CN108441282B - 一种可分散石墨烯纳米复合微粒及其制备方法和应用 - Google Patents

一种可分散石墨烯纳米复合微粒及其制备方法和应用 Download PDF

Info

Publication number
CN108441282B
CN108441282B CN201810121355.4A CN201810121355A CN108441282B CN 108441282 B CN108441282 B CN 108441282B CN 201810121355 A CN201810121355 A CN 201810121355A CN 108441282 B CN108441282 B CN 108441282B
Authority
CN
China
Prior art keywords
lubricating oil
dispersible
nano composite
graphene
composite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810121355.4A
Other languages
English (en)
Other versions
CN108441282A (zh
Inventor
张晟卯
蒋正权
张玉娟
张平余
张治军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201810121355.4A priority Critical patent/CN108441282B/zh
Publication of CN108441282A publication Critical patent/CN108441282A/zh
Application granted granted Critical
Publication of CN108441282B publication Critical patent/CN108441282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/02Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic oxygen-containing compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/20Compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/09Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

本发明涉及一种可分散石墨烯纳米复合微粒的制备方法,其以含金属盐和氧化石墨烯的水分散液为原料,在100―400℃经喷雾干燥造粒即得。所述金属盐为金属甲酸盐、金属乙酸盐、乙酰丙酮金属盐、钼/钨酸铵盐和金属硝酸盐的一种或两种以上任意比例的混合物。采用本发明方法制备所得可分散石墨烯纳米复合微粒粒径均一,其在润滑油中具有良好的分散性稳定性,作为润滑油添加剂可以显著提高润滑油的摩擦学性能,表现出较小的摩擦系数和磨斑直径,是一种性能优异的润滑油抗磨减摩剂。

Description

一种可分散石墨烯纳米复合微粒及其制备方法和应用
技术领域
本发明属于新型功能纳米材料制备技术领域,具体涉及一种可分散石墨烯纳米复合微粒及其制备方法和作为润滑油抗磨减摩剂的应用。
背景技术
研究报告表明:平均每辆汽车燃油消耗的15%浪费于发动机和变速箱的磨擦磨损上。即意味着,当汽车的摩擦磨损较高时,发动机需要消耗更多的燃油工作,造成更多二氧化碳温室气体的排放,也是当今雾霾的主要原因之一。国家统计局统计结果表明:我国2015年民用汽车拥有量达16284.45万辆,如果仅按照每年每辆汽车消耗量为1.8吨来计算,我国每年约有4396.8万吨燃油消耗于汽车的摩擦磨损中,造成经济损失达1055.23亿人民币。减小摩擦磨损、降低资源能源消耗,已成为我国先进制造业、新材料、能源及资源环境等领域急需解决的重大问题之一。使用润滑油进行合理润滑是减少摩擦磨损最有效的方法之一。润滑油是由基础油和添加剂所组成,减摩抗磨剂是润滑油添加剂的一个重要组成部分,决定着润滑油的服役行为,是润滑油实现减摩、抗磨等关键功能的核心组分。
近年来,随着纳米材料的研究与发展,研究者发现纳米材料可以显著提高润滑油的抗磨减摩性能。但是纳米材料由于其重力作用和尺寸效应,易在润滑油中团聚和沉降,难以长期稳定分散于润滑油中。这极大的限制了纳米材料作为润滑油添加剂的应用。为了克服这一问题,目前多选用长链有机物对纳米材料进行表面改性,通过物理或化学吸附在纳米颗粒的表面包附一层长链有机物,从而保证其在润滑油中的分散稳定性。但是这种方法制备的纳米材料作为润滑油添加剂仍有很大的应用局限性。
发明内容
本发明目的在于克服现有技术缺陷,提供一种可分散石墨烯纳米复合微粒,其在润滑油中具有良好的分散性稳定性,作为润滑油添加剂可以显著提高润滑油的摩擦学性能,表现出较小的摩擦系数和磨斑直径。
本发明还公开了上述可分散石墨烯纳米复合微粒的制备方法及其作为润滑油抗磨减摩剂的应用。
为实现上述目的,本发明采用如下技术方案:
一种可分散石墨烯纳米复合微粒的制备方法,其以含金属盐和氧化石墨烯的水分散液为原料,在100―400℃经喷雾干燥造粒即得可分散润滑油纳米抗磨减摩剂(纸团状石墨烯基纳米复合微粒产品)。
本发明中,金属盐提供纳米核的反应物,在氧化石墨烯存在的条件下,喷雾干燥热解金属盐溶液来制备可分散石墨烯纳米复合微粒。具体的,所述金属盐为金属甲酸盐、金属乙酸盐、乙酰丙酮金属盐、钼/钨酸铵盐和金属硝酸盐的一种或两种以上任意比例的混合物,如可以是甲酸镍、甲酸铜、乙酸镍、硝酸银、乙酰丙酮镍、钼酸铵等。
本发明中,金属盐和氧化石墨烯有一定的添加范围,否则制备不出可分散、负载均匀的石墨烯纳米复合微粒。进一步优选的,水分散液中,金属盐的浓度以0.01―1.0 mol/L,氧化石墨烯的浓度以0.1―30 g/L为宜。喷雾干燥造粒可以在喷雾干燥器中进行,喷雾干燥造粒采用本领域常规技术即可,喷雾干燥器可直接购买普通市售产品。
本发明还提供了采用上述方法制备得到的可分散石墨烯纳米复合微粒及其作为润滑油抗磨减摩剂的应用。
本发明以金属盐为前驱体,在氧化石墨烯存在条件下,首先通过超声分散或机械搅拌使两者在水中分散均匀,然后在100―400℃之间喷雾干燥造粒即得可分散石墨烯纳米复合微粒。本发明制备方法中所涉及的合成工艺路线如下所示:
Figure DEST_PATH_IMAGE001
本发明方法以金属盐前驱体,在氧化石墨烯存在的情况下进行喷雾干燥造粒,制备出形貌尺寸均一的可分散石墨烯纳米复合微粒,本发明反应体系中无副产物,无需后处理,极大地降低了生产制备成本。和现有的石墨烯纳米复合物制备方法相比,避免了产物的后处理程序,可分散性好,提供了一种制备可分散石墨烯纳米复合微粒的新思路。本发明制备方法具有工艺设备简单、反应条件温和、操作简便安全、原料廉价易得、成本低,产率高、对环境无污染等特点,适合大规模的工业生产。采用本发明方法所制备出可分散石墨烯纳米复合微粒直径均一,在润滑油中具有良好的分散性稳定性,作为润滑油添加剂可以显著提高润滑油的摩擦学性能,表现出较小的摩擦系数和磨斑直径,是一种性能优异的润滑油抗磨减摩剂。
附图说明
图1 为实施例1制得的可分散石墨烯镍纳米复合微粒的SEM(a)和TEM(b和c)图;
图2 为实施例1制得的可分散石墨烯镍纳米复合微粒在PAO6中的摩擦系数曲线(温度:75℃,转速:1200 r/min,载荷:392 N,时间:3600 s);
图3 为纯PAO6(a)润滑油和含0.1wt%实施例1制得的可分散石墨烯镍纳米复合微粒在PAO6(b)润滑油的钢球磨斑图(温度:75℃,转速:1200 r/min,载荷:392 N,时间:3600s)。
具体实施方式
以下结合实施例对本发明的技术方案作进一步地详细介绍,但本发明的保护范围并不局限于此。本发明中,氧化石墨烯购买普通市售产品即可,无特殊要求。
实施例1
一种可分散石墨烯纳米复合微粒的制备方法,具体为:在500 mL烧杯中加入6 g氧化石墨烯,0.02 mol甲酸镍和400 mL去离子水,上述混合液超声30分钟。然后在喷雾干燥器中进行喷雾干燥造粒,设置喷雾干燥温度220℃,得到的棕褐色固体粉末即为目标产物可用作润滑油抗磨减摩剂的可分散石墨烯镍纳米复合微粒。
