CN108448888A - 开关电源电路 - Google Patents

开关电源电路 Download PDF

Info

Publication number
CN108448888A
CN108448888A CN201810316858.7A CN201810316858A CN108448888A CN 108448888 A CN108448888 A CN 108448888A CN 201810316858 A CN201810316858 A CN 201810316858A CN 108448888 A CN108448888 A CN 108448888A
Authority
CN
China
Prior art keywords
circuit
capacitance
boost
input
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810316858.7A
Other languages
English (en)
Other versions
CN108448888B (zh
Inventor
李韧红
沈卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Push Technology Co Ltd
Original Assignee
Shanghai Push Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Push Technology Co Ltd filed Critical Shanghai Push Technology Co Ltd
Priority to CN201810316858.7A priority Critical patent/CN108448888B/zh
Publication of CN108448888A publication Critical patent/CN108448888A/zh
Priority to PCT/CN2019/081715 priority patent/WO2019196784A1/zh
Priority to DE112019001096.4T priority patent/DE112019001096T5/de
Priority to JP2020554528A priority patent/JP6978127B2/ja
Application granted granted Critical
Publication of CN108448888B publication Critical patent/CN108448888B/zh
Priority to US16/915,635 priority patent/US11223275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4241Arrangements for improving power factor of AC input using a resonant converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

本发明公开了一种开关电源电路,第一输入整流电路对第一电容充电形成第一回路,以及第二输入整流电路对第二电容充电形成第二回路;第一电感、第二电容、第一开关元件形成第二电容对第一电感充电的第三回路;第一电感、第二电容、第一电容、第一输出整流电路形成第一电感上的电压与第二电容上的电压叠加后,经过第一输出整流电路,对第一电容充电的第四回路。本发明具有高效率、高可靠、低EMI噪音、抗干扰抗浪涌能力强等优点。

Description

开关电源电路
技术领域
本发明涉及一种具有高效率、低成本、EMI噪音低、抗干扰抗浪涌能力强等优点的开关电源电路,可以实现对交流电的输入功率因数校正,并升压输出的功能。
背景技术
电器设备连接于交流电网的AC-DC电源,需满足IEC61000-3-2的对电流谐波的强制要求。针对不同的设备和应用,IEC61000-3-2提出了Class A,Class B,Class C,Class D的电流谐波的限制标准。(图1)
当前的开关式稳压电源技术,对单相PFC的实现,主要使用Boost PFC电路(图2)的方案来应对。为提高效率,无桥PFC以及图腾柱(TotemPole)PFC电路也开始使用,其核心依然是Boost电路,但价格昂贵,控制复杂,EMC表现较差。
传统的boost PFC电路,如图2,由全波整流元件D1对输入全波整流。Boost电路的原理是1)Q1导通,电感L1被AC输入整流到C2的电压励磁储能。2)Q1截止,L1上的感生电压和AC输入整流到电容C2上的电压叠加,对电容C1充电。如此,电容C1上的电压大于AC输入电压,故Boost是升压拓扑。Q1的占空比由Boost反馈驱动控制电路控制,以达到电容C1上稳定的电压输出(一般为380Vdc)。
上述传统的boost PFC电路中,能实现很高的功率因数,能够满足IEC61000-3-2的要求,但会产生以下的问题:
(1)Boost输出整流元件D4,处于输入到电容C1的回路中,需要强抗浪涌电流能力以应对EMC测试,而当前为提高效率而采用的SiC二极管,I2t指标都非常弱;
(2)在实际应用中,为抑制启动浪涌电流,需串联启动浪涌抑制电路在D2、D4与C2之间的功率电路中,或串联在输入线中,一般常用的启动浪涌抑制电路为热敏电阻或可控开关元件,有损耗大、低温启动困难、成本高的缺陷。
(3)Boost电路的输入功率回路,途经两个输入整流二极管(D1的其中两个),和一个Boost输出整流元件,开关元件为硬开关模式,损耗大,效率低。
(4)Boost电路后的应用DC-DC传导噪音(EMI),可以通过输入整流电路,低阻抗地流入输入电网。
发明内容
针对现有技术的不足,本发明的发明目的在于提供一种开关电源电路,该开关电源电路具有高效率、低成本、抗干扰抗浪涌能力强、能实现功率因数校正PFC等优点。
本发明的发明目的通过以下技术方案实现:
一种开关电源电路,包含第一输入整流电路、第一电容、Boost反馈驱动控制电路,以及一个以上的Boost转换电路;
Boost转换电路包含第二输入整流电路、第二电容和Boost电路;其中,Boost电路包含第一电感、第一开关元件和第一输出整流电路;
第一输入整流电路对输入电压进行整流后,与第一电容形成对第一电容充电的第一回路,以及第二输入整流电路对输入电压进行整流后与第二电容形成对第二电容充电的第二回路;第一电容与第二电容的一端与第一输入整流电路的整流输出同端相连接;
当第一开关元件导通时,第一电感、第二电容、第一开关元件形成第二电容对第一电感充电的第三回路;当第一开关元件截止时,第一电感、第二电容、第一输出整流电路和第一电容形成第一电感上的电压与第二电容上的电压叠加后,经过第一输出整流电路,对第一电容充电的第四回路;
第一电容的输出连接负载;
Boost反馈驱动控制电路用于根据一定频率和占空比的斩波驱动第一开关元件的导通和截止。
本发明的工作原理是:
针对第一回路,只在电源启动时才工作,用于对第一电容储能。在EMC抗干扰实验中,其可以吸收雷击浪涌、脉冲噪音。当boost转换电路正常工作时,第一电容的电压大于输入交流的电压峰值,故第一输入整流电路不再有电流通过。
针对Boost转换电路,由于第二电容容值比较小,故第二电容反映的是交流输入的实时电压。
升压过程由第一开关元件、第二电容、第一电感、第一电容和第一输出整流电路完成。
当第一开关元件导通,第一电感被AC输入整流到第二电容的电压励磁储能。
当第一开关元件截止,第一电感L1上的感生电压和AC输入整流到第二电容上的电压叠加,对第一电容充电。如此,第一电容上的电压大于AC输入电压,形成Boost升压转换。
第一开关元件的占空比由Boost反馈驱动控制电路控制,以达到第一电容上稳定的电压或功率输出。
本发明的有益效果在于:
本发明提供的开关电源电路效率高,成本低,噪音低,EMC表现好,能达到升压再转换输出,能够实现有源功率因数校正。
本发明的第一输出整流电路不处于输入对第一电容充电的回路中,没有输入浪涌的电流冲击,没有在传统Boost中,由于使用了I2t比较弱的SiC二极管,造成抗启动浪涌和雷击浪涌能力差的缺陷;第一电感,也不处于输入对第一电容充电的回路中,没有在传统Boost电路中,需要旁路整流元件来防止输入浪涌电流造成的第一电感的饱和。
当电源在正常工作时,第一回路处于截止状态,隔断了输入线与第一电容负端的连接,使Boost电路之后所应用的DC-DC电源电路的EMI共模噪音对输入电网呈现高阻抗,DC-DC电路的共模EMI噪音,只能通过第一回路与第二回路公共路径传输到输入线。再由于第一回路处于截止状态,Boost电路之后所应用的DC-DC的EMI差模噪音只有一极(第一电容的电压正端)通过第一输入整流电路连接到输入线,无法形成回路,故实际上差模噪音对输入电网亦呈现高阻抗。采用本发明的开关电源电路,可以极大地降低EMI的噪音,降低材料和解决时间的成本。采用本发明软开关技术设计的Boost转换电路,又可以减低EMI的高频辐射噪音。
附图说明
图1是表示IEC61000-3-2的交流输入谐波要求。
图2是传统的具有Boost电路的开关电源电路。
图3是实施例一中所述开关电源电路的结构示意图。
图4A是实施例一中所述的第一回路、第二回路示意图。
图4B是实施例一中所述的第三回路示意图。
图4C是实施例一中所述的第四回路示意图。
图5是实施例二所述的开关电源电路的电路示意图。
图6是实施例三所述的开关电源电路的电路示意图。
图7A是实施例三所述的开关电源电路处于工作状态1的电流回路图。
图7B是实施例三所述的开关电源电路处于工作状态2的电流回路图。
图7C是实施例三所述的开关电源电路处于工作状态3-1的电流回路图。
图7D是实施例三所述的开关电源电路处于工作状态3-2的电流回路图。
图7E是实施例三所述的开关电源电路处于工作状态4的电流回路图。
图8A是实施例三所述的开关电源电路的工作波形图一。
图8B是实施例三所述的开关电源电路的工作波形图二。
图8C是实施例三所述的开关电源电路的工作波形图三。
图9是实施例四所述的开关电源电路的电路示意图。
图10是实施例四所述的开关电源电路的控制波形图
图11是实施例五所述的开关电源电路的图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。
<实施例一>
本实施例所示的一种开关电源电路,参见图3所示,包含由整流元件D1构成的第一输入整流电路、第一电容C1、Boost反馈驱动控制电路,以及一个以上的Boost转换电路;
Boost转换电路包含由整流元件D1、D2、D3构成的第二输入整流电路、第二电容C2和Boost电路;其中,Boost电路包含第一电感L1、第一开关元件Q1和第一输出整流电路;
第一输入整流电路对输入电压进行整流后,与第一电容C1形成对第一电容C1充电的第一回路,以及由整流元件D1、D2、D3构成的第二输入整流电路形成对第二电容C2充电的第二回路,第一电容与第二电容的一端与第一输入整流电路的整流输出同端相连接;参见图4A所示为正端相连接例子;
当第一开关元件导通时,第一电感、第二电容、第一开关元件形成第二电容对第一电感充电的第三回路,参见图4B所示;当第一开关元件截止时,第一电感、第二电容、第一输出整流电路和第一电容形成第一电感上的电压与第二电容上的电压叠加后,经过第一输出整流电路,对第一电容充电的第四回路,参见图4C所示;
第一电容的输出连接负载;
Boost反馈驱动控制电路用于根据一定频率和占空比的斩波驱动第一开关元件的导通和截止。
为便于说明,本实施例中第一输入整流电路、第二输入整流电路、第一输出整流电路作为举例选用最常见的桥式整流器和二极管组成,其它能达到与桥式整流器和二极管同等效果的电子元件均可代替桥式整流器和二极管。
根据上述开关电源电路,开关电源电路包含二部分内容。
第一部分,双整流部分:参见图4A中①部分所示,由D1构成的第一输入整流电路对单相AC输入电压进行全波整流,其能量储存在第一电容C1中,当Boost电路工作后,Boost电路输出的能量使第一电容C1上的电压大于AC输入电压,AC输入电压不再对第一电容C1充电;当Boost电路的能量输出不足于使第一电容C1上电压大于AC输入电压,AC输入可以继续对第一电容C1充电。参见图4A中②部分所示,整流桥D1,和二极管D2、二极管D3构成第二输入整流电路对第二电容C2的全波整流,对第二电容C2进行充电,由于第二电容C2的容量小,第二电容C2上的电压,基本接近AC输入电压的全波整流后的波形。在有源PFC Boost电路中,第二电容C2的主要作用是滤除高频开关噪音,以减小EMI干扰。
第二部分,Boost转换电路部分:第二电容C2、第一开关元件Q1、第一电感L1、第一输出整流电路,和第一电容C1构成Boost转换电路。
在本实施例中,第一电感L1即可以工作在不连续电流模式(discontinuouscurrent mode:DCM),也可以工作在连续电流模式(continuous current mode:CCM),第一开关元件Q1工作在硬开关模式下。
工作原理:
1)工作状态1:第一开关元件Q1导通,如图4B所示。
第一电容C1上是储能的电压,也是供给负载的输出电压。第二电容C2上反映的是整流后AC的瞬间电压。
当反映AC输入电压变化的第二电容C2上的能量,经过第一开关元件Q1,流进第一电感L1,回路及方向如虚线箭头所示,Boost型升压转换的能量储存在第一电感L1内。
工作状态2:第一开关元件Q1截止,如图4C所示。.
第一开关元件Q1截止,储存在第一电感L1中的能量,在第一开关元件Q1截止后瞬间,产生感生电压,其与第二电容C2上的电压叠加后,经过第一输出整流电路(二极管D4),对第一电容C1充电,完成Boost电路的升压转换(虚线)。
当第一电感L1的能量在进入下一次循环回到工作状态1时,第一电感L1的能量没有放完,为连续模式。当电感L1的能量在进入下一次循环回到工作状态1前,Boost电感L1的能量已经放完,则为不连续模式。
如此从工作状态1到工作状态2,循环反复。
Boost电路,通过第一电感L1、第二电容C2分别在第一开关元件Q1的导通和截止时间段,根据AC的电压和相位变化,从AC输入中吸取能量,使AC输入电流同步与AC输入电压,以实现功率因数校正的功能。
Boost反馈驱动控制电路可以由硬件实现:由取样电路、运算放大器构成的自动控制电路、比较器、和三角波发生器组成,得到PWM斩波驱动输出。Boost反馈驱动控制电路也可以使用MCU,DSP等用软件进行自动控制PWM;PWM的占空比是控制输出功率的控制要素,输出功率指输出的电压、电流以及它们的乘积,即提供多少瓦的电源功率,实际应用还分恒流输出、恒压输出、恒功率输出,对关注的电流、电压和功率进行控制
<实施例二>
本实施例与实施例一的区别是:是在第一回路上串联防止输入浪涌电流的输入浪涌限制电路Rth1,以抑制电源启动时输入的瞬间浪涌电流,参见图5所示。输入浪涌限制电路Rth1不在第二回路、第三回路、第四回路中,所以仅在电源启动时有电流流过时使用,启动后正常工作时是零损耗的。同时输入浪涌限制电路Rth1可以只使用一般能抗击浪涌的电阻,成本低,选用大阻值的电阻可以减小启动浪涌电流,而不增加损耗,不再有启动浪涌电流与效率以及电源启动能力的设计妥协,提升了电源的特性。将电阻和容性、感性阻抗的配合使用,还能提高对EMC雷击、噪音的吸收能力。这种双整流输入结构,与传统的Boost型AC-DC中高损耗的热敏电阻或昂贵的继电器回路相比,提高了效率,降低了温度,又减少了成本。
本实施例的工作原理和实施例一一致。
<实施例三>
本实施例是对实施例一、二中所述的第一输出整流电路进行等同替代,在本实施例中第一输出整流电路采用第四开关元件Q4,由Boost反馈驱动控制电路控制第一开关元件Q1与第四开关元件Q4的工作状态,第一开关元件Q1与第四开关元件Q4可设计工作在软开关模式下,见图6所示。
在本实施例中,第一电感L1可以工作在连续电流模式(CCM)下,第一开关元件Q1工作在硬开关模式下,硬开关模式的工作原理与实施例一一致。
第一电感L1也可以工作在不连续电流模式(DCM)下,当第一电感L1上的电流归零以及第四开关元件Q4的截止后,利用第一电容C1的电压对第二电容C2与第一电感L1充电的谐振电流,迫使谐振电流流过第一开关元件Q1的体二极管,对第一开关元件Q1的寄生电容放电,使之后的第一开关元件Q1开通,形成零电压软开关模式。
软开关模式的工作原理:(图7A,图7B,图7C,图7D,图7E)
1)工作状态1:第一开关元件Q1导通,第四开关元件Q4截止,如图7A所示。
第一电容C1上是储能的电压,也是Boost电路的输出电压。第二电容C2上反映的是整流后AC的瞬间电压。
当反映AC输入电压变化的第二电容C2上的能量,经过第一开关元件Q1,流进第一电感L1,回路及方向如虚线箭头所示,Boost型升压转换的能量储存在第一电感L1内。
2)工作状态2:开关元件Q1截止,开关元件Q4维持截止,如图7B。
第一开关元件Q1截止,储存在第一电感L1中的能量在第一开关元件Q1截止后瞬间产生感生电压,感生电压与第二电容C2上的电压叠加后,经过第四开关元件Q4的体二极管,对第一电容充电,完成Boost电路升压转换(虚线)。此Boost电路上的电流同时对第四开关元件Q4的寄生电容放电,为下一状态中开关元件Q4的零电压开通做准备。
3)工作状态3-1:第一开关元件Q1维持截止,第四开关元件Q4导通,如图7C。.
第一电感L1能量继续释放,与第二电容C2上的电压叠加后,经过导通的第四开关元件Q4对第一电容C1继续充电。第四开关元件Q4为接近零电压导通,减少了开关损耗和导通损耗。
4)工作状态3-2:第一开关元件Q1维持截止,第四开关元件Q4维持导通,如图7D。
第一电感L1的能量释放完,Boost电路的电流归零后,第一电容C1上的电压经过导通的第四开关元件Q4对第一电感L1、第二电容C2的谐振电路充电。
5)工作状态4:第一开关元件Q1维持截止,第四开关元件Q4截止,如图7E。
第四开关元件Q4的截止,使谐振电流流过第一开关元件Q1的体二极管,并对第一开关元件Q1的寄生电容放电,形成零电压,为之后的开关元件Q1接近零电压导通做准备。
设计Boost电感工作于DCM模式,Boost反馈驱动控制电路对第一电感L1的电流进行归零检测,通过控制第四开关元件的截止时间,以调节第一电感的电流归零后的谐振电流的大小,从而控制对第一开关元件Q1的寄生电容的放电快慢,在第一开关元件与第四开关元件都处于截止时的死区时间内,对第一开关元件的寄生电容有效放电,使第一开关元件随后接近零电压导通。
以上工作状态1到工作状态4,循环反复,形成谐振式Boost转换。
图8A是本实施例的工作波形图一。第一开关元件Q1和第四开关元件Q4的寄生电容如前所述,分别被谐振电流和Boost电流放电,工作在软开关ZVS模式下。
在低输入电压瞬间的区间,处于最大占空比工作,可以防止Boost电感L1与Boost电容C2的谐振电流反相对寄生电容再充电。图8B是本实施例中,在强制最大占空比的工作条件下的工作波形图。
值得注意的是,L1的磁复位的关系是Vin*Duty=(Vdc-Vin)*(1-Duty),可以得出:
Duty(max)=(Vdc-Vin)/Vdc
当Vin在正弦波峰附近时,Vin接近Vdc,如此最大占空比Duty(max)必须很小,才能达到电压时间的平衡,实现磁复位。如果工作Duty大于Duty(max),则Boost电感L1饱和,造成Q1损坏。
可以采用以下方式解决Boost电感磁复位的问题:
由Boost反馈驱动控制电路对Boost电路的参数状态如输入瞬时电压和Boost输出电压的监视,通过逻辑或数学运算得出防止Boost电感不能磁复位而饱和的最大占空比Duty(max),限制PWM的占空比。实际工作占空比为设定占空比和最大占空比Duty(max)的两者最小值。
图8C是本实施例中,输入交流峰值区间,最大占空比限制状态下的工作波形图。
在本实施例中,使用低阻抗的开关元件作为第一输出整流电路,不仅可以降低导通损耗,还可以利用Boost电路的不连续Boost电流的谐振,实现Boost开关元件的ZVS,使Boost电路工作在软开关模式,降低损耗,进一步提高了电源的效率,并且减少高频噪音辐射。如果用开关元件代替输入整流元件,还可以实现无桥PFC的效果,并同以上所述效果结合,使整体的此双整流BoostPFC电路效率优于无桥PFC。
根据实例一和实例三中对第一输出整流电路的描述,本领域的技术人员能想到的第一输出整流电路的替代方案均应落入权利要求书的保护范围。
<实施例四>
本实施例是对实施例一、实施例二、实施例三中第二输入整流电路进行替代说明,在本实施例中,第二输入整流电路中的二极管D2、D3采用第二开关元件Q2和第三开关元件Q3,第二开关元件Q2和第三开关元件Q3为低阻抗开关元件如场效应管等,如图9所示,以实现高效,节能的目的。
Boost工作原理和实施例一一致。
整流部分,对第一电容C1的充电方式和实施例一相同。
对第二电容C2的整流充电,由输入AC相位监控整流控制电路对输入AC电压和相位监控,以控制第一开关元件Q2、第三开关元件Q3的同步导通和截止,实现全波整流对第二电容C2充电。由于在AC正向半波过程中,第二开关元件Q2或第三开关元件Q3可设计成持续导通,没有开关损耗,故其效率优于无桥(Bridgeless)PFC电路。控制第二开关元件Q2、第三开关元件Q3的驱动死区时间,可以提高抗浪涌能力。图10为输入相位监控整流控制后的波形例图。
<实施例五>
本实施例的开关电源电路与实施例一的开关电源装置的区别在于:
具备两路Boost电路共同运行,参见图11所示:
第一开关元件Q1、第一输出整流电路(整流元件D4),第二电容C2,第一电容L1构成一路Boost电路。
第五开关元件Q5、第五输出整流电路(整流元件D5)、第三电容C3、第二电容L2构成另一路Boost电路。
两个Boost电路,或同步运行,或交错运行,受Boost反馈驱动控制电路控制。
其中每一个Boost电路的工作原理与实施例一相同,都具有第三回路和第四回路。
多组Boost回路同步运行,可以增大输出功率,平衡散热。
多组Boost回路交错或移相运行,不仅可以增大输出功率,还可以降低高频纹波。
另外,双整流部分:与实施例一的区别是,由整流桥D1构成第二整流电路改为对C2整流充电,D1和D3,D4构成第一整流电路对C1整流充电。由于对储能电容C1整流充电,只在启动工作,不具有温度、损耗、持续额定电流上的压力,可以选用低成本、低电流、小尺寸的整流元件D3,D4。合理选用两个整流回路的元件,可以降低成本,改善结构和元件散热。
以上,使用附图和实施方式对本发明进行了说明。但是,本发明并不限定于上述说明的实施方式。本领域技术人员在本发明的实质的宗旨和范围内,对应于需要,可以作各种各样的组合以及变形。这些变形或应用也属于本发明的技术范围。例如,本发明中所提第一电容C1、第二电容C2、第一电感L1可以是一个,也可以是多个串并联的组合,所提电路可以是单个元件组成,也可以是多个元件组成。

Claims (10)

1.一种开关电源电路,包含第一输入整流电路、第一电容、Boost反馈驱动控制电路,以及一个以上的Boost转换电路,其特征在于:
所述Boost转换电路包含第二输入整流电路、第二电容和Boost电路;其中,所述Boost电路包含第一电感、第一开关元件和第一输出整流电路;
所述第一输入整流电路对输入电压进行整流后与第一电容形成对第一电容充电的第一回路,第二输入整流电路对输入电压进行整流后与第二电容形成对第二电容充电的第二回路;第一电容与第二电容的一端与第一输入整流电路的整流输出同端相连接;
当第一开关元件导通时,第一电感、第二电容、第一开关元件形成第二电容对第一电感充电的第三回路;当第一开关元件截止时,第一电感、第二电容、第一输出整流电路和第一电容形成第一电感上的电压与第二电容上的电压叠加后,经过第一输出整流电路,对第一电容充电的第四回路;
所述第一电容的输出连接负载;
所述Boost反馈驱动控制电路用于根据一定频率和占空比的斩波驱动第一开关元件的导通和截止。
2.根据权利要求1所述的一种开关电源电路,其特征在于还包含输入浪涌限制电路,位于第一回路内,且与第二回路、第三回路、第四回路不重叠处。
3.根据权利要求2所述的一种开关电源电路,其特征在于输入浪涌限制电路为阻抗或阻抗、感抗、容抗的任意组合。
4.根据权利要求1或2或3的一种开关电源电路,其特征在于所述第二输入整流电路包含第二开关元件、第三开关元件和输入交流相位监控整流控制电路,第二开关元件、第三开关元件的一端连接在第二电容和第一电感之间,第二开关元件、第三开关元件的另一端连接到电源输入端,输入交流相位监控整流控制电路根据输入AC的电压和相位变化控制第二开关元件、第三开关元件同步导通或截止。
5.根据权利要求1或2或3或4所述的一种开关电源电路,其特征在于所述第一输出整流电路为第四开关元件,当第四回路对第四开关元件的寄生电容放电之后,第四开关元件零电压导通,Boost反馈驱动控制电路控制第四开关元件的导通和截止。
6.根据权利要求5所述的一种开关电源电路,其特征在于所述第一电感工作在不连续电流模式下,当第一电感的电流归零后,利用第一电容的电压经过第四开关元件对第二电容与第一电感充电的谐振电流,并控制第四开关元件的截止,对第一开关元件的寄生电容放电之后,使第一开关元件接近零电压开通。
7.根据权利要求6所述的开关电源电路,其特征在于:
所述Boost反馈驱动控制电路对第一电感的电流进行归零检测,当第一电感的电流归零后,通过控制第四开关元件的截止时间以调节第一电感的电流归零后的谐振电流的大小,从而控制对第一开关元件的寄生电容的放电快慢,在第一开关元件与第四开关元件都处于截止时的死区时间内,对第一开关元件的寄生电容有效放电,使第一开关元件随后接近零电压开通。
8.根据权利要求5或6或7所述的开关电源电路,其特征在于:
所述Boost反馈驱动控制电路根据输入电压、输出电压或负载的变化,动态调整第一开关元件和第四开关元件的互补驱动信号的死区时间。
9.根据权利要求1或2或3所述的开关电源电路,其特征在于所述
所述Boost反馈驱动控制电路对Boost转换电路的输入瞬时电压和输出电压的进行监视,通过逻辑或数学运算得出防止Boost电感不能磁复位而饱和的最大占空比,限制第一开关元件导通时间。
10.根据权利要求1或2或3所述的一种开关电源电路,其特征在于
二个以上的Boost电路之间通过Boost反馈驱动控制电路实现或同步、或交错、或移相运行。
CN201810316858.7A 2018-04-10 2018-04-10 开关电源电路 Active CN108448888B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201810316858.7A CN108448888B (zh) 2018-04-10 2018-04-10 开关电源电路
PCT/CN2019/081715 WO2019196784A1 (zh) 2018-04-10 2019-04-08 开关电源电路
DE112019001096.4T DE112019001096T5 (de) 2018-04-10 2019-04-08 Schaltnetzteilschaltung
JP2020554528A JP6978127B2 (ja) 2018-04-10 2019-04-08 スイッチング電源回路
US16/915,635 US11223275B2 (en) 2018-04-10 2020-06-29 Switching mode power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810316858.7A CN108448888B (zh) 2018-04-10 2018-04-10 开关电源电路

Publications (2)

Publication Number Publication Date
CN108448888A true CN108448888A (zh) 2018-08-24
CN108448888B CN108448888B (zh) 2019-07-16

Family

ID=63199069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810316858.7A Active CN108448888B (zh) 2018-04-10 2018-04-10 开关电源电路

Country Status (5)

Country Link
US (1) US11223275B2 (zh)
JP (1) JP6978127B2 (zh)
CN (1) CN108448888B (zh)
DE (1) DE112019001096T5 (zh)
WO (1) WO2019196784A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039074A (zh) * 2018-09-13 2018-12-18 上海推拓科技有限公司 一种无桥三整流Boost电源电路
WO2019196782A1 (zh) * 2018-04-10 2019-10-17 上海推拓科技有限公司 用于三相输入的开关电源电路
WO2019196784A1 (zh) * 2018-04-10 2019-10-17 上海推拓科技有限公司 开关电源电路
CN111181377A (zh) * 2020-01-07 2020-05-19 茂硕电源科技股份有限公司 一种功率因数校正电路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521223B (zh) * 2018-04-24 2019-09-13 上海推拓科技有限公司 开关电源电路
CN110774938A (zh) * 2019-11-19 2020-02-11 航天科技控股集团股份有限公司 一种基于多cpu的v2x系统电源低功耗硬件控制电路
CN112968597B (zh) * 2021-04-06 2022-07-05 上海瞻芯电子科技有限公司 连续模式下的功率因数校正电路的单周期控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1551472A (zh) * 2003-05-13 2004-12-01 ̨����ӹ�ҵ�ɷ����޹�˾ 交流/直流回扫变换器
CN2894060Y (zh) * 2006-05-18 2007-04-25 高效电子股份有限公司 单级功率因素校正电路
CN101136584A (zh) * 2007-09-14 2008-03-05 浙江大学 一种降低开关损耗的单级功率因数校正电路
CN201091060Y (zh) * 2007-10-16 2008-07-23 高效电子股份有限公司 单级功率因子校正电路
TWM346217U (en) * 2008-04-30 2008-12-01 Li Shin Internat Entpr Corp Fly back converting device having single-stage power factor correction circuit
CN101394091A (zh) * 2008-08-07 2009-03-25 英飞特电子(杭州)有限公司 电压反馈单级功率因数校正电路

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367539B2 (ja) * 1994-10-24 2003-01-14 サンケン電気株式会社 直流電源装置
US6194880B1 (en) 1999-10-22 2001-02-27 Lucent Technologies Inc. Boost converter, method of converting power and power supply employing the same
US6515463B2 (en) * 2001-04-05 2003-02-04 Semiconductor Components Industries Llc Method and circuit for optimizing efficiency in a high frequency switching DC-DC converter
CN1190884C (zh) * 2001-05-30 2005-02-23 台达电子工业股份有限公司 功率因数改善转换器
JP6089677B2 (ja) * 2012-12-19 2017-03-08 富士通株式会社 電源装置
CN203536946U (zh) 2013-09-24 2014-04-09 中兴通讯股份有限公司 一种pfc电路的浪涌防护电路
CN110098729B (zh) * 2015-03-17 2021-06-11 意法半导体股份有限公司 用于具有交错的转换器级的开关调节器的控制设备、开关调节器及对应的控制方法
US9698681B2 (en) 2015-09-30 2017-07-04 Dialog Semiconductor (Uk) Limited Circuit and method for maximum duty cycle limitation in step up converters
US10770966B2 (en) 2016-04-15 2020-09-08 Emerson Climate Technologies, Inc. Power factor correction circuit and method including dual bridge rectifiers
DE102016108942A1 (de) 2016-05-13 2017-11-16 Phoenix Contact Gmbh & Co. Kg Spannungswandler mit Verpolungsschutzdiode
CN107887898A (zh) 2016-09-29 2018-04-06 维谛技术有限公司 一种单相pfc电路的浪涌防护电路及电力电子设备
CN108494274B (zh) * 2018-04-10 2019-07-16 上海推拓科技有限公司 用于三相输入的开关电源电路
CN108448888B (zh) * 2018-04-10 2019-07-16 上海推拓科技有限公司 开关电源电路
CN108512431B (zh) * 2018-04-24 2019-08-27 上海推拓科技有限公司 双整流交错式全桥单级功率因素校正电源电路及控制方法
CN108390555B (zh) * 2018-04-24 2019-09-10 上海推拓科技有限公司 用于Boost与桥式DC-DC转换电路组合的开关电源的PFWM控制方法
CN108471232B (zh) * 2018-04-24 2019-10-08 上海推拓科技有限公司 双整流桥式单级功率因素校正电源电路
CN108512421B (zh) * 2018-04-24 2019-08-27 上海推拓科技有限公司 一种pfwm控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1551472A (zh) * 2003-05-13 2004-12-01 ̨����ӹ�ҵ�ɷ����޹�˾ 交流/直流回扫变换器
CN2894060Y (zh) * 2006-05-18 2007-04-25 高效电子股份有限公司 单级功率因素校正电路
CN101136584A (zh) * 2007-09-14 2008-03-05 浙江大学 一种降低开关损耗的单级功率因数校正电路
CN201091060Y (zh) * 2007-10-16 2008-07-23 高效电子股份有限公司 单级功率因子校正电路
TWM346217U (en) * 2008-04-30 2008-12-01 Li Shin Internat Entpr Corp Fly back converting device having single-stage power factor correction circuit
CN101394091A (zh) * 2008-08-07 2009-03-25 英飞特电子(杭州)有限公司 电压反馈单级功率因数校正电路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019196782A1 (zh) * 2018-04-10 2019-10-17 上海推拓科技有限公司 用于三相输入的开关电源电路
WO2019196784A1 (zh) * 2018-04-10 2019-10-17 上海推拓科技有限公司 开关电源电路
US11128220B2 (en) 2018-04-10 2021-09-21 Shanghai Tuituo Technology Co., Ltd Switching mode power supply circuit for three phase AC input
US11223275B2 (en) 2018-04-10 2022-01-11 Shanghai Tuituo Technology Co., Ltd Switching mode power supply circuit
CN109039074A (zh) * 2018-09-13 2018-12-18 上海推拓科技有限公司 一种无桥三整流Boost电源电路
WO2020052617A1 (zh) * 2018-09-13 2020-03-19 上海推拓科技有限公司 一种无桥三整流Boost电源电路
CN111181377A (zh) * 2020-01-07 2020-05-19 茂硕电源科技股份有限公司 一种功率因数校正电路

Also Published As

Publication number Publication date
JP2021519053A (ja) 2021-08-05
DE112019001096T5 (de) 2021-01-14
US20200328672A1 (en) 2020-10-15
CN108448888B (zh) 2019-07-16
US11223275B2 (en) 2022-01-11
JP6978127B2 (ja) 2021-12-08
WO2019196784A1 (zh) 2019-10-17

Similar Documents

Publication Publication Date Title
CN108448888B (zh) 开关电源电路
CN108512431B (zh) 双整流交错式全桥单级功率因素校正电源电路及控制方法
CN108471232B (zh) 双整流桥式单级功率因素校正电源电路
de Melo et al. A modified SEPIC converter for high-power-factor rectifier and universal input voltage applications
Figueiredo et al. A review of single-phase PFC topologies based on the boost converter
Lin et al. Soft-switching zeta–flyback converter with a buck–boost type of active clamp
CN108494274B (zh) 用于三相输入的开关电源电路
CN109039074A (zh) 一种无桥三整流Boost电源电路
de Alvarenga et al. Development of a new single phase high power factor rectifier with ZVS commutation and high frequency isolation
Narula et al. A PFC based power quality improved bridgeless converter for welding applications
CN113949269A (zh) 无桥升降压式功率因数校正变换器及控制系统
CN112072908A (zh) 一种提升ups功率因数的六电感双开关pfc拓扑结构
Amei et al. Characteristics of new single phase voltage doubler rectifier circuit using the partial switching strategy
Goswami et al. Study of Isolated Single-stage Resonant AC-DC Converter
CN115714546B (zh) 软开关单级式三开关三相acdc变换器及其控制方法
Lin et al. New Single-Phase Bridgeless High-Voltage-Gain SEPIC PFC Converters with Improved Efficiency
Cheng et al. A novel single-stage high-power-factor high-efficiency ac-to-dc resonant converter
Chand et al. Power Quality Enhanced EV Charger Using Cuk Converter
Kang et al. Three-Phase Bridgeless AC/DC PFC with LLC Resonant Circuit for High Efficiency and Low Input Current THD
Huang et al. A novel three-phase single-stage PFC converter with limited double-polarity control
Zheng et al. Design considerations for a new ac-dc single stage flyback converter
Wang et al. Analysis and design of high performance voltage-doubler rectifier
Kishvar et al. Design and development of a 3.3 kW portable charger for electric vehicles
Ambhore et al. A Semi-Quadratic Buck PFC Converter with Less Input Current Distortion
Wang et al. A novel high input power factor soft-switching single-stage single-phase AC/DC/AC converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant