CN108455659B - 一种纳米棒状氧化铟气敏材料的制备方法 - Google Patents
一种纳米棒状氧化铟气敏材料的制备方法 Download PDFInfo
- Publication number
- CN108455659B CN108455659B CN201810396739.7A CN201810396739A CN108455659B CN 108455659 B CN108455659 B CN 108455659B CN 201810396739 A CN201810396739 A CN 201810396739A CN 108455659 B CN108455659 B CN 108455659B
- Authority
- CN
- China
- Prior art keywords
- gas
- indium
- indium oxide
- sensitive material
- prepared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 229910003437 indium oxide Inorganic materials 0.000 title claims abstract description 43
- 239000000463 material Substances 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 239000007789 gas Substances 0.000 claims abstract description 64
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 32
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 30
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 claims abstract description 22
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims abstract description 21
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims abstract description 15
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 13
- UKCIUOYPDVLQFW-UHFFFAOYSA-K indium(3+);trichloride;tetrahydrate Chemical compound O.O.O.O.Cl[In](Cl)Cl UKCIUOYPDVLQFW-UHFFFAOYSA-K 0.000 claims abstract description 12
- 239000002073 nanorod Substances 0.000 claims abstract description 12
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 8
- 239000000243 solution Substances 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 9
- 239000013078 crystal Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 abstract description 9
- 238000011084 recovery Methods 0.000 abstract description 8
- 230000035945 sensitivity Effects 0.000 abstract description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000003054 catalyst Substances 0.000 abstract description 2
- 229910052738 indium Inorganic materials 0.000 abstract description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 abstract description 2
- 239000004094 surface-active agent Substances 0.000 abstract description 2
- 235000019441 ethanol Nutrition 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 2
- LSUTWNKPGJDSDG-UHFFFAOYSA-K ethanol indium(3+) trichloride Chemical compound C(C)O.[Cl-].[In+3].[Cl-].[Cl-] LSUTWNKPGJDSDG-UHFFFAOYSA-K 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229910021617 Indium monochloride Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本发明涉及一种纳米棒状结构的氧化铟(In2O3)气敏材料的制备方法,属于无机纳米功能材料制备技术领域。本发明以四水合三氯化铟为铟源,采用十六烷基三甲基溴化铵为表面活性剂,在氢氧化钠碱性条件下水热反应制备氢氧化铟,最后进行热焙烧处理得到纳米棒状结构的氧化铟气敏材料。最终制备的氧化铟为立方相In2O3纳米棒状结构,对二氧化氮气体和硫化氢气体都具有很好的传感检测性能,而且对其他气体(一氧化碳、乙醇、氨气、氢气、甲醛等)不敏感;并且工作温度低、响应恢复迅速、灵敏度很高、检测限极低、选择性高、稳定性高。此外,这种氧化铟气敏材料还可以用于催化剂、电池材料、光电材料等领域。
Description
技术领域
本发明涉及一种纳米棒状结构的氧化铟(In2O3)气敏材料的制备方法,属于无机纳米功能材料制备技术领域。
背景技术
目前环境污染越来越受到人们的重视,特别是有毒有害的污染气体,对人们的健康带来极大的危害。其中二氧化氮(NO2)和硫化氢(H2S)是环境污染气体中危害性非常强的气体,在极低的浓度(ppm级)下,即可对人体健康造成很大的伤害,甚至在短时间内造成死亡。因此制造具有高灵敏度和低检测限的二氧化氮和硫化氢快速气敏传感器是非常重要的。
氧化铟是应用于半导体气敏传感器的一种重要的气敏材料,广泛应用于检测各种有毒有害气体方面的研究,例如二氧化氮、硫化氢、氢气、乙醇、一氧化碳、甲醛等,特别是对二氧化氮气体或者硫化氢气体具有很好的传感检测性能。但是目前研究报道的各种氧化铟气敏材料只是对二氧化氮或硫化氢中的一种气体具有高效的传感检测功能,既能够迅速高效的检测二氧化氮气体,又可以检测硫化氢气体的双功能氧化铟气敏材料目前还没有报道。
氧化铟的形貌和尺寸是其气敏性能和应用的重要因素,不同的形貌会有不同的晶体暴露面,晶体材料的各向异性决定了不同晶面具有不同的表面能和催化活性,控制晶体沿特定的晶向生长可以使活性较高的晶面暴露在材料表面参与气敏反应,而且即使形貌相似的氧化铟材料,其制备工艺不同,导致其表面活性不同,目标气体与氧化铟材料表面的化学吸附氧发生反应的速率不同,具体表现为气敏性能的很大差别,因此形貌和尺寸的调控一直是氧化铟材料的研究重点。因此具有工作温度低、响应恢复迅速、灵敏度高、检测限低、稳定性高等优点的氧化铟气敏材料,具有重要的意义。
发明内容
针对上述存在问题或不足,为解决现有氧化铟气敏材料无法同时检测二氧化氮气体和硫化氢气体的问题,本发明提供了一种纳米棒状结构氧化铟气敏材料的制备方法。
具体步骤如下:
步骤1、配置反应溶液
在乙醇中加入四水合三氯化铟,搅拌至完全溶解,得澄清三氯化铟溶液,其中四水合三氯化铟的浓度为:0.01mol/L~0.1mol/L。然后在搅拌下加入氢氧化钠水溶液(0.1~2mol/L),搅拌5~30分钟,再加入十六烷基三甲基溴化铵(CTAB),搅拌10~60分钟得到溶胶,CTAB和四水合三氯化铟的摩尔比为1:10至1:1。
步骤2、水热反应生成纳米棒状氢氧化铟
将步骤1制备的溶胶转移到聚四氟乙烯内衬的水热釜中,在120~200℃下水热反应5~24h。将水热反应后的产物过滤,用去离子水和乙醇的混合溶液洗涤,60~110℃烘干,得到白色氢氧化铟粉末。
步骤3、焙烧得到纳米棒状氧化铟
将步骤2制备的白色氢氧化铟粉末在350~600℃焙烧0.5~5小时,直至完成晶型转化,得纳米棒状氧化铟粉末。
将上述方法制备的纳米棒状结构氧化铟气敏材料应用于对二氧化氮气体和硫化氢气体的传感检测。
本发明以四水合三氯化铟为铟源,采用十六烷基三甲基溴化铵为表面活性剂,在氢氧化钠碱性条件下水热反应制备氢氧化铟,最后进行热焙烧处理得到纳米棒状结构的氧化铟气敏材料。
最终制备的氧化铟为立方相In2O3纳米棒状结构,直径15~40纳米之间,长度为50~300纳米,是一种优秀的气敏材料,对二氧化氮气体和硫化氢气体都具有很好的传感检测性能。对二氧化氮和硫化氢气体的传感检测性能优点表现为:工作温度低(对二氧化氮气体工作温度25℃至100℃;对硫化氢气体工作温度为25℃)、响应恢复迅速、检测限极低(0.001ppm的二氧化氮,0.005ppm的硫化氢)、灵敏度很高、稳定性高等。并且此氧化铟气敏材料对二氧化氮气体的传感检测表现为电阻的升高,对硫化氢气体表现为电阻的降低,而且对其他气体(一氧化碳、乙醇、氨气、氢气、甲醛等)不敏感,没有响应,因此这种氧化铟气敏材料可以对二氧化氮和硫化氢进行选择性检测。同时,此氧化铟材料还可以用于催化剂、电池材料、光电材料等领域。
综上所述,本发明制备的氧化铟气敏材料可同时检测二氧化氮气体和硫化氢气体,且测试灵敏度高,响应恢复迅速,检测限低。
附图说明
图1为实施例1制备的纳米棒状氧化铟材料的扫描电镜照片;
图2为实施例1制备的纳米棒状氧化铟材料的X射线衍射谱图;
图3为实施例1制备的纳米棒状氧化铟材料的对二氧化氮气体的气敏响应恢复曲线;
图4为实施例1制备的纳米棒状氧化铟材料的对硫化氢气体的气敏响应恢复曲线。
具体实施方式
下面结合实施例和附图对本发明做进一步的详细说明。
实施例1
取1.10g四水合三氯化铟加入到50ml无水乙醇中配制成0.075mol/L的三氯化铟乙醇溶液。取1.50g氢氧化钠加入到50ml去离子水中配置成0.75mol/L NaOH水溶液。
分别取20mL的上述三氯化铟乙醇溶液和20mL的上述NaOH水溶液混合,加入0.27g十六烷基三甲基溴化铵(CTAB)(摩尔比InCl3·4H2O:CTAB=5:1),搅拌1小时。
将前述制得溶液放入50mL反应釜中,然后放入鼓风干燥箱,设置温度为180℃,反应12小时。反应结束后,将所得白色沉淀产物用去离子水和乙醇的混合溶液洗涤,在干燥箱中60℃干燥6小时得白色的氢氧化铟粉末。将这种氢氧化铟粉末在马弗炉中500℃煅烧2小时,得到黄色的氧化铟粉末。
纳米棒状氧化铟材料的扫描电镜图片如图1所示,显示了制备的氧化铟的纳米棒结构,平均直径22纳米,平均长度为210纳米,比表面积为18.9m2/g。XRD测量结果如图2所示表明其为具有立方晶相的氧化铟;图3可以看出基于氧化铟纳米棒的传感器在100℃对二氧化氮检测显示出快速响应/恢复时间,高灵敏度和低至0.001ppm的检测限。图4所示基于氧化铟纳米棒的传感器在25℃对硫化氢检测显示出快速响应/恢复时间,高灵敏度和低至0.005ppm的检测限。说明作为气敏材料,它对二氧化氮气体和硫化氢气体具有很好的气敏性能。
实施例2
取3.30g四水合三氯化铟加入到50ml无水乙醇中配制成0.225mol/L的三氯化铟乙醇溶液。取3.0g氢氧化钠加入到50ml去离子水中配置成1.50mol/L NaOH水溶液。
分别取20mL的上述三氯化铟乙醇溶液和20mL的上述NaOH水溶液混合,加入0.60g十六烷基三甲基溴化铵(CTAB),搅拌1小时。
将前述制得溶液放入50mL反应釜中,然后放入鼓风干燥箱,设置温度为150℃,反应24小时。反应结束后,将所得白色沉淀产物用去离子水和乙醇的混合溶液洗涤,在干燥箱中100℃干燥2小时得白色的氢氧化铟粉末。将这种氢氧化铟粉末在马弗炉中400℃煅烧3小时,得到黄色的氧化铟粉末。
电子显微镜下观察氧化铟为纳米棒状,平均直径32纳米,平均长度为430纳米,比表面积为11.8m2/g。XRD测量结果表明其为具有立方晶相的氧化铟。作为气敏材料,测试发现它对二氧化氮气体和硫化氢气体具有很好的气敏性能。
Claims (2)
1.一种纳米棒状结构氧化铟气敏材料的制备方法,具体步骤如下:
步骤1、配置反应溶液
在乙醇中加入四水合三氯化铟,搅拌至完全溶解,得澄清三氯化铟溶液,其中四水合三氯化铟的浓度为:0.01mol/L~0.1mol/L;然后在搅拌下加入0.1~2mol/L的氢氧化钠水溶液,搅拌5~30分钟;再加入十六烷基三甲基溴化铵CTAB,搅拌10~60分钟得到溶胶,CTAB和四水合三氯化铟的摩尔比为1:10至1:1;
步骤2、水热反应生成纳米棒状氢氧化铟
将步骤1制备的溶胶转移到聚四氟乙烯内衬的水热釜中,在150~200℃下水热反应12~24h;将水热反应后的产物过滤,用去离子水和乙醇的混合溶液洗涤,60~110℃烘干,得到白色氢氧化铟粉末;
步骤3、焙烧得到纳米棒状氧化铟
将步骤2制备的白色氢氧化铟粉末在350~600℃焙烧0.5~5小时,直至完成晶型转化,得纳米棒状氧化铟粉末。
2.将权利要求1制备的纳米棒状结构氧化铟气敏材料应用于对二氧化氮气体和硫化氢气体的传感检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810396739.7A CN108455659B (zh) | 2018-04-28 | 2018-04-28 | 一种纳米棒状氧化铟气敏材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810396739.7A CN108455659B (zh) | 2018-04-28 | 2018-04-28 | 一种纳米棒状氧化铟气敏材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108455659A CN108455659A (zh) | 2018-08-28 |
CN108455659B true CN108455659B (zh) | 2020-08-11 |
Family
ID=63234939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810396739.7A Expired - Fee Related CN108455659B (zh) | 2018-04-28 | 2018-04-28 | 一种纳米棒状氧化铟气敏材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108455659B (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109709184B (zh) * | 2019-01-24 | 2020-12-01 | 吉林大学 | 一种基于In2O3-碳点复合物的NO2传感器及其制备方法 |
CN110455977B (zh) * | 2019-06-30 | 2021-06-08 | 北京联合大学 | 一种甲醛和氨的低温催化发光敏感材料 |
CN110282653A (zh) * | 2019-08-08 | 2019-09-27 | 东北师范大学 | 一种用于气体检测的氧化铟材料及制备方法 |
CN110540233B (zh) * | 2019-09-20 | 2021-05-14 | 华南理工大学 | 一种尺寸均匀的氧化铟纳米棒及其制备方法与应用 |
CN112578007A (zh) * | 2020-12-02 | 2021-03-30 | 长春理工大学 | 氧化铟-多酸复合气体传感材料及其制备方法 |
CN112551572B (zh) * | 2020-12-11 | 2023-08-18 | 广西晶联光电材料有限责任公司 | 一种大比表面积纳米氧化铟的制备方法 |
CN113008945B (zh) * | 2021-02-09 | 2022-08-23 | 中国石油大学(华东) | 一种摩擦纳米发电机驱动的微型气体检测系统及其制备方法及应用 |
CN114291838A (zh) * | 2021-12-10 | 2022-04-08 | 上海理工大学 | 一种In2O3-CNH纳米复合材料及其制备的气敏元件 |
CN115201278A (zh) * | 2022-05-13 | 2022-10-18 | 哈尔滨锅炉厂有限责任公司 | 一种二硫化锡/氧化铟异质结的制备方法及其应用 |
CN114904507A (zh) * | 2022-06-15 | 2022-08-16 | 济南大学 | 一种用于柴油车尾气催化净化的多功能型镨氧化物纳米棒催化剂 |
CN114988460B (zh) * | 2022-07-06 | 2024-02-13 | 重庆大学 | 一种氧化铟纳米材料及其应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105948103A (zh) * | 2016-05-05 | 2016-09-21 | 扬州大学 | 一种碗状氢氧化铟/氧化铟微纳材料的制备方法 |
-
2018
- 2018-04-28 CN CN201810396739.7A patent/CN108455659B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN108455659A (zh) | 2018-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108455659B (zh) | 一种纳米棒状氧化铟气敏材料的制备方法 | |
Amu-Darko et al. | Metal-organic frameworks-derived In2O3/ZnO porous hollow nanocages for highly sensitive H2S gas sensor | |
Pawar et al. | Synthesis of multi-dimensional ZnO nanostructures in aqueous medium for the application of gas sensor | |
Mani et al. | ZnO nanoarchitectures: Ultrahigh sensitive room temperature acetaldehyde sensor | |
Choi et al. | Effect of crystal defect on gas sensing properties of Co3O4 nanoparticles | |
Wang et al. | Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties | |
Karmaoui et al. | Modification of anatase using noble-metals (Au, Pt, Ag): Toward a nanoheterojunction exhibiting simultaneously photocatalytic activity and plasmonic gas sensing | |
Zhang et al. | La2O3-sensitized SnO2 nanocrystalline porous film gas sensors and sensing mechanism toward formaldehyde | |
Song et al. | Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction | |
Cao et al. | Tungsten oxide clusters decorated ultrathin In2O3 nanosheets for selective detecting formaldehyde | |
Zhang et al. | Enhanced room temperature NO 2 response of NiO–SnO 2 nanocomposites induced by interface bonds at the p–n heterojunction | |
Hemalatha et al. | Comparison of electrical and sensing properties of pure, Sn-and Zn-doped CuO gas sensors | |
CN110396006B (zh) | 一种ZIF-8膜包覆SnO2复合气敏材料及其制备方法和应用 | |
Zhang et al. | Improvement of gas sensing performance for tin dioxide sensor through construction of nanostructures | |
CN108479774B (zh) | 一种氧化锌复合光催化剂及其制备方法和应用 | |
Prakash et al. | Sensing properties of ZnO nanoparticles synthesized by using albumen as a biotemplate for acetic acid monitoring in aqueous mixture | |
Munusami et al. | Development of high sensitivity LPG and NO2 gas sensor based ZnGa2O4/graphene nanoplates hybrid structure-A novel approach | |
Mani et al. | Selective recognition of hydrogen sulfide using template and catalyst free grown ZnO nanorods | |
Bai et al. | A novel composite of α-MoO 3/BiVO 4 for triethylamine selective detection | |
Zhang et al. | Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties | |
Wang et al. | Highly sensitive and selective sub ppb level acetone sensing platform based on Co3O4–ZnO heterojunction composites | |
Lu et al. | Morphology‐controllable synthesis of cubic‐structured In2O3 particles with enhanced NO2 gas sensitivity | |
Ying et al. | UV-enhanced NO2 gas sensors based on In2O3/ZnO composite material modified by polypeptides | |
Qin et al. | A ZnO/ZnFe 2 O 4 n–n heterojunction and Au loading synergistically improve the sensing performance of acetone | |
Dien et al. | Hydrothermal Synthesis and Ammonia Sensing Properties of WO 3/Fe 2 O 3 Nanorod Composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200811 |