实施例1所制备的可分散石墨烯镍纳米复合微粒的扫描电镜图和透射电子显微镜见图1。由图1(a)可看出:所制备的石墨烯镍纳米复合微粒为褶皱的纸团状;由图1(b和c)可以看出:镍纳米微粒均匀负载在纸团状石墨烯上。这种形状的石墨烯镍纳米复合物因彼此之间较弱的分子间作用力,因此在基础油中具有良好的分散稳定性。
分散稳定性:在聚α烯烃(PAO6)油、癸二酸二异辛酯油、150N基础油等润滑油中,分别配置含1.0wt%可分散石墨烯镍纳米复合微粒的胶体溶液,静置一个月未见沉淀析出,表现出优异的分散稳定性。
摩擦学性能测试:将实施例1所制备的可分散石墨烯镍纳米复合微粒,分别按照质量分数0.1wt%,0.2wt%添加到PAO6油中,超声分散(1000 W, 600 HZ)10分钟,得到一组含可分散石墨烯镍纳米复合微粒的润滑油。摩擦实验所用的试验机是四球摩擦磨损试验机,按照标准SH/T0189-92润滑油磨损性能测试法(温度:75℃,载荷:392 N,转速:1200 r/min,测试时间:1 h)测试其摩擦学性能。实验所用钢球为上海钢球厂产四球试验机专用5EP级(超光)钢球,材质为GCrl5,直径为12.7 mm,硬度为64-66 HRC。
图2是本发明实施例1制备的可分散石墨烯镍纳米复合微粒添加至基础油PAO6中以及基础油PAO6的摩擦曲线。当添加浓度为0.1wt%和0.2wt%时,可分散石墨烯镍纳米复合微粒产品可以显著降低基础油PAO6的摩擦系数,表现出优异的减摩性能。
图3为纯PAO6(a)润滑油和含0.1wt%实施例1制得的可分散石墨烯镍纳米复合微粒在PAO6(b)润滑油的钢球磨斑图(温度:75℃,转速:1200r/min,载荷:392N,时间:3600s)。图中可以看出:当加入0.1wt%可分散石墨烯镍纳米复合微粒后,可以显著降低润滑油的磨斑直径,降低了29.2%,具有优异的抗磨性能。
实施例2
一种可分散石墨烯纳米复合微粒的制备方法,具体为:在500 mL烧杯中加入3 g氧化石墨烯,0.01 mol甲酸铜,400 mL去离子水,将上述混合液超声30分钟。然后进行喷雾干燥造粒,设置喷雾干燥温度220℃,得到的棕色固体粉末即为目标产物目标产物可用作润滑油抗磨减摩剂的可分散石墨烯铜纳米复合微粒。
实施例3
一种可分散石墨烯纳米复合微粒的制备方法,具体为:在500 mL烧杯中加入12 g氧化石墨烯,0.004 mol乙酰丙酮镍,400 mL去离子水,将上述混合液超声30分钟。然后进行喷雾干燥造粒,设置喷雾干燥温度230℃,得到的棕褐色固体粉末即为目标产物可目标产物可用作润滑油抗磨减摩剂的可分散石墨烯镍纳米复合微粒。
实施例4
一种可分散石墨烯纳米复合微粒的制备方法,具体为:在500 mL烧杯中加入10 g氧化石墨烯,0.40 mol乙酸镍,400 mL去离子水,将上述混合液超声30分钟。然后进行喷雾干燥造粒,设置喷雾干燥温度200℃,得到的棕褐色固体粉末即为目标产物目标产物可用作润滑油抗磨减摩剂的可分散石墨烯氧化镍纳米复合微粒。
实施例5
一种可分散石墨烯纳米复合微粒的制备方法,具体为:在500 mL烧杯中加入8 g氧化石墨烯,0.16 mol钼酸铵,400 mL去离子水,将上述混合液超声30分钟。然后进行喷雾干燥造粒,设置喷雾干燥温度300℃,得到的棕色固体粉末即为目标产物目标产物可用作润滑油抗磨减摩剂的可分散石墨烯氧化钼纳米复合微粒。
实施例6
一种可分散石墨烯纳米复合微粒的制备方法,具体为:在500 mL烧杯中加入6 g氧化石墨烯,0.08 mol硝酸银,400 mL去离子水,将上述混合液超声30分钟。然后进行喷雾干燥造粒,设置喷雾干燥温度200℃,得到的棕褐色固体粉末即为目标产物目标产物可用作润滑油抗磨减摩剂的可分散石墨烯银纳米复合微粒。
实施例7
一种可分散石墨烯纳米复合微粒的制备方法,具体为:在500 mL烧杯中加入4 g氧化石墨烯,0.01 mol硝酸镁,400 mL去离子水,将上述混合液超声30分钟。然后进行喷雾干燥造粒,设置喷雾干燥温度300℃,得到的棕褐色固体粉末即为目标产物目标产物可用作润滑油抗磨减摩剂的可分散石墨烯氧化镁纳米复合微粒。
实施例8
一种可分散石墨烯纳米复合微粒的制备方法,具体为:在500 mL烧杯中加入0.04g氧化石墨烯,0.004 mol硝酸铈,400 mL去离子水,将上述混合液超声30分钟。然后进行喷雾干燥造粒,设置喷雾干燥温度220℃,得到的棕褐色固体粉末即为目标产物目标产物可用作润滑油抗磨减摩剂的可分散石墨烯氧化铈纳米复合微粒。
对实施例2至8制备所得的可分散石墨烯纳米复合微粒同样进行了分散稳定性和摩擦学性能测试。试验结果表明:实施例2至8制备所得产品的性能与实施例1制备的可分散石墨烯纳米复合微粒的分散稳定性相当,当添加至基础油PAO6中时,可以显著降低基础油PAO6的摩擦系数和磨斑直径,表现出优异的抗磨减摩性能。

Claims (4)

1.一种可分散石墨烯纳米复合微粒的制备方法,其特征在于,以含盐和氧化石墨烯的水分散液为原料,在100―400℃经喷雾干燥造粒获得可分散润滑油纳米抗磨减摩剂的纸团状石墨烯基纳米复合微粒产品;
所述盐为金属甲酸盐、金属乙酸盐、乙酰丙酮金属盐、钼酸铵盐、钨酸铵盐和金属硝酸盐的一种或两种以上任意比例的混合物;
水分散液中,盐的浓度为0.01―1.0 mol/L,氧化石墨烯的浓度为0.1―30 g/L。
2.如权利要求1所述的可分散石墨烯纳米复合微粒的制备方法,其特征在于,喷雾干燥造粒在喷雾干燥器中进行。
3.采用权利要求1至2任一所述方法制备得到的可分散石墨烯纳米复合微粒。
4.权利要求3所述可分散石墨烯纳米复合微粒作为润滑油抗磨减摩剂的应用。
CN201810121355.4A 2018-02-07 2018-02-07 一种可分散石墨烯纳米复合微粒及其制备方法和应用 Active CN108441282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810121355.4A CN108441282B (zh) 2018-02-07 2018-02-07 一种可分散石墨烯纳米复合微粒及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810121355.4A CN108441282B (zh) 2018-02-07 2018-02-07 一种可分散石墨烯纳米复合微粒及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108441282A CN108441282A (zh) 2018-08-24
CN108441282B true CN108441282B (zh) 2021-01-22

Family

ID=63192034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810121355.4A Active CN108441282B (zh) 2018-02-07 2018-02-07 一种可分散石墨烯纳米复合微粒及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108441282B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112746213B (zh) * 2020-12-30 2022-05-24 广东省科学院智能制造研究所 一种高熵合金纳米复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489259A (zh) * 2011-11-10 2012-06-13 河南大学 氧化石墨烯/纤维素复合材料及其制备方法和应用
CN103466607A (zh) * 2013-09-09 2013-12-25 东南大学 一种石墨烯-金属氧化物纳米颗粒三维多孔复合材料
CN104043825A (zh) * 2014-06-30 2014-09-17 中国科学技术大学 一种以金属盐析法制备的石墨烯金属复合材料及其制备方法
CN105217622A (zh) * 2015-11-13 2016-01-06 武汉大学 一种可控三维石墨烯微球的制备方法
CN107046126A (zh) * 2017-02-28 2017-08-15 中山大学 一种超细金属氧化物/石墨烯二维负极复合材料的制备方法
CN107090325A (zh) * 2017-04-28 2017-08-25 杭州高烯科技有限公司 一种石墨烯基润滑油及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9359675B2 (en) * 2010-04-22 2016-06-07 Basf Se Producing two-dimensional sandwich nanomaterials based on graphene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489259A (zh) * 2011-11-10 2012-06-13 河南大学 氧化石墨烯/纤维素复合材料及其制备方法和应用
CN103466607A (zh) * 2013-09-09 2013-12-25 东南大学 一种石墨烯-金属氧化物纳米颗粒三维多孔复合材料
CN104043825A (zh) * 2014-06-30 2014-09-17 中国科学技术大学 一种以金属盐析法制备的石墨烯金属复合材料及其制备方法
CN105217622A (zh) * 2015-11-13 2016-01-06 武汉大学 一种可控三维石墨烯微球的制备方法
CN107046126A (zh) * 2017-02-28 2017-08-15 中山大学 一种超细金属氧化物/石墨烯二维负极复合材料的制备方法
CN107090325A (zh) * 2017-04-28 2017-08-25 杭州高烯科技有限公司 一种石墨烯基润滑油及其制备方法

Also Published As

Publication number Publication date
CN108441282A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
He et al. In situ fabrication of carbon dots-based lubricants using a facile ultrasonic approach
Pownraj et al. Effect of dispersing single and hybrid nanoparticles on tribological, thermo-physical, and stability characteristics of lubricants: a review
US9441178B2 (en) Materials as additives for advanced lubrication
CN100534671C (zh) 纳米核壳式铜-镍双金属粉体及其制备方法和应用
Xu et al. Study on the selectivity of calcium carbonate nanoparticles under the boundary lubrication condition
Zin et al. Effect of external magnetic field on tribological properties of goethite (a-FeOOH) based nanofluids
Song et al. Facile synthesis of core–shell Ag@ C nanospheres with improved tribological properties for water-based additives
CN105969478B (zh) 一种硼酸钙/氧化石墨烯纳米复合润滑材料的制备方法
Singh et al. Properties, functions and applications of commonly used lubricant additives: a review
Jiang et al. The tribological performance evaluation of steel-steel contact surface lubricated by polyalphaolefins containing surfactant-modified hybrid MoS2/h-BN nano-additives
CN103254971A (zh) 一种含有片状磁性纳米Fe3O4颗粒的润滑油及其制备方法
CN108559575B (zh) 一种石墨烯基纳米氧化镧润滑油抗磨添加剂的制备方法
CN104560307A (zh) 含纳米二硫化钨的抗磨减摩润滑油添加剂
Razavi et al. Comparative investigation of the influence of CaCO3 and SiO2 nanoparticles on lithium-based grease: Physical, tribological, and rheological properties
Meng et al. Study on the preparation and tribological properties of BN@ C-OA nano-additive lubricants
CN108441282B (zh) 一种可分散石墨烯纳米复合微粒及其制备方法和应用
Wu et al. Controllable synthesis and friction reduction of ZnFe2O4@ C microspheres with diverse core-shell architectures
Wang et al. Interface synthesis for controllable construction of 2D Zn (Bim)(OAc) nanosheets via oil/water system and their application in oil
Wang et al. Experimental study on the suspension stability and tribological properties of nano-copper in LCKD-320# lubricating oil
WO2021012754A1 (zh) 具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用
Shi et al. Preparation of tungsten disulfide motor oil and its tribological characteristics
Qiu et al. Facile construction of graphene oxide/CeO2 nanohybrid for enhancing tribological properties of green rapeseed oil
Wang et al. Development of nano biochar as a lubricating oil additive for tribological applications
CN110760365B (zh) 一种氧化石墨烯/二氧化硅-三氧化二铝纳米复合水基润滑剂及其制备方法
Wang et al. Preparation of different-sized copper nanoparticles by reducing copper hydroxide and application in lithium-based grease

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant