TWM346217U - Fly back converting device having single-stage power factor correction circuit - Google Patents
Fly back converting device having single-stage power factor correction circuit Download PDFInfo
- Publication number
- TWM346217U TWM346217U TW97207492U TW97207492U TWM346217U TW M346217 U TWM346217 U TW M346217U TW 97207492 U TW97207492 U TW 97207492U TW 97207492 U TW97207492 U TW 97207492U TW M346217 U TWM346217 U TW M346217U
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- coupled
- rectifier
- energy storage
- capacitor
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Description
M346217 八、新型說明·· 【新型所屬之技術領域】 n ΐ㈤作提卩種具有單級功率因數校正電路的返馳 ,置,尤指-種涉及電力電子領域,且 因數和輸出電屢快速調節之返跳式轉換裝置。。力羊 【先前技街】 目前廣泛採㈣功率因數校正電路彳主往是傳統 正技術’但其電路元件多,成本較高,而 且运路不夂雜’不適用於中^丨士玄日 x ^ 、力千麥己。為降低兩級功率因 路的成本,近年來人們提出了多種單級功率因數 nr不連續導電模式,自動實現功率因數校正= '、、、只現輸入輪出功率的平衡,同時保證電源的保拝护 :古需要一個低頻電容儲存能量。由於輸入電流不” 了 二有2的輪入電流譜波,所以需要在輸入端加上:、干 擾抑制電路,整個電路就比較複雜。 料級的功㈣數校正電路裏,通過單他制電路, 同知貫現輸入電流波形的校正、電氣隔離、以及輸出電屙 的快速_。由於去掉了傳統的兩級方式中對儲能電容^ 昼的控制,在實現上述功能的同時,必須保證難電容 屋在適當的範圍之内(通常在400v以下)。大部分的單級 電路由-個類似於昇壓器(Booster)的輸入部分,和順 向式轉換器(Forward Converter )或者反馳式轉換哭 (Flyback Converter)的 DC/DC 部分組成。一般地,單 級電路在功率因數和顧波含量方面的特性不如兩級電 M346217 路。通常功率因數(PF)在0 8〜0.95,總諧波含量(thd) 在20〜75%的範圍之内。 如第一圖所示,是Μ. M. Jonanovic和L. Huber所申請 的美國專利《AC/DC Flyback Converter》(專利號: J|.S)Pat. No.6,950, 319),提出了一種簡單、低成本、高 效率並且輪出特性良好的具有單級功率因數校正電路的 返馳式轉換裝置1〇〇。在第一圖中,兩個整流二極體⑽、 D4和。變壓器τΓ的初級繞組N1、N2中間抽頭之間接入一 ,能電感H ’係透過ΕΜ ί濾、波電路110實現對輸入電 流、π、的校正作用。並且,另外的兩個整流二極體w、⑽ 係迄過EMI濾波電路110,實現在館能電容器^的雷舞 跌落到低於輸入電麼Vin的時候,構成輸入電壓…對二 :電容器C1的直接充電回路,並且可以減小輸入電流; 、、、、文波。儲旎電感器Lppc和整流二極體D3、D4盥厣哭M346217 VIII. New Description·· 【New Technical Fields】 n ΐ(5) is a kind of single-stage power factor correction circuit for back-off, especially, especially in the field of power electronics, and the factors and output power are quickly adjusted. The return-to-back conversion device. . Li Yang [formerly known as the street] Currently widely used (four) power factor correction circuit is the traditional positive technology 'but its circuit components are more, the cost is higher, and the road is not noisy' is not applicable to the middle ^ gentleman Xuan Ri x ^, Qian Qian Mai Ji. In order to reduce the cost of the two-stage power factor, in recent years, a variety of single-stage power factor nr discontinuous conduction modes have been proposed, which automatically realize power factor correction = ',, and only the input input wheel power balance, while ensuring the protection of the power supply. Protection: Ancient needs a low frequency capacitor to store energy. Since the input current does not have two rounded current ripples, it is necessary to add: interference suppression circuit at the input end, and the whole circuit is more complicated. In the material level (four) number correction circuit, through the single circuit The same is true for the correction of the input current waveform, the electrical isolation, and the fast output _. Since the control of the storage capacitor 传统 is removed in the traditional two-stage mode, it is necessary to ensure that the above functions are The capacitor house is within the proper range (usually below 400v). Most of the single-stage circuits consist of an input section similar to the booster (Booster), and a forward converter or a reverse converter. Converting the DC/DC part of the Flyback Converter. Generally, the single-stage circuit is not as good as the two-stage power M346217 in terms of power factor and Gu wave content. Usually the power factor (PF) is between 0 8 and 0.95. The wave content (thd) is in the range of 20 to 75%. As shown in the first figure, it is the US patent "AC/DC Flyback Converter" filed by M. Jonanovic and L. Huber (patent number: J| .S)Pat. No.6 , 950, 319), proposes a simple, low-cost, high-efficiency and good-rounding characteristic of a flyback converter with a single-stage power factor correction circuit. In the first figure, two rectified diodes The body (10), D4, and the transformer τΓ are connected between the center taps of the primary windings N1 and N2, and the inductor H' is calibrated by the filter circuit 110 to achieve the correction of the input current, π, and the other two. The rectifying diodes w and (10) are passed through the EMI filter circuit 110, and the input voltage is formed when the thunderbolt of the hall capacitors falls below the input voltage Vin. The second charging circuit of the capacitor C1 is And can reduce the input current; , , , , Wenbo. The storage inductor Lppc and the rectifying diode D3, D4 cry
Tr的初級繞組N1、N2中間拙 y ’、土 00 電玄 〇 甲間抽頭串聯連接,係可以把儲能 9〇 :、私[限制在—定的範圍内。對於範圍在 的輸人電壓Vin’通f儲能電容器 電壓可以維持在4〇〇V以下。 7 候=考第一圖’當切換開關Q1導通(turn〇n)的時 此:史壓器Tr的初級繞組N2與儲能電感器w相串: 1,初級繞、组N2可以回饋儲能電容器以 ::能電感陶流的上升斜率,_ “丨 C1的電壓值。另外,當切換 谷盗 變屢器Tr的初級繞組N1 ▲儲;"=rn〇ff)時, 繞組们對變舞哭Tr女㈣^ b電感各W相串聯,初級 又n人級側輸出的反射電麼,可以增大儲 M346217 能電感Lm:電流的下降斜率,進而抑制儲能電容器a的 電壓值。所以,無論切換開關Q1是導通或截止,都可以 通過變壓器Tr初級繞組N1、N2的感應電壓,來抑 電容器.C1的電壓值。 丨別储月匕 復參考第-圖,當切換開關Q1導通時,輸人電屋… 可以通過初級繞組N2增加變壓器Tr的激磁能量。告 開關Q1截止時,儲能電感器Lppc>所儲存的能量了通過 肩級繞組N1直接向變壓器Tr次級側傳輸,這些都可以 升整個變換器的效率。最佳化勒級繞組則,的比 J以改善整個變換器的性能,並對功率因數、儲能電 壓和效率等指標進行最佳化。 玉 π,文、以後的早級拓撲結構,並且 極體的個數,以減少導诵指叔担,了口路中串聯二 開嶋通的時候二”效率。但是,當切換 則的電流都流過初級1的電流和初級繞組 切拖鬥關m ι 因而造成大的電流。並於 I ίπ 1 ^ 5 N2 ^ 切換開關Q1的洩極姓金 町曰在 壓,因而增加切換門^ %之間引起很大的尖峰電 s切換開闕w的開關損耗。 【新型内容】 有鑑於此,本創你担 電路的返桃式轉換裝置,宜=具有單級功率因數校正 耗和高效率的優點。,、糸/、有鬲功率因數、低導通損 本創作之具有單級功率因數校正電路的返馳式轉換 M346217 裝置,包括有一第一整流器、一儲能電容器、一第二整流 器、一儲能電感器、一切換開關及一變壓器。其中,第一 整流器對一輸入交流電壓進行整流,以產生一第一全波直 流電壓。儲能電容器耦接於第一整流器與一接地端之間, 係對第一全波直流電壓進行濾波。第二整流器對輸入交流 電壓進行整流,以產生一第二全波直流電壓。儲能電感器 耦接於第二整流器,係對第二全波直流電壓進行儲能。切 換開關耦接於接地端。變壓器具有一初級繞組、次級繞組 與一耦合繞組,其中初級繞組與切換開關係並聯耦接於儲 能電容器,且耦合繞組與切換開關係串聯耦接於儲能電感 器,次級繞組則透過一整流二極體耦接於一輸出電容。 綜上,本創作的返驰式轉換裝置係透過在PFC電感電 流的回路中串聯一個變壓器的耦合繞組,來抑制儲能電容 器的電壓。同時,儲能電感器和耦合繞組中的能量,一部 分將透過變壓器的初級繞組向次級繞組傳輸,另一部分將 對儲能電容器充電,以減少I馬合繞組所引起的漏感損耗, 及降低切換開關截止後,所產生的尖峰電壓和開關損耗, 進而提升變換器整體的效率。 【實施方式】 請參考第二圖,為本創作第一實施例之裝置電路示意 圖。本創作之具有單級功率因數校正電路的返馳式轉換裝 置200,包括有一第一整流器201、一儲能電容器C1、一 第二整流器202、一儲能電感器Lm:、一切換開關Q1及一 變壓器Tr。其中第一整流器201透過一 EMI濾波電路210 對一輸入交流電壓Vin進行整流,以產生一第一全波直流 M346217 電壓VI。儲能電容器Cl則耦接於第一整流器201與一接 地端G之間,係對第一全波直流電壓VI進行濾波。其中 該第一整流器201在輸入交流電壓Vin大於儲能電容器 C1上的電壓時,係整流輸入交流電壓Vin,用以產生第一 全波直流電壓VI以對儲能電容器C1進行充電。 另外,第二整流器202同樣也透過EMI濾波電路210 對輸入交流電壓Vin進行整流,以產生一第二全波直流電 壓V2。而儲能電感器Lpk耦接於第二整流器202,用以對 第二全波直流電壓V2進行儲能。切換開關Q1則耦接於接 地端G與變壓器Tr的一初級繞組N1與一耦合繞組N2。 其中,變壓器Tr的初級繞組N1與切換開關Q1係串聯耦 接後,再並聯耦接於儲能電容器C1,且變壓器Tr的耦合 繞組N2與切換開關Q1係串聯耦接於儲能電感器Lm:。 復參考第二圖,第一整流器2〇1包括有整流二極體 Dl、D2、D5及D6,而第二整流器202包括有整流二極體 D3、D4、D5及D6,其中整流二極體D5、D6為第一整流器 201與第二整流器202之間公用的二極體。同時,變壓器 Tr還包括有一次級繞組N3,該次級繞組N3透過一整流二 極體D7耦接於一輸出電容C2。另外,返馳式轉換裝置200 進一步包括一控制器204,該控制器204搞接於輸出儲能 電容C2,係根據該輸出電容C2上的輸出電壓,以輸出一 控制信號SW以控制該切換開關Q1的切換週期。 復參考第二圖,返馳式轉換裝置200保留了第一圖中 電路的優點和成果,但是,在本創作的返馳式轉換裝置 200中,變壓器Tr之耦合繞組N2串聯在儲能電感器Lpfc Μ3462Ϊ7 聯在儲能電减ΐ ί :::,變屋器初級側的"胸 式可以採取通與截止,而其控制方 卿或不連續導;模變'塵器:十:作在連、續導通 可好1 ^果式。前述中’控制方式也 (則鳩),在這種臨界模 ^/ =品界模式 的措鉍。制以減少輕载下的切換開關Q1 六、、 ’可以通過限制切換開關Q1截止時間的方. 以=次r的整流二極㈣7可⑽^ 一極二(Schottky Diode)或同步二極體。Tr's primary winding N1, N2 intermediate 拙 y ′, soil 00 electric Xuan 〇 甲 抽 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联 串联For a range of input voltage Vin's f-storage capacitor voltage can be maintained below 4 〇〇V. 7 候 = test the first picture 'When the switch Q1 is turned on (turn〇n): the primary winding N2 of the history transformer Tr is connected with the energy storage inductor w: 1, the primary winding, the group N2 can feed back the energy storage The capacitor is:: the rising slope of the inductor ceramic flow, _ "the voltage value of 丨C1. In addition, when switching the primary winding N1 ▲ of the valley thief Tr; "=rn〇ff), the windings are changed Dancing crying Tr female (four) ^ b Inductive W phase series, primary and n human side side of the output of the reflected electricity, can increase the storage M346217 energy inductance Lm: current drop slope, and thus inhibit the voltage value of the storage capacitor a. Regardless of whether the switch Q1 is turned on or off, the voltage of the capacitor C1 can be suppressed by the induced voltage of the primary windings N1 and N2 of the transformer Tr. 丨 储 储 匕 参考 参考 第 第 第 , , , , , , , , , input power house... The excitation energy of the transformer Tr can be increased by the primary winding N2. When the switch Q1 is turned off, the stored energy of the energy storage inductor Lppc> is directly transmitted to the secondary side of the transformer Tr through the shoulder winding N1. Can increase the efficiency of the entire converter. Optimized The ratio of the windings is to improve the performance of the whole converter, and to optimize the power factor, storage voltage and efficiency. Jade π, text, and later early-stage topology, and the number of polar bodies In order to reduce the guidance of the uncle, the second "efficiency" in the mouth of the two in the mouth. However, when the current is switched, the current flowing through the primary 1 and the primary winding are switched off, thereby causing a large current. And in the I ίπ 1 ^ 5 N2 ^ switch Q1, the stagnation of the Jinji 曰 is under pressure, thus increasing the switching loss between the switching gates ^% causing a large spike s switching 阙w. [New content] In view of this, the switch-to-peach converter of your own circuit should have the advantages of single-stage power factor correction and high efficiency. , 糸 /, 鬲 power factor, low conduction loss loss created by the single-stage power factor correction circuit of the flyback conversion M346217 device, including a first rectifier, a storage capacitor, a second rectifier, an energy storage Inductor, a switch and a transformer. The first rectifier rectifies an input AC voltage to generate a first full-wave DC voltage. The storage capacitor is coupled between the first rectifier and a ground, and filters the first full-wave DC voltage. The second rectifier rectifies the input AC voltage to produce a second full-wave DC voltage. The energy storage inductor is coupled to the second rectifier to store the second full-wave DC voltage. The switch is coupled to the ground. The transformer has a primary winding, a secondary winding and a coupled winding, wherein the primary winding is coupled in parallel with the switching-on relationship to the energy storage capacitor, and the coupling winding is coupled in series with the switching inductor to the energy storage inductor, and the secondary winding is transmitted through A rectifier diode is coupled to an output capacitor. In summary, the fly-back conversion device of the present invention suppresses the voltage of the storage capacitor by connecting a coupled winding of a transformer in a loop of the PFC inductor current. At the same time, part of the energy in the energy storage inductor and the coupled winding will be transmitted to the secondary winding through the primary winding of the transformer, and the other part will charge the storage capacitor to reduce the leakage inductance loss caused by the I-horse winding and reduce After the switch is turned off, the generated peak voltage and switching loss increase the overall efficiency of the converter. [Embodiment] Please refer to the second figure, which is a schematic diagram of the device circuit of the first embodiment of the present invention. The flyback converter 200 having a single-stage power factor correction circuit includes a first rectifier 201, a storage capacitor C1, a second rectifier 202, an energy storage inductor Lm: a switch Q1 and A transformer Tr. The first rectifier 201 rectifies an input AC voltage Vin through an EMI filter circuit 210 to generate a first full-wave DC M346217 voltage VI. The storage capacitor C1 is coupled between the first rectifier 201 and a ground terminal G to filter the first full-wave DC voltage VI. The first rectifier 201 rectifies the input AC voltage Vin to generate a first full-wave DC voltage VI to charge the storage capacitor C1 when the input AC voltage Vin is greater than the voltage on the storage capacitor C1. In addition, the second rectifier 202 also rectifies the input AC voltage Vin through the EMI filter circuit 210 to generate a second full-wave DC voltage V2. The energy storage inductor Lpk is coupled to the second rectifier 202 for storing the second full-wave DC voltage V2. The switch Q1 is coupled to the ground terminal G and a primary winding N1 and a coupling winding N2 of the transformer Tr. The primary winding N1 of the transformer Tr and the switching switch Q1 are coupled in series, and then coupled in parallel to the storage capacitor C1, and the coupling winding N2 of the transformer Tr and the switching switch Q1 are coupled in series to the energy storage inductor Lm: . Referring to the second figure, the first rectifier 2〇1 includes rectifying diodes D1, D2, D5 and D6, and the second rectifier 202 comprises rectifying diodes D3, D4, D5 and D6, wherein the rectifying diode D5 and D6 are diodes common between the first rectifier 201 and the second rectifier 202. At the same time, the transformer Tr further includes a secondary winding N3 coupled to an output capacitor C2 via a rectifying diode D7. In addition, the flyback conversion device 200 further includes a controller 204. The controller 204 is coupled to the output storage capacitor C2, and outputs a control signal SW to control the switch according to the output voltage on the output capacitor C2. The switching period of Q1. Referring back to the second figure, the flyback conversion device 200 retains the advantages and results of the circuit in the first figure, but in the flyback conversion device 200 of the present invention, the coupled winding N2 of the transformer Tr is connected in series with the energy storage inductor. Lpfc Μ3462Ϊ7 in the energy storage power reduction ί :::, the primary side of the variable room can be used to pass and cut off, and its control Fang Qing or discontinuous guidance; mold change 'dust: 10: in Even and continuous conduction can be 1 ^ fruit type. The aforementioned 'control' mode is also (ie 鸠), in this critical mode ^ / = the mode of the boundary mode. To reduce the switching switch Q1 under light load, the 'can be limited by the limit of the switching time of the switching switch Q1. The rectifying diode (4) 7 can be (10) ^ one pole two (Schottky Diode) or synchronous diode.
—第一 A圖至第二d圖為本創作之電路操作示竞— 第四圖為本劍作操作波形示意圖。配合,二J △圖及第三B圖。在本創作中,切換開關以的關:; 可以被分為四個階段上卟。 用關週期 參考第三A圖盥第二R闰,—_ ^ ^ 導通,儲ft兩六。/n —圖在afd又中,切換開關Q1 VI儲此电谷盗C1即通過變壓器忏的初級繞組耵和 十„ Q1向變壓器Tr中的激磁電感儲能。同時,轸入 交流電壓Vin通過第二整流器2〇2、變壓器,:植 組N2和切換開關Q1向儲能電感器—儲能。並且,::: 過變壓器Tr的编合繞乡且N2向變壓器^内部之激^ 儲能。 电咸- The first A picture to the second d picture show the operation of the circuit of the creation - the fourth picture is a schematic diagram of the operation waveform of the sword. Coordination, two J △ map and third B map. In this creation, the switch is switched off:; can be divided into four stages. Use the off period. Refer to the third A diagram, the second R闰, —_ ^ ^ to turn on, and store ft two or six. /n - The picture is in afd again, the switch Q1 VI stores the electric thief C1 through the primary winding 忏 of the transformer 耵 and the „Q1 to the magnetizing inductance in the transformer Tr. At the same time, the AC voltage Vin is passed through Two rectifiers 2 〇 2, transformers: planting group N2 and switching switch Q1 to the energy storage inductor - energy storage. And, ::: Passing through the transformer Tr and winding the N2 to the transformer ^ internal energy storage. Electric salty
假設交流電源的輪入為式子(D '=c4sin砍···( 1) 當切換開關Q1導通時,儲能電感器、Lppc的電流方程式 (2) M346217 (2)為Assume that the turn-in of the AC power supply is the formula (D '=c4sin cut··· (1) When the switch Q1 is turned on, the current equation of the energy storage inductor and Lppc (2) M346217 (2) is
dLdL
LpFC 激磁電感的電流方程式為(3)The current equation of the LpFC magnetizing inductor is (3)
♦ A (3) 其中,UcB為儲能電容器C1的電壓,匕為變壓器h ΐ,磁電感,Lppc為儲能電感器LPFC的電感量,“變壓 盗Tr的激磁電流,ippc為儲能電感器“的電流。 假設從儲能電m流出的電流為ieB,kB式 (4)取得: lCB=lm+im··· (4) 护’、中人]N1為變壓器Tr中初級繞組N1的理想電流。 此4 ’ ♦馬合繞組N2只流過儲沪帝$哭τ , 佔他π丄1 /瓜尥储此電感斋的電流ipFC,ipp 的值可由式子(5)取得: (5) lN2=ipFC · ·. 根據安匝平衡的原理,得出式子(6) Μχ^+ΝχΚ)··· (6) 根據二上兩個式子⑸、(6),即得出式子⑺♦ A (3) where UcB is the voltage of the storage capacitor C1, 匕 is the transformer h ΐ, the magnetic inductance, Lppc is the inductance of the energy storage inductor LPFC, “the excitation current of the transformer Tr, ippc is the energy storage inductance” "The current." Assume that the current flowing from the energy storage power m is ieB, kB (4) is obtained: lCB=lm+im··· (4) Guard', middle person] N1 is the ideal current of the primary winding N1 in the transformer Tr. This 4 ' ♦ Ma He winding N2 only flows through the storage of the Shanghai Emperor $ cry τ, occupies his π 丄 1 / melon 尥 stored this inductance of the current ipFC, ipp value can be obtained by the formula (5): (5) lN2 = ipFC · ·. According to the principle of the balance of the ampoule, the formula (6) Μχ^+ΝχΚ)···· (6) According to the two upper formulas (5), (6), the formula (7) is obtained.
^=~17XiPFC 1…⑺^=~17XiPFC 1...(7)
所以’根據兩個式子(4)、⑺’即得出式子Q lm =lCB-lNl ^ί€Β+^1χίρ^ ^ …(8) 從中可以看出’當切換開關Q1導通時,變壓器^ M346217 激磁能量來自於儲能電容器C1以及輸入交流電壓vin。 麥考第。C圖及第三D圈,在b階段中,切換開關卯 截止,變壓器Tr次級側的整流二極體D7導通,此時,儲 存在變壓器Tr中的激磁能量’透過整流二極體D7向輸出 電容C2釋放。同時,輸入交流電壓Vin通過第二整流器 202、變壓器Tr的初級繞組N1、變壓器打的耦合 及儲此•電谷益Cl構成儲能電感器lpfc的能量釋放通路。 此時,儲能電感器Lpfc和耦合繞組N2的能量,其一邻 分直接傳遞到變壓器Tr的次級側,另一部分能量則认^ 能電容器C1充電,直到儲能電感器Lpfc電流下降到'^。 這樣,耦合繞組N2中的能量就可以得到回送,以減:偶 5繞組N2的能1在切換開關Q1的洩極端與源極端之間 起的尖峰電壓,進而降低耦洽繞組N2的漏感所引起的\ 耗,以及切換開關Q1的開關損耗。 貝 當切換開關Q1截止時,儲能電感器Lpfc的電流方程式 ( 9 )為 - % …(9) - 激磁電感的電流方程式(10 )為: di τη (10) • (11) dt 又, 根據安匝平衡的原理,得出式子(12) N2xlPFc+N\xim+NsxiD^〇 (^|2) 則’在儲能電感器Lpfc和激磁電感電流都未斷續之 M346217 鈿,/瓜過雙壓斋Tr次級側的整流二極體D7的電流“可 由式子(13)表示:· iD=JtipFc~令,'So 'according to the two equations (4), (7)', the equation Q lm = lCB-lNl ^ Β Β ^ + ^ 1 χ ί ρ ^ ^ (8) can be seen from the 'when the switch Q1 is turned on, the transformer ^ M346217 The excitation energy comes from the storage capacitor C1 and the input AC voltage vin. McCaw. In the C diagram and the third circle D, in the b phase, the switching switch 卯 is turned off, and the rectifying diode D7 on the secondary side of the transformer Tr is turned on. At this time, the exciting energy stored in the transformer Tr passes through the rectifying diode D7. Output capacitor C2 is released. At the same time, the input AC voltage Vin passes through the second rectifier 202, the primary winding N1 of the transformer Tr, the coupling of the transformer, and the electric energy storage path of the energy storage inductor lpfc. At this time, the energy of the energy storage inductor Lpfc and the coupling winding N2 is directly transmitted to the secondary side of the transformer Tr, and the other part of the energy is charged to the capacitor C1 until the current of the energy storage inductor Lpfc drops to ' ^. In this way, the energy in the coupling winding N2 can be returned to reduce the peak voltage of the energy 1 of the even 5 winding N2 between the drain terminal and the source terminal of the switching switch Q1, thereby reducing the leakage inductance of the coupling winding N2. The resulting consumption, as well as the switching loss of the switch Q1. When the beta switch Q1 is turned off, the current equation (9) of the energy storage inductor Lpfc is -% ... (9) - the current equation (10) of the magnetizing inductance is: di τη (10) • (11) dt again, according to The principle of ampoule balance, the formula (12) N2xlPFc+N\xim+NsxiD^〇(^|2) then 'M346217 储, the energy storage inductor Lpfc and the excitation inductor current are not interrupted, / melon The current of the rectifying diode D7 on the secondary side of the double-pressed Tr can be expressed by the equation (13): · iD = JtipFc~,, '
N2 . N ^X^c+^(iPFC+im) (13) 式子(13 )整理後,即得到式子(14 k-f、-1、 π iipFc+j;xir (14) 傳輸到變壓器;Tr次級側的能量除了N2 . N ^X^c+^(iPFC+im) (13) After the formula (13) is collated, the equation (14 kf, -1, π iipFc+j; xir (14) is transmitted to the transformer; Tr times In addition to the energy on the level side
=11Γ部分’還有從儲能電感器l㈣直接傳遞至I ΓΓ/通常情況下,儲能電感器^的電流會售 、,、κ ’仗波形上來看,整流二極體D7 現折線的形狀。 ^ 繼續’在e階段中,變壓器k的激磁能量 ;Ϊ體/7向輪出電容C2充電,直到激磁電 頻率過高:用t=,為了防止電源在輕 與次級側都無電流存在。以’在㈣11 Tr的初級側 R 五圖’為本創作第二實施例之裝置電路亍土 圖。在本發明笫一杏# η丄 衣1¾塔不意 原理與達成的功效 t、弟一貫施例的電路動作 例之返馳式轉換裝置3⑽係二,差異處,於··第二實施 一順向二極體D8耦接於—’廿曰一組的箝位器,其中第 第-籍位器,第-順;%的電容C3與電阻R1構成 U向二極體,9輕接於並聯的電容心 M346217 M n 以構成第二箝位器。第一箝位器耦接於切換開 ϋ #用來限制切換開關Q1截止以後,變壓器介漏感 一刀麵開關Q1兩端所引起的振盪電壓。其中,第一順向 i心:D8將切換開關卯二端所產生的振盪電壓,引導到 的山電容a與電阻Ri予以躲。另外,二極體的、 哭n t的錢,可以通過二極體D1、D2箝位在儲能電容 态ci的端電壓。 m 考第五圖,第二箝位器耦接於策二整流器202, 換 所產生的振湯雷^ 將第二整流器202 χ電壓,引導到並聯的電容C3與電阻Ri予以 =’、,制切換„ Qi截止後,儲能電感“與二極 :振盪電:極間電容振簠’所引起的二㈣ 罔+ f第/、圖,為本創作第三實施例之裝置電路示音 :以=『4巧^ 原理鱼、轰# Γ7"不弟一只施例與第二實施例的電路動作 原々、達成的功效祖同’其主要的差異處在於:第三 歹之換裝置400的箝位器包括順向二極體D8、 電阻R1、,電容C3。二極體D8、D10、電阻 :二電容C3所構成的箱位器,用來限制⑽ L壓Ϊ峰變值_叫 € ft 路變壓器_合繞組,來抑制儲炉 M346217 電容器的電壓。同時,儲能電感器和耦合繞組中的能量 =分將透過f器的初級、向次級繞組傳輪,另—部 分將對鍺能電容盗充電,以減少耦合繞组 耗,及降低切換開關截止後,、 〇漏感相 耗,進而提升變換器整體的效率。 才開關拍 准以上所述,僅為本創作最佳 誶細說明與周式,任何熟悉該 2 =,之 【圖式簡單說明】 第-圖為傳統之裝置電路示意圖; 圖為本f作第-實施例之裝置電路示意圖· 弟-A圖至第圖為本創作二, 第四圖為本創作操作波形示意圖4 圖; 及 第五圖為本創作第二實施例晉 第六圖為本創作k '置電路示意圖 【主要元件符號說明】 '㈠,之裝置電路示意圖 習知: 返馳式轉換裝置1〇〇 EMI濾波電路u〇 輪入電壓Vin 輪入電流Ii 二極體D1〜D7 儲能電容器C1 M346217 輸出電容C2 儲能電感器Lpfc 變壓器Tr 繞組 Nl、N2、N3 接地端G 切換開關Q1 本創作: 返馳式轉換裝置200、300、400 第一整流器201 儲能電容器C1 第二整流器202 儲能電感器Lpfc 切換開關Q1 變壓器Tr EMI濾波電路210 整流二極體D卜D7 輸入電壓V i η 輸出電容C2 初級繞組N1 耦合繞組N2 次級繞組N3The =11Γ part is also directly transferred from the energy storage inductor l(4) to I ΓΓ/ normally, the current of the energy storage inductor ^ will be sold, and the shape of the κ '仗 waveform, the shape of the rectifying diode D7 . ^ Continue 'in the e-stage, the excitation energy of the transformer k; the body/7 charges the wheel-out capacitor C2 until the excitation frequency is too high: with t=, in order to prevent the power supply from being present on both the light and secondary sides. The circuit diagram of the device circuit of the second embodiment is based on the primary side R of the (four) 11 Tr. In the present invention, the first embodiment of the 笫一杏# η丄衣13⁄4 tower does not intend to achieve the effect t, the circuit operation example of the brother's consistent example of the flyback type conversion device 3 (10) is the second, the difference, in the second implementation The diode D8 is coupled to the ''one set of clamps, wherein the first-positioner, the first-shun; the % of the capacitor C3 and the resistor R1 form a U-direction diode, 9 is connected in parallel The capacitor core M346217 M n constitutes a second clamp. The first clamp is coupled to the switch opening ϋ # is used to limit the oscillating voltage caused by the transformer leakage inductance across the switch Q1 after the switch Q1 is turned off. Among them, the first forward i-heart: D8 will switch the oscillating voltage generated by the two ends of the switch, and the mountain capacitor a and the resistor Ri are guided to hide. In addition, the diode's crying money can be clamped to the terminal voltage of the storage capacitor state ci through the diodes D1 and D2. m test fifth diagram, the second clamp is coupled to the second rectifier 202, and the generated surger ^ 将 voltage of the second rectifier 202 is guided to the parallel capacitor C3 and the resistor Ri = ', system Switching „ Qi cutoff, the energy storage inductor “and the two poles: oscillating electricity: inter-electrode capacitor vibration” caused by two (four) 罔 + f / /, the circuit of the device of the third embodiment of the creation: = "4 Qiao ^ principle fish, bang # Γ 7 " not a brother and the second embodiment of the circuit action principle, the achievement of the ancestors' main difference is: the third 歹 change device 400 The clamp includes a forward diode D8, a resistor R1, and a capacitor C3. Diode D8, D10, Resistor: The two-capacitor C3 is used to limit the (10) L voltage peak value _ called € ft circuit transformer _ winding, to suppress the voltage of the capacitor M346217 capacitor. At the same time, the energy in the energy storage inductor and the coupled winding will pass through the primary of the f-stage, to the secondary winding, and the other part will charge the capacitor to reduce the coupling winding consumption and reduce the switch. After the cutoff, the leakage inductance is consumed, which in turn improves the overall efficiency of the inverter. Only the switch is the above, only for the best description and week style of this creation, any familiar with the 2 =, [simple description of the diagram] The first picture is a schematic diagram of the traditional device circuit; - The schematic diagram of the device circuit of the embodiment · The younger-A to the first picture is the second creation, the fourth picture is the schematic diagram of the creation operation waveform 4; and the fifth picture is the second embodiment of the creation k 'Setting circuit diagram [Main component symbol description] '(1), schematic diagram of the device circuit: Descending converter 1 〇〇 EMI filter circuit u 〇 wheel-in voltage Vin wheel-in current Ii diode D1 ~ D7 energy storage Capacitor C1 M346217 Output Capacitor C2 Energy Storage Inductor Lpfc Transformer Tr Winding Nl, N2, N3 Ground Terminal G Switching Switch Q1 This Creation: Flyback Conversion Device 200, 300, 400 First Rectifier 201 Energy Storage Capacitor C1 Second Rectifier 202 Energy storage inductor Lpfc switch Q1 transformer Tr EMI filter circuit 210 rectifier diode D Bu D7 input voltage V i η output capacitor C2 primary winding N1 coupling winding N2 secondary winding N3
接地端G 切換開關Q1 M346217Ground terminal G switch Q1 M346217
控制器204 第一全波直流電壓VI 第二全波直流電壓V2 控制信號SW 順向二極體D8、D9、D10 - 電阻Rl、R2 - 電容C3Controller 204 first full-wave DC voltage VI second full-wave DC voltage V2 control signal SW forward diode D8, D9, D10 - resistor Rl, R2 - capacitor C3
> 輸出電壓VO> Output voltage VO
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97207492U TWM346217U (en) | 2008-04-30 | 2008-04-30 | Fly back converting device having single-stage power factor correction circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97207492U TWM346217U (en) | 2008-04-30 | 2008-04-30 | Fly back converting device having single-stage power factor correction circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM346217U true TWM346217U (en) | 2008-12-01 |
Family
ID=44338663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97207492U TWM346217U (en) | 2008-04-30 | 2008-04-30 | Fly back converting device having single-stage power factor correction circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM346217U (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI381619B (en) * | 2009-04-01 | 2013-01-01 | Delta Electronics Inc | Single-phase and three-phase dual buck-boost/buck power factor correction circuits and controlling method thereof |
US8564992B2 (en) | 2009-10-26 | 2013-10-22 | Hitachi Information & Telecommunication Engineering, Ltd. | Power factor correction device and method with off time prediction for critical mode operation |
TWI475790B (en) * | 2014-01-14 | 2015-03-01 | Chicony Power Tech Co Ltd | Power conversion apparatus having reactive power compensation |
US9502973B2 (en) | 2009-04-08 | 2016-11-22 | Infineon Technologies Americas Corp. | Buck converter with III-nitride switch for substantially increased input-to-output voltage ratio |
CN108448888A (en) * | 2018-04-10 | 2018-08-24 | 上海推拓科技有限公司 | Switching power circuit |
CN108494274A (en) * | 2018-04-10 | 2018-09-04 | 上海推拓科技有限公司 | Switching power circuit for three-phase input |
-
2008
- 2008-04-30 TW TW97207492U patent/TWM346217U/en not_active IP Right Cessation
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI381619B (en) * | 2009-04-01 | 2013-01-01 | Delta Electronics Inc | Single-phase and three-phase dual buck-boost/buck power factor correction circuits and controlling method thereof |
US9502973B2 (en) | 2009-04-08 | 2016-11-22 | Infineon Technologies Americas Corp. | Buck converter with III-nitride switch for substantially increased input-to-output voltage ratio |
US8564992B2 (en) | 2009-10-26 | 2013-10-22 | Hitachi Information & Telecommunication Engineering, Ltd. | Power factor correction device and method with off time prediction for critical mode operation |
TWI475790B (en) * | 2014-01-14 | 2015-03-01 | Chicony Power Tech Co Ltd | Power conversion apparatus having reactive power compensation |
CN108448888A (en) * | 2018-04-10 | 2018-08-24 | 上海推拓科技有限公司 | Switching power circuit |
CN108494274A (en) * | 2018-04-10 | 2018-09-04 | 上海推拓科技有限公司 | Switching power circuit for three-phase input |
US11128220B2 (en) | 2018-04-10 | 2021-09-21 | Shanghai Tuituo Technology Co., Ltd | Switching mode power supply circuit for three phase AC input |
US11223275B2 (en) | 2018-04-10 | 2022-01-11 | Shanghai Tuituo Technology Co., Ltd | Switching mode power supply circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI364641B (en) | Bridgeless pfc system for critical conduction mode and controlling method thereof | |
US9748854B2 (en) | Alternating current (AC)-direct current (DC) conversion circuit and control method thereof | |
TWI407677B (en) | Power conversion device | |
Athab et al. | A single-switch AC/DC flyback converter using a CCM/DCM quasi-active power factor correction front-end | |
TWI469481B (en) | Isolated interleaved dc converter | |
TWM346217U (en) | Fly back converting device having single-stage power factor correction circuit | |
TWI511435B (en) | AC - DC power converter | |
TWI243530B (en) | Zero-voltage switching push-pull converter | |
EP2937979A1 (en) | Single-pole switch power source | |
TWI295874B (en) | ||
CN201766508U (en) | Single-phase single-pole full-bridge isolated power factor correction converter | |
TW201406020A (en) | Passive power factor correction circuit | |
CN204156745U (en) | Inverse-excitation type multi-output switch power source | |
Jang et al. | The single-stage taipei rectifier—design consideration and performance evaluation | |
CN103037576B (en) | LED constant current driving power supply circuit | |
TWI514733B (en) | Non-contact transformer system | |
CN105515392B (en) | A kind of DC-DC voltage boosting translation circuit | |
TWI238590B (en) | High-efficiency DC/DC converter with high voltage gain | |
CN204835966U (en) | Energy -saving switching power supply based on TOP chip | |
WO2017063605A1 (en) | Self-coupled power source ripple suppression circuit and method | |
TW200539553A (en) | High step-up converter with coupled-inductor by way of bi-direction energy transmission | |
CN106253658A (en) | A kind of circuit of power factor correction | |
CN109889043A (en) | High-efficiency pulse power supply for plasma sewage treatment system by corona discharge method | |
CN202906742U (en) | Fly-back power source with power factor correction function | |
TW201220665A (en) | Single-phase PFC AC-DC power converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |