵蚀和在轧制上游的钢铸造期间堵塞喷嘴的风险。铝也负面地偏析并且可以导致宏观偏析。过量时,铝会降低热延性并增加在连铸期间出现缺陷的风险。在没有小心控制铸造条件的情况下,微观偏析缺陷和宏观偏析缺陷最终导致退火钢板中的中心偏析。该中心带将比其周围基体更硬并且将不利地影响材料的可成形性。
除了上述其各自的限制以外,铝和硅的总和必须高于1.3%并且优选高于1.4%,因为两种元素协同地有助于残余奥氏体的稳定,这显著地减缓了退火周期期间,并且最特别是在贝氏体转变期间碳化物的析出。这使得可以获得奥氏体与碳的富集,导致其在室温下在钢板中稳定。
此外,本发明人已发现,当Si/10>0.30%-C(Si和C以重量百分比表示)时,由于LME(液体金属脆化现象),硅对经涂覆的板的点焊并且特别是对镀锌或镀锌扩散退火或电镀锌板的点焊是不利的。LME发生在焊接接头的焊缝金属中和热影响区中的晶界处造成裂纹。因此(C+Si/10)必须保持小于或等于0.30%,特别是如果板待被涂覆的话。
他们还发现,为了减少LME发生,对于所考虑的组成范围,Al含量必须高于或等于6(C+Mn/10)-2.5%。
将铬以0.05%至0.2%的量添加到本发明的钢中。铬像锰一样在促进马氏体形成中提高了淬透性。当铬含量高于0.05%时,达到所要求的抗拉强度是有用的。然而,当铬含量高于0.2%时,贝氏体形成被延迟,使得在均衡步骤期间奥氏体未充分富集碳;实际上,这种奥氏体在冷却至环境温度期间或多或少地完全转变为马氏体,并且延伸率太低。因此,铬含量为0.05%至0.2%。
将铌以0.015至0.03的量添加到本发明的钢中以引发碳氮化物的形成以通过沉淀硬化赋予强度。因为铌在加热期间延迟了再结晶,因此在保持温度结束时并因此在完全退火之后形成的显微组织更细,导致产品硬化。但是,当铌含量高于0.03%时,形成大量的碳氮化物并其倾向于降低钢的延展性。
钛是可以以0.005%至0.05%的量添加到本发明的钢中的任选元素。像铌一样,其析出以形成碳氮化物并且有助于硬化。但其也参与了在铸造产品的固化期间出现的大TiN的形成。因此钛的量限于0.05%以避免对扩孔不利的粗TiN。如果以低于0.005%的量添加钛,则其不会对本发明的钢产生任何影响。
钼是可以以0.001%至0.05%的量添加到本发明的钢中的任选元素。钼可以在提高淬透性、延迟贝氏体形成和避免贝氏体中的碳化物析出方面发挥有效作用。然而,添加钼过度增加了添加合金元素的成本,因此出于经济原因,其含量限于0.05%。
本发明中的硫含量必须保持尽可能低;因此在本发明中硫含量低于或等于0.004%。0.004%或更高的硫含量由于硫化物例如MnS(锰硫化物)的过量存在而降低了延展性,这降低了钢的可加工性,并且也是裂纹产生的来源。
磷可以以最多至0.03%的量存在于本发明的钢中,磷是在固溶体中硬化但显著降低了点焊适用性和热延性的元素。出于这些原因,其含量必须限于0.03%以获得良好的点焊适用性和良好的热延性。
本发明的钢板显示出包括数个相(其量以面积分数给出)的特定显微组织。
多边形铁素体成分赋予本发明的钢提高的延伸率并确保延伸率和扩孔率处于所要求的水平。多边形铁素体是软的且本质上延性的成分。其可以与在冷却步骤期间形成的规则铁素体区分开,由于其具有低的固溶碳含量和非常低的位错密度。多边形铁素体必须至少以40%的量且最多至55%的最大水平存在。多边形铁素体赋予本发明延伸率,由于其与存在的其他硬质相例如回火马氏体相比的柔软性以及由于存在于多边形铁素体中的可能低至0.005%的非常有限量的碳。此外,低的位错密度也有助于扩孔率。该多边形铁素体主要在加热和保持在对应于临界区退火的温度下期间形成。在冷却期间可形成一定量的规则铁素体,但由于锰含量,在冷却步骤中出现的规则铁素体含量始终小于5%。
存在于本发明的钢中的粒状贝氏体与常规贝氏体组织不同,因为本发明的粒状贝氏体具有非常低的碳化物密度。本文中的低碳化物密度意指每100μm2的面积单位小于或等于100个碳化物。因为位错密度高(接近1015/m-2),因此与多边形铁素体相反,该粒状贝氏体赋予本发明的钢高强度。粒状贝氏体的量为15%至40%。
残余奥氏体作为成分以10%至20%的量存在并且是用于确保TRIP效应的必需成分。本发明的残余奥氏体的碳百分比为0.9%至1.1%,其在室温下使奥氏体稳定和增强TRIP效应方面发挥重要作用,这为本发明提供了适当的可成形性。此外,由于碳在奥氏体中的溶解度高,这阻碍了贝氏体中碳化物的形成,因此富含碳的残余奥氏体也有助于形成粒状贝氏体。在一个优选的实施方案中,这样的残余奥氏体的平均晶粒尺寸小于2μm。残余奥氏体通过称为sigmametry的磁性方法测量,所述方法包括在热处理之前和之后测量钢的磁矩,所述热处理使与为铁磁性的其他相相反的为顺磁性的奥氏体不稳定。
本发明的钢还包含至少5%的回火马氏体,其是由在从初生奥氏体晶粒产生的各晶粒内沿一个方向延伸的细板条构成的成分,其中细的铁碳化物沿<111>方向在板条之间析出。由于马氏体与铁素体或贝氏体之间的硬度差距减小,因此马氏体的这种回火允许增加屈服强度,并且出于相同的原因和由于马氏体的减少而增加了扩孔率。回火马氏体和残余奥氏体的总和的含量为20%至30%并且优选25%至30%。回火马氏体和奥氏体可以以马氏体-奥氏体岛的形式存在,或者以不同显微组织的形式单独存在。因为未回火的马氏体是硬质相,由此将降低钢的屈服强度并且还将降低本发明的钢的可成形性,因此本发明的钢不包含任何未回火的马氏体。
在本发明的一个优选实施方案中,回火马氏体含量分布的均匀性以以下方式表征:在所述钢板中的50×50μm2的任何区域上测量回火马氏体分数(TM)并与平均分数(TM*)进行比较。如果|(TM)-(TM)|≤1.5%,则回火马氏体的分布被定义为均匀的。这样的均匀再分配改善了扩孔率。
根据本发明的钢板可以通过任何合适的方法来生产。然而,优选使用下文描述的方法。
半成品的铸造可以以锭的形式或者以薄板坯或薄条带的形式进行,即厚度范围从对于板坯的约220mm至对于薄条带或板坯的数十毫米。
为了简化的目的,下面的描述将集中在作为半成品的板坯上。具有上述化学组成的板坯通过连铸制造并且被提供用于按照本发明的制造方法进一步加工。在此,在连铸期间,板坯可以以高温使用,或者可首先冷却至室温然后再加热。
经受热轧的板坯的温度优选高于Ac3点且至少高于1000℃并且必须低于1280℃。规定了此处提及的温度以确保板坯中的所有点达到奥氏体范围。在板坯的温度低于1000℃的情况下,在轧机上施加过大的负载,并且此外,在轧制期间钢的温度可降低至铁素体转变温度。因此为了确保轧制处于完全奥氏体区域,必须在高于1000℃下进行再加热。此外,温度不能高于1280℃以避免导致粗的铁素体晶粒的奥氏体晶粒的不利生长,这降低了这些晶粒在热轧期间再结晶的能力。此外,高于1280℃的温度增加了形成厚层氧化物的风险,该厚层氧化物在热轧期间是不利的。终了温度必须高于850℃。优选终了温度高于Ar3点以确保经受热轧的钢在完全奥氏体区域中轧制。
然后使以这种方式获得的热轧钢板以35℃/秒至55℃/秒的冷却速率冷却至等于或低于580℃的卷取温度以获得本发明所需的显微组织,因为该冷却速率范围有助于贝氏体的形成。冷却速率不能高于55℃/秒以避免马氏体的过度形成。卷取温度必须低于580℃,因为高于该温度存在微观偏析和晶粒间氧化加剧的风险。本发明的热轧钢板的优选的卷取温度为450℃至550℃。
随后,使热轧钢板以优选不大于125℃/小时的冷却速率冷却至室温。
然后,对热轧钢板进行酸洗以除去氧化皮,将热轧板以通常为30%至90%的厚度压下量冷轧。
使通过冷轧过程获得的冷轧钢板经受临界区退火和其他后续热处理过程以赋予本发明的钢所需的机械特性和显微组织。
对冷轧钢板进行连续退火,其中加热速率为1℃/秒至20℃/秒并且优选大于2℃/秒,直至Ac1至Ac3并且优选780℃至950℃的均热温度被设计为确保铁素体与奥氏体比例为60:40至35:65。优选在大于10秒且必须小于或等于600秒期间进行均热。
然后使板以高于25℃/秒的速率冷却至440℃至480℃的贝氏体温度转变范围,由此优选大于或等于30℃/秒的冷却速率。虽然不希望受理论束缚,但本发明人认为马氏体形成的均匀性特别是由于退火后的这种高冷却速率。
然后将钢板保持在该温度下持续20秒至250秒,并且优选30秒至100秒,以引发贝氏体形成。将冷轧钢板保持小于20秒将导致贝氏体的量太低和奥氏体富集不足,导致残余奥氏体的量低于10%。大于250秒,其将导致贝氏体中碳化物的析出,在最后冷却之前耗尽奥氏体中的碳。进行440℃至480℃的这种保持以形成粒状贝氏体并促进奥氏体富集碳。
然后通过浸入锌或锌合金浴(其温度可以为440℃至475℃)中来进行热浸镀锌(GI),然后使GI产品以1℃/秒至20℃/秒并且优选5℃/秒至15℃/秒的冷却速率冷却至室温以获得残余奥氏体并限制马氏体含量。
然后使镀锌钢板经受分批退火处理。在该分批退火期间,将镀锌钢板加热至170℃至350℃,优选170℃至250℃的温度持续12小时至250小时,优选12小时至30小时,然后冷却至室温。这样做是为了有效地使新鲜马氏体回火。
实施例
本文中提供的以下测试、实施例、图形示例和表本质上是非限制性的并且必须仅出于说明的目的而被考虑,并且将显示本发明的有利特征并阐述本发明人在大量实验之后选择的工艺参数的重要性,并进一步确定了可以由本发明的钢实现的特性。
测试样品的钢板组成汇总在表1中,其中钢板分别根据表2中汇总的工艺参数生产。表3显示出所获得的显微组织,以及表4示出了使用特性的评估结果。
必须强调,由于测量方法的差异,根据ISO标准的扩孔率HER的值非常不同于根据JFS T 1001(日本钢铁联合会标准)的扩孔率λ的值并且不能与其相比。抗拉强度TS和总延伸率TE根据于2009年10月出版的ISO标准ISO 6892-1测量。由于测量方法的差异,特别是由于所使用的试样的几何形状的差异,根据ISO标准测量的总延伸率TE的值非常不同于,特别是低于根据JIS Z 2201-05标准测量的总延伸率的值。
表1-钢组成
表1描述了具有以重量百分比表示的组成的钢。钢组成I1至I6用于制造根据本发明的板,该表还规定了在表中指定的从R1至9的参考钢组成。
C Mn Al Si Cr Nb N S P Si+Al C+Si/10
I1 0.224 2.210 0.779 0.710 0.053 0.019 0.0023 0.0037 0.011 1.489 0.30
I2 0.221 2.050 0.775 0.724 0.056 0.020 0.0023 0.0034 0.012 1.499 0.29
I3 0.193 2.010 0.785 0.720 0.107 0.020 0.0024 0.0019 0.012 1.505 0.27
I4 0.206 2.100 0.782 0.715 0.106 0.020 0.0025 0.0020 0.010 1.497 0.28
I5 0.205 2.190 0.782 0.718 0.106 0.020 0.0025 0.0020 0.011 1.500 0.28
I6 0.220 2.190 0.781 0.719 0,106 0.020 0.0025 0.0019 0.012 1.500 0.29
R1 0.190 2.010 <u>0.023</u> 1.170 <u>0.01</u> 0.020 0.0027 0.0025 0.011 <u>1.193</u> <u>0.31</u>
R2 0.192 2.000 <u>0.019</u> 1.470 <u>0.011</u> 0.019 0.0280 0.0026 0.012 1.489 <u>0.34</u>
R3 0.188 <u>2.300</u> 0.770 0.676 <u>0.024</u> 0.019 0.0024 0.0018 0.012 1.446 0.26
R4 0.197 <u>1.610</u> 0.761 0.680 <u>0.311</u> 0.020 0.0026 0.0020 0.011 1.441 0.27
R5 0.241 <u>1.680</u> 0.787 0.727 <u>0.304</u> 0.020 0.0027 0.0030 0.015 1.514 <u>0.31</u>
R6 0.222 2.050 0.768 0.730 <u>0.022</u> <u>0.002</u> 0.0026 0.0033 0.012 1.498 0.30
R7 0.220 <u>1.840</u> 0.762 0.731 <u>0.011</u> 0.030 0.0026 0.0031 0.013 1.493 0.29
R8 0.221 2.040 0.758 0.729 <u>0.256</u> 0.030 0.0028 0.0034 0.012 1.487 0.29
R9 0.224 2.040 0.763 0.733 <u>0.025</u> 0.030 0.0026 0.0032 0.013 1.496 0.30
I=根据本发明;R=参考;加下划线的值:不是根据本发明。
表2-工艺参数
此处表2详述了在表1中描述的钢样品上实施的退火工艺参数。表1还示出了本发明的钢和参考钢的贝氏体转变温度的列表。贝氏体转变温度的计算通过使用以下来进行:
Bs=839-(86[Mn]+23[Si]+67[Cr]+33[Ni]+75[Mo])-270(1-EXP(-1.33[C]))
Ac1使用“Darstellung der Umwandlungen für technische Anwendungen und
Figure BDA0001731489990000092
ihrer Beeinflussung,H.P.Hougardy,Werkstoffkunde Stahl Band 1,198-231,Verlag Stahleisen,Düsseldorf,1984”中公布的公式计算。
Ac1=739-22C-7Mn+2Si+14Cr+13Mo-13Ni
在该式中,Ac1以摄氏度表示,C、Mn、Si、Cr、Mo和Ni为钢的C、Mn、Si、Cr、Mo和Ni的重量%。
Ac3使用软件Thermo-
Figure BDA0001731489990000093
计算。
将钢样品加热至1000℃至1280℃的温度,然后经受热轧,其中终了温度高于850℃,此后在低于580℃的温度下卷取。然后将热轧带卷以30%至80%的厚度压下量冷轧。如下面详述的,使这些冷轧钢板经受热处理。然后将它们在锌浴中于460℃的温度下热浸涂并在24小时期间分批退火。
表2-热轧和冷轧步骤
Figure BDA0001731489990000091
表2-连续退火步骤
Figure BDA0001731489990000101
表2-分批退火步骤
Figure BDA0001731489990000102
表3-显微组织
表3示出了根据标准在不同显微镜例如扫描电子显微镜上进行的测试以确定本发明的钢和参考钢二者的显微组织组成的结果。
除了以重量百分比表示的残余奥氏体的碳含量以外,结果以面积百分比规定。观察到所有发明实施例均具有均匀的马氏体再分配,而所有比较例均具有不均匀的再分配。
Figure BDA0001731489990000111
I=根据本发明;R=参考;加下划线的值:不是根据本发明。
表4-机械特性
表4例示了本发明的钢和参考钢的机械特性。拉伸测试根据NF EN ISO 6892-1标准进行。扩孔率根据标准ISO 16630:2009测量,其中具有10mm冲孔的样品变形。在变形和裂纹产生之后,测量孔直径,并计算HER%=100*(Df-Di)/Di。
此后,根据标准进行的各种机械测试的结果在本文中列表:
Figure BDA0001731489990000121
I=根据本发明;R=参考;加下划线的值:不是根据本发明;nd:未确定。
关于可点焊性,当组成为使得C+Si/10≤0.30%时,根据本发明的板具有低的LME敏感性。这意味着用这样的钢可以生产包括电阻点焊部的结构,例如车身,对于这些结构,电阻点焊部中的裂纹数的概率为使得每个电阻点焊部的平均值小于5个裂纹并且具有小于10个裂纹的概率为98%。
特别地,包括至少两个钢板的电阻点焊部的焊接结构可以通过如下来生产:通过根据本发明的方法生产第一钢板,第一板为使得C+Si/10≤0.30%以及Al≥6(C+Mn/10)-2.5%并且涂覆有Zn或Zn合金;提供第二钢板,其组成使得C+Si/10≤0.30%以及Al≥6(C+Mn/10)-2.5%;以及将第一钢板电阻点焊到第二钢板。第二钢板可例如通过根据本发明的方法来生产,并且涂覆有Zn或Zn合金。
因此,获得了具有低LME敏感性的焊接结构。例如,对于包括至少十个电阻点焊部的这样的焊接结构,每个电阻点焊部的平均裂纹数小于5。
根据本发明的任选地通过电阻点焊焊接的钢板有利地用于制造机动车辆中的结构部件,因为它们在制造过程期间提供高的可成形性和在碰撞的情况下提供高能量吸收。根据本发明的电阻点焊部还有利地用于制造机动车辆中的结构部件,因为位于焊接区中的裂纹的最终产生和扩展被大大减少。

Claims (17)

1.一种经涂覆的钢板,以重量百分比表示,其组成包含以下元素:
0.17%≦碳≦0.24%
1.9%≦锰≦2.2%
0.5%≦硅≦1%,
0.5%≦铝≦1.2%
其中Si+Al≥1.3%,
0.05%≦铬≦0.2%
0.015%≦铌≦0.03%
硫≦0.004%
磷≦0.03%
以及可能含有以下任选元素中的一种或更多种
0.005%≦钛≦0.05%
0.001%≦钼≦0.05%
剩余部分由铁和由熔炼产生的不可避免的杂质组成,以面积分数计,所述经涂覆的钢板的显微组织包含10%至20%的残余奥氏体,所述残余奥氏体相的碳含量为0.9%至1.1%;40%至55%的多边形铁素体;15%至40%的粒状贝氏体和至少5%的回火马氏体,回火马氏体和残余奥氏体的总和为20%至30%;
所述经涂覆的钢板的抗拉强度高于或等于980MPa,均匀延伸率高于或等于17%,扩孔率等于或高于18%,其中所述扩孔率根据ISO标准16630:2009测量,屈服强度高于550MPa,屈服强度与抗拉强度之比为0.60或更大。
2.根据权利要求1所述的钢板,其中以重量百分比表示,所述组成包含0.7%≦Si≦0.9%。
3.根据权利要求1或2所述的钢板,其中以重量百分比表示,所述组成包含0.7%≦Al≦0.9%。
4.根据权利要求1或2所述的钢板,其中硅和铝含量的总和大于1.4%。
5.根据权利要求1或2所述的钢板,其中碳和硅含量为使得C+Si/10≤0.30%。
6.根据权利要求1或2所述的钢板,其中铝、碳和锰含量为使得Al≥6(C+Mn/10)-2.5%。
7.根据权利要求1或2所述的钢板,其中残余奥氏体和回火马氏体的总和为25%至30%。
8.根据权利要求1或2所述的钢板,在所述钢板中的50×50μm2的任何区域上测量的平均回火马氏体分数(TM*)和回火马氏体分数(TM)使得:|(TM)-(TM)|≤1.5%。
9.根据权利要求1所述的钢板,其中所述抗拉强度为1000MPa至1100MPa,其中所述扩孔率为18%至23%。
10.根据权利要求1或2所述的钢板,其中所述钢板为热浸镀锌的。
11.根据权利要求1或2所述的钢板,其中所述钢板不具有未回火的马氏体。
12.一种制造经涂覆的钢板的方法,包括以下顺序步骤:
-提供半成品,其组成为根据权利要求1至6中任一项所述的;
-将所述半成品再加热至1000℃至1280℃的温度;
-完全在奥氏体范围内轧制所述半成品以获得热轧钢板,其中热轧终了温度应大于或等于850℃;
-使所述热轧钢板以35℃/秒至55℃/秒的冷却速率冷却至小于或等于580℃的卷取温度;以及卷取所述热轧钢板;
-使所述热轧钢板冷却至室温;
-对所述热轧钢板进行酸洗;
-对所述热轧钢板进行冷轧以获得冷轧钢板;
-然后对所述冷轧钢板进行连续退火,包括以1℃/秒至20℃/秒的加热速率直至Ac1至Ac3之间的均热温度持续小于600秒;
-然后使所述冷轧钢板以大于25℃/秒的速率冷却至400℃至480℃的温度,以及将所述冷轧钢板保持20秒至250秒的持续时间;
-通过在锌或锌合金浴中热浸来涂覆所述冷轧钢板;
-使所述冷轧钢板冷却至室温;
-然后对经涂覆的冷轧钢板进行分批退火,包括以1℃/秒至20℃/秒的速率直至170℃至350℃的均热温度持续12小时至250小时,然后使所述冷轧钢板冷却至室温。
13.根据权利要求12所述的制造经涂覆的钢板的方法,其中所述卷取温度低于贝氏体转变开始温度Bs。
14.根据权利要求12或13所述的制造经涂覆的钢板的方法,其中所述均热温度为780℃至900℃,均热在10秒至600秒期间进行。
15.根据权利要求12或13所述的制造经涂覆的钢板的方法,其中在连续退火之后使所述冷轧钢板以大于30℃/秒的冷却速率冷却至400℃至480℃的温度。
16.根据权利要求15所述的制造经涂覆的钢板的方法,其中在锌或锌合金浴中涂覆之后使所述钢板以小于20℃/秒的冷却速率冷却。
17.根据权利要求12或13所述的制造经涂覆的钢板的方法,其中使所述钢板在170℃至250℃之间分批退火12小时至30小时。
CN201780006864.6A 2016-01-18 2017-01-17 具有优异的可成形性的高强度钢板及其制造方法 Active CN108463340B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2016/000024 2016-01-18
PCT/IB2016/000024 WO2017125773A1 (en) 2016-01-18 2016-01-18 High strength steel sheet having excellent formability and a method of manufacturing the same
PCT/IB2017/000018 WO2017125809A1 (en) 2016-01-18 2017-01-17 High strength steel sheet having excellent formability and a method of manufacturing the same

Publications (2)

Publication Number Publication Date
CN108463340A CN108463340A (zh) 2018-08-28
CN108463340B true CN108463340B (zh) 2021-07-06

Family

ID=55300730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780006864.6A Active CN108463340B (zh) 2016-01-18 2017-01-17 具有优异的可成形性的高强度钢板及其制造方法

Country Status (13)

Country Link
US (1) US11466335B2 (zh)
EP (1) EP3405340A1 (zh)
JP (1) JP6751766B2 (zh)
KR (1) KR102230103B1 (zh)
CN (1) CN108463340B (zh)
BR (1) BR112018013375B1 (zh)
CA (1) CA3009117C (zh)
MA (1) MA43659A (zh)
MX (1) MX2018008561A (zh)
RU (1) RU2712591C1 (zh)
UA (1) UA119838C2 (zh)
WO (2) WO2017125773A1 (zh)
ZA (1) ZA201804092B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6749818B2 (ja) * 2016-02-29 2020-09-02 株式会社神戸製鋼所 高強度鋼板およびその製造方法
WO2019122978A1 (en) * 2017-12-21 2019-06-27 Arcelormittal Welded steel part used as motor vehicle part, hot pressed steel part, and method of manufacturing said welded steel part
CN108950405B (zh) * 2018-08-14 2020-02-18 武汉钢铁有限公司 一种具有良好翻边性能的800MPa级多相钢及生产方法
US20220056543A1 (en) * 2018-09-20 2022-02-24 Arcelormittal Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
WO2020058748A1 (en) * 2018-09-20 2020-03-26 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
US20220010398A1 (en) * 2018-11-30 2022-01-13 Arcelormittal Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof
SE542893C2 (en) * 2018-11-30 2020-08-18 Voestalpine Stahl Gmbh A resistance spot welded joint comprising a zinc coated ahss steel sheet
MX2021009933A (es) 2019-02-18 2021-09-21 Tata Steel Ijmuiden Bv Acero de alta resistencia con propiedades mecanicas mejoradas.
WO2020229877A1 (en) * 2019-05-15 2020-11-19 Arcelormittal A cold rolled martensitic steel and a method for it's manufacture
WO2020245627A1 (en) * 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
WO2020245626A1 (en) * 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
WO2020250009A1 (en) * 2019-06-12 2020-12-17 Arcelormittal A cold rolled martensitic steel and a method of martensitic steel thereof
ES2911656T3 (es) * 2019-06-17 2022-05-20 Tata Steel Ijmuiden Bv Método de tratamiento térmico de un fleje de acero laminado en frío
EP3754036B1 (en) * 2019-06-17 2022-03-02 Tata Steel IJmuiden B.V. Heat treatment of high strength cold rolled steel strip
EP3754037B1 (en) * 2019-06-17 2022-03-02 Tata Steel IJmuiden B.V. Method of heat treating a high strength cold rolled steel strip
EP3754034B1 (en) * 2019-06-17 2022-03-02 Tata Steel IJmuiden B.V. Heat treatment of cold rolled steel strip
WO2021116741A1 (en) * 2019-12-13 2021-06-17 Arcelormittal Heat treated cold rolled steel sheet and a method of manufacturing thereof
WO2021176249A1 (en) * 2020-03-02 2021-09-10 Arcelormittal High strength cold rolled and galvannealed steel sheet and manufacturing process thereof
CN111893379B (zh) * 2020-07-13 2022-01-18 首钢集团有限公司 一种780MPa级增强成形性热镀锌双相钢及其制造方法
WO2022018501A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
CN111996467B (zh) * 2020-09-28 2022-05-20 首钢集团有限公司 一种980MPa级镀锌高强钢及其制备方法
CN114763595B (zh) * 2021-01-15 2023-07-07 宝山钢铁股份有限公司 一种冷轧钢板以及冷轧钢板的制造方法
CN114807736A (zh) * 2021-01-21 2022-07-29 宝山钢铁股份有限公司 一种抗lme钢及抗lme钢板的制造方法
CN113416887B (zh) * 2021-05-21 2022-07-19 鞍钢股份有限公司 汽车超高成形性980MPa级镀锌钢板及制备方法
CN114032452A (zh) * 2021-10-11 2022-02-11 鞍钢集团北京研究院有限公司 一种高强塑积冷轧trip钢板及其制备方法
CN116987974B (zh) * 2023-08-14 2024-04-09 东北大学 一种高强度高韧性的低磁导率中锰钢及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251201A (ja) * 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 熱延鋼板
CN103857819A (zh) * 2011-10-04 2014-06-11 杰富意钢铁株式会社 高强度钢板及其制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924108B2 (ja) 2000-03-13 2007-06-06 新日本製鐵株式会社 予加工後のハイドロフォーム成形性の優れた高強度鋼板の製造方法
JP4716359B2 (ja) 2005-03-30 2011-07-06 株式会社神戸製鋼所 均一伸びに優れた高強度冷延鋼板およびその製造方法
KR20080100835A (ko) * 2006-03-31 2008-11-19 가부시키가이샤 고베 세이코쇼 화성 처리성이 우수한 고강도 냉연 강판
US7979194B2 (en) 2007-07-16 2011-07-12 Cummins Inc. System and method for controlling fuel injection
JP5167487B2 (ja) * 2008-02-19 2013-03-21 Jfeスチール株式会社 延性に優れる高強度鋼板およびその製造方法
JP5332981B2 (ja) 2009-07-08 2013-11-06 新日鐵住金株式会社 延性及び耐食性に優れた合金化溶融亜鉛めっき鋼板及びその製造方法
JP4903915B2 (ja) * 2010-01-26 2012-03-28 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法
JP5719545B2 (ja) 2010-08-13 2015-05-20 新日鐵住金株式会社 伸びとプレス成形安定性に優れた高強度薄鋼板
EP2743364B1 (en) 2011-08-09 2016-07-27 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet having high yield ratio and excellent low-temperature impact energy absorption and haz softening resistance and method for producing same
JP5310968B1 (ja) 2011-09-30 2013-10-09 新日鐵住金株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
KR102060522B1 (ko) * 2012-03-30 2019-12-30 뵈스트알파인 스탈 게엠베하 고강도 냉연 강판 및 그의 제조 방법
JP6232045B2 (ja) * 2012-03-30 2017-11-15 フォエスタルピネ スタール ゲゼルシャフト ミット ベシュレンクテル ハフツングVoestalpine Stahl Gmbh 高強度冷間圧延鋼板およびそのような鋼板を作製する方法
KR102073441B1 (ko) 2012-06-05 2020-02-04 티센크루프 스틸 유럽 악티엔게젤샤프트 강, 강판 제품 및 강판 제품을 제조하기 위한 방법
JP6221424B2 (ja) * 2013-07-04 2017-11-01 新日鐵住金株式会社 冷延鋼板およびその製造方法
KR20180001590A (ko) 2013-11-29 2018-01-04 신닛테츠스미킨 카부시키카이샤 열간 성형용 강판
JP6533528B2 (ja) 2014-04-15 2019-06-19 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 高降伏強度を備えた冷間圧延平鋼製品の製造方法及び冷延平鋼製品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251201A (ja) * 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 熱延鋼板
CN103857819A (zh) * 2011-10-04 2014-06-11 杰富意钢铁株式会社 高强度钢板及其制造方法

Also Published As

Publication number Publication date
MA43659A (fr) 2018-11-28
WO2017125809A1 (en) 2017-07-27
WO2017125773A1 (en) 2017-07-27
US11466335B2 (en) 2022-10-11
KR20180095671A (ko) 2018-08-27
JP2019506530A (ja) 2019-03-07
BR112018013375B1 (pt) 2022-08-09
KR102230103B1 (ko) 2021-03-19
BR112018013375A2 (pt) 2018-12-04
CA3009117A1 (en) 2017-07-27
EP3405340A1 (en) 2018-11-28
US20210040576A1 (en) 2021-02-11
JP6751766B2 (ja) 2020-09-09
UA119838C2 (uk) 2019-08-12
RU2712591C1 (ru) 2020-01-29
MX2018008561A (es) 2018-11-09
ZA201804092B (en) 2019-03-27
CA3009117C (en) 2020-10-27
CN108463340A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN108463340B (zh) 具有优异的可成形性的高强度钢板及其制造方法
KR102325721B1 (ko) 우수한 성형성을 갖는 템퍼링되고 코팅된 강 시트 및 이의 제조 방법
KR102325717B1 (ko) 우수한 성형성을 갖는 템퍼링되고 코팅된 강 시트 및 이의 제조 방법
US10995386B2 (en) Double annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets
JP2017048412A (ja) 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
KR101489243B1 (ko) 가공성 및 도금밀착성이 우수한 고강도 합금화 용융 아연도금강판 및 그 제조방법
CA3163313C (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
WO2022018481A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
JP2022535255A (ja) 冷間圧延及び被覆された鋼板並びにその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant