CN108440765B - 两亲环糊精cd与两亲杯芳烃ca的纳米超分子共组装体及制备方法和应用 - Google Patents

两亲环糊精cd与两亲杯芳烃ca的纳米超分子共组装体及制备方法和应用 Download PDF

Info

Publication number
CN108440765B
CN108440765B CN201810328452.0A CN201810328452A CN108440765B CN 108440765 B CN108440765 B CN 108440765B CN 201810328452 A CN201810328452 A CN 201810328452A CN 108440765 B CN108440765 B CN 108440765B
Authority
CN
China
Prior art keywords
assembly
amphiphilic
calixarene
cyclodextrin
vesicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810328452.0A
Other languages
English (en)
Other versions
CN108440765A (zh
Inventor
郭东升
徐喆
彭姝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201810328452.0A priority Critical patent/CN108440765B/zh
Publication of CN108440765A publication Critical patent/CN108440765A/zh
Application granted granted Critical
Publication of CN108440765B publication Critical patent/CN108440765B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1273Polymersomes; Liposomes with polymerisable or polymerised bilayer-forming substances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Polymers & Plastics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种两亲环糊精CD与两亲杯芳烃CA的纳米超分子共组装体及其制备方法和应用,属于纳米超分子材料技术领域。本发明以两亲β环糊精CD与两亲羧基杯【5】芳烃CA作为构筑单元,在水溶液中共存的条件下通过一定的方式使其能够形成共组装囊泡,此方法不但在囊泡的表面富集了环糊精与杯芳烃的空腔,还可以利用空腔与氨基酸的选择性识别的能力与多肽在囊泡界面上形成多价键合,实现对多肽的选择性识别,进而对蛋白实现识别。

Description

两亲环糊精CD与两亲杯芳烃CA的纳米超分子共组装体及制备 方法和应用
技术领域
本发明属于纳米超分子材料技术领域,特别是一种两亲环糊精CD与两亲杯芳烃CA的纳米超分子共组装体及其制备方法和应用。
背景技术
蛋白在细胞和生物体的生命活动过程中起着十分重要的作用。许多蛋白是疾病标志物和治疗靶标,如何有效的识别蛋白一直是一大难题,解决蛋白质的界面识别问题不但能够为蛋白质组学的发展提供动力,更能为治疗疾病带来新的曙光。参见:1)S.Dutt,C.Wilch,T.Schrader,Chem.Commun.2011,47,5376-5383;2)T.Schrader,S.Koch,Mol.BioSyst.2007,3,241-248;3)R.Ludwig,Microchim.Acta 2005,152,1-19。
过去,较为常用的识别与分离蛋白的手段为物理吸附,但物理吸附的方式只能区分分子量差别较大的蛋白,无法对蛋白的精细结构进行区分。随着超分子化学的发展,特别是2016年的诺贝尔化学奖再次授予超分子领域的科学家,进一步肯定了超分子化学的地位。利用超分子化学的理念,人们模拟生命体中的识别过程,利用生命体中广泛采用的策略-多价键合,即构筑拥有大于1个键合位点的键合方式,大大提高了蛋白与人工组装体的选择性结合力,进而提高了蛋白表面与人工受体的识别能力。参见:1)V.Martos,P.Castreno,J.Valero,J.de Mendoza,Curr.Opin.Chem.Biol.2008,12,698–706;2)M.Giuliani,I.Morbioli,F.Sansone,A.Casnati,Chem.Commun.2015,51,14140–14159;3)R.Zadmard,N.S.Alavijeh,RSCAdv.2014,4,41529–41542.。
然而,目前还没有人利用不同种类的两亲大环分子共组装构筑超分子体系来对蛋白进行选择性识别。
发明内容
本发明的目的是用新的超分子策略解决多肽的选择性键合问题,提供一种两亲环糊精CD与两亲杯芳烃CA的纳米超分子共组装体及其制备方法和应用。
本发明在前人工作的基础之上,利用两个典型的,已被广泛研究的大环分子-环糊精与杯芳烃,将其衍生化,并以衍生化后的两亲β环糊精CD与两亲羧基杯【5】芳烃CA作为构筑单元,在水溶液中共存的条件下通过一定的方式使其能够形成共组装囊泡,此方法在囊泡的表面富集了环糊精与杯芳烃的空腔,通过其与氨基酸的选择性键合能力构筑能与多肽进行选择性多价键合的超分子共组装体。从而实现对多肽的选择性键合,进而对蛋白进行识别。
本发明的技术方案:
一种两亲环糊精CD与两亲杯芳烃CA的纳米超分子共组装体,其构筑单元的CD化学式为C182H350O56S7,CA的化学式为C100H150O15,两者物质的量摩尔比为1:1,超分子组装体的构筑是通过弱的π–π相互作用,疏水相互作用,其形貌尺度为纳米级、球形的囊泡,其结构式如下:
Figure BDA0001627255230000021
一种所述两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体的制备方法,步骤如下:
将CD与CA分别溶解于氯仿中,配制成1毫摩每毫升的母液。制备时,分别取300微升CD与300微升CA氯仿溶液充分混合后,置于旋转蒸发仪上,设置温度为40℃,缓慢旋蒸,直到氯仿完全挥发完为止,此时,容器内壁上形成一层均匀透明的CD与CA混合物膜,将盛有混合物膜的容器在油泵下抽真空,进一步除去有机溶剂,6小时后,停油泵。将3毫升缓冲水溶液加入容器中,配制成100微摩每毫升共组装体(100微摩每毫升CD和100微摩每毫升CA)的混合物溶液,将混合物溶液置于80℃超声仪中超声3个小时,可见溶液变澄清,用激光笔照射有明显的丁达尔效应,此时已形成的纳米超分子共组装体。
一种所述两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体的应用(即一种对多肽的选择性识别新方法),以两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体作为组装体囊泡,在囊泡的表面聚集了环糊精与杯芳烃的空腔,环糊精的空腔能够选择性的键合酪氨酸,而杯芳烃的空腔能够选择性的键合赖氨酸,参见:1)Ballistreri,F.P.,Notti,A.,Pappalardo,S.,Parisi,M.F.&Pisagatti,I.Org.Lett.5,1071-1074(2003).2)Gattuso,G.,Notti,
A.,Pappalardo,A.,Pappalardo,S.&Parisi,M.F.Tetrahedron Lett.54,188-191(2013).3)Rekharsky,M.&Inoue,Y.J.Am.Chem.Soc.122,4418-4435(2000).,当加入富含酪氨酸与赖氨酸的多肽后,多肽上的酪氨酸会与共组装体囊泡表面的环糊精空腔键合,多肽上的赖氨酸会与共组装体囊泡表面的杯芳烃键合,酪氨酸与赖氨酸同时键合形成了多价结构,强化了囊泡表面与多肽的相互作用;利用这种选择性的相互作用,能够将共组装体囊泡用在多肽/蛋白的分离,与多肽/蛋白相互作用治疗疾病。
囊泡表面能够选择性的对富含赖氨酸与酪氨酸的多肽进行识别与富集,与单价作用不同,同时存在的环糊精-酪氨酸与杯芳烃赖氨酸相互作用能够形成多价键合,进一步强化囊泡表面对多肽的选择性富集。为了证明囊泡表面能够选择性吸附多肽,方法如下:选择光泽精作为荧光探针,光泽精这一分子能够被杯芳烃包结,同时淬灭其荧光,当囊泡表面的杯芳烃键合赖氨酸以后,光泽精被提出杯芳烃空腔,荧光回复,通过光泽精荧光的变化,我们能够定量的知道键合在囊泡表面的多肽的量,此外,当多肽上的酪氨酸被环糊精键合后,会拉近赖氨酸与杯芳烃的距离,促进赖氨酸踢出杯芳烃空腔中的光泽精,酪氨酸与环糊精的相互作用因此可以同样被光泽精的荧光变化所表示。
通过光泽精的荧光变化,证明所述两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体能够对富含赖氨酸和酪氨酸的多肽具有最强的键合,含有的赖氨酸或者酪氨酸越多,对多肽的键合越强,利用这种多价效应,我们能够调控共组装体与多肽或蛋白表面的相互作用,对特定蛋白参与的反应进行调控,治疗疾病,或利用多肽/蛋白与共组装体的选择性键合,对多肽/蛋白进行分离。
两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体的工作机理如图6所示。
本发明的优点是:以两亲β环糊精CD与两亲羧基杯【5】芳烃CA作为构筑单元,其在水溶液中经过能量的给与能够形成囊泡,其囊泡表面不但富含了杯芳烃与环糊精的空腔,还保持了空腔对于赖氨酸和酪氨酸的选择性识别,利用其选择性识别的特性,加之多价键合的理念,实现了对于多肽的选择性识别,使其在蛋白质组学,生命科学和生物医药等应用上有广阔的前景。
附图说明
图1为共组装体的动态光散射图(a)与共组装体的zeta电势(b)。
图2为共组装体囊泡扫描电镜(SEM)图。
图3为共组装的Tm值测量。
图4为所用模型肽的序列。
图5为光泽精探针的工作原理(a)与加入不同多肽之后的荧光变化图,(b)YK和YKY,(c)YK、YKYK和YKYKYK,(d)KKK和YKYKYK。
图6为两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体的分子结构与体系的工作机理示意图。
具体实施方式
实施例1:
一种两亲环糊精CD与两亲杯芳烃CA的纳米超分子共组装体,其构筑单元的CD化学式为C182H350O56S7,CA的化学式为C100H150O15,超分子组装体的构筑是通过弱的π–π相互作用,疏水相互作用,其形貌尺度为纳米级、球形的囊泡,其结构式如下:
Figure BDA0001627255230000041
一种所述两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体的制备方法,步骤如下:
将CD与CA分别溶解于氯仿中,配制成1毫摩每毫升的母液。制备时,分别从1毫摩每毫升母液中取300微升CD与300微升CA氯仿溶液充分混合后,置于旋转蒸发仪上,设置温度为40℃,缓慢旋蒸,直到氯仿完全挥发完为止,此时,容器内壁上形成一层均匀透明的CD与CA混合物膜,将盛有混合物膜的容器在油泵下抽真空,进一步除去有机溶剂,6小时后,停油泵。将3毫升缓冲水溶液加入容器中,配制成100微摩每毫升共组装体(100微摩每毫升CD和100微摩每毫升CA)的混合物溶液,将混合物溶液置于80℃超声仪中超声3个小时,可见溶液变澄清,用激光笔照射有明显的丁达尔效应,此时已形成的超分子纳米共组装体。
一种所述两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体的应用,以两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体作为组装体囊泡,在囊泡的表面聚集了环糊精与杯芳烃的空腔,环糊精的空腔能够选择性的键合酪氨酸,而杯芳烃的空腔能够选择性的键合赖氨酸,当加入富含酪氨酸与赖氨酸的多肽后,多肽上的酪氨酸会与共组装体囊泡表面的环糊精空腔键合,多肽上的赖氨酸会与共组装体囊泡表面的杯芳烃键合,酪氨酸与赖氨酸同时键合形成了多价结构,强化了囊泡表面与多肽的相互作用。我们以图4所示的多肽作为模型肽,通过荧光竞争法,得到图5的结果,可以看到本发明所述共组装体可以对不同的多肽产生不同的荧光滴定曲线,以滴定曲线拟合的键合常数可以证明其对不同多肽的选择性识别,并可以借此对多肽进行区分。
组装体囊泡在水溶液中的组装行为及形貌表征:
将两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体按照上述制备过程加热超声即得到纳米超分子囊泡。在1×10-4M的动态光散射结果如图1所示:显示其组装体的粒径在140纳米左右,zeta电势在-60.6mV,因为羧基带有负电荷。图2为CD/CA共组装体的扫描电镜(SEM)的特征,可以明显看到球形的组装体的形成。通过差示扫描量热(DSC)实验,如图3所示,可以得到组装体的Tm值,利用Tm值可知在室温25℃下,共组装体的囊泡表面上的分子可以在其表面上自由移动。总结以上实验结果,可以得知CD与CA形成的共组装体为粒径在140纳米左右的球形囊泡。
共组装体囊泡对多肽的选择性识别:
图4为所选用的模型肽,模型肽含有不同数量的赖氨酸(K)与酪氨酸(Y),以光泽精作为荧光探针,采用荧光滴定法实验,如图5所示,YKYKYK能够使光泽精的荧光回复最多,其余的多肽含有与之相比较少的赖氨酸和酪氨酸,荧光上升的少,即与共组装体囊泡的作用小。说明,无论增加多肽上赖氨酸的数量还是酪氨酸的数量,都能够增加共组装体的囊泡对多肽的作用力。利用这种作用力的差别,本发明所述的共组装体可以对含有不同赖氨酸和酪氨酸的多肽产生不同的荧光信号,并借此对多肽进行区分。

Claims (2)

1.一种两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体的制备方法,所述纳米超分子共组装体构筑单元的CD化学式为C182H350O56S7,CA的化学式为C100H150O15,两者摩尔比例为1:1,超分子组装体的构筑是通过弱的π–π相互作用,疏水相互作用,其形貌尺度为纳米级、球形的囊泡,其结构式如下:
Figure FDA0002596143570000011
其特征在于,制备步骤如下:
将CD与CA分别溶解于氯仿中,配制成1毫摩每毫升的母液,制备时,分别取300微升CD与300微升CA氯仿溶液充分混合后,置于旋转蒸发仪上,设置温度为40℃,缓慢旋蒸,直到氯仿完全挥发完为止,此时,容器内壁上形成一层均匀透明的CD与CA混合物膜,将盛有混合物膜的容器在油泵下抽真空,进一步除去有机溶剂;将3毫升缓冲水溶液加入容器中,配制成100微摩每毫升共组装体,即内含100微摩每毫升CD和100微摩每毫升CA的混合物溶液,将此混合物溶液置于80℃超声仪中超声3个小时,可见溶液变澄清,用激光笔照射有明显的丁达尔效应,此时已形成纳米超分子共组装体。
2.一种权利要求1所述方法制备的两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体的应用,以两亲环糊精CD与两亲杯芳烃CA纳米超分子共组装体作为组装体囊泡,在囊泡的表面聚集了环糊精与杯芳烃的空腔,环糊精的空腔能够选择性的键合酪氨酸,而杯芳烃的空腔能够选择性的键合赖氨酸,当加入富含酪氨酸与赖氨酸的多肽后,多肽上的酪氨酸会与共组装体囊泡表面的环糊精空腔键合,多肽上的赖氨酸会与共组装体囊泡表面的杯芳烃键合,酪氨酸与赖氨酸同时键合形成了多价结构,强化了囊泡表面与多肽的相互作用;利用这种选择性的相互作用能够对不同的多肽进行选择性识别以对其进行区分。
CN201810328452.0A 2018-04-13 2018-04-13 两亲环糊精cd与两亲杯芳烃ca的纳米超分子共组装体及制备方法和应用 Expired - Fee Related CN108440765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810328452.0A CN108440765B (zh) 2018-04-13 2018-04-13 两亲环糊精cd与两亲杯芳烃ca的纳米超分子共组装体及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810328452.0A CN108440765B (zh) 2018-04-13 2018-04-13 两亲环糊精cd与两亲杯芳烃ca的纳米超分子共组装体及制备方法和应用

Publications (2)

Publication Number Publication Date
CN108440765A CN108440765A (zh) 2018-08-24
CN108440765B true CN108440765B (zh) 2021-02-05

Family

ID=63199820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810328452.0A Expired - Fee Related CN108440765B (zh) 2018-04-13 2018-04-13 两亲环糊精cd与两亲杯芳烃ca的纳米超分子共组装体及制备方法和应用

Country Status (1)

Country Link
CN (1) CN108440765B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112220936B (zh) * 2020-10-19 2022-11-18 南开沧州渤海新区绿色化工研究有限公司 杯芳烃gca环糊精cd共组装体及其在制备药物中的应用
CN114982750B (zh) * 2022-04-28 2023-10-27 华中师范大学 一种超两亲性铺展剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044752A1 (en) * 2008-10-13 2010-04-22 Agency For Science, Technology And Research Amphiphilic polymers and nanocrystals coated therewith
CN105566129A (zh) * 2015-12-22 2016-05-11 南开大学 一种两亲杯芳烃AmC5A的纳米超分子组装体及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044752A1 (en) * 2008-10-13 2010-04-22 Agency For Science, Technology And Research Amphiphilic polymers and nanocrystals coated therewith
CN105566129A (zh) * 2015-12-22 2016-05-11 南开大学 一种两亲杯芳烃AmC5A的纳米超分子组装体及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Controllable self-assemblies of β-cyclodextrin-calix[4]arene couples;Li Liang,et al.;《Science China Chemistry》;Science China Press and Springer-Verlag Berlin Heidelberg;20120630;第55卷(第6期);1092-1096 *
Interconnective Host-Guest Complexation of β-Cyclodextrin-Calix[4]arene Couples;Jürgen Bügler,et al.;《J.Am.Chem.Soc.》;Aemerican Chemical Society;19981222;第121卷(第1期);28-35 *
Supramolecular color-tunable photoluminescent materials based on a chromophore cascade as security inks with dual encryption;Zhe Xu,et al.;《Materials Chemistry Frontiers》;The Royal Society of Chemistry and the Chinese Chemical Society;20170502;第1卷;1847-1852 *
环糊精-杯芳烃偶合体系研究进展及前景展望;张华承等;《有机化学》;20081231;第28卷(第6期);954-963 *

Also Published As

Publication number Publication date
CN108440765A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
Guo et al. Expanding the nanoarchitectural diversity through aromatic di-and tri-peptide coassembly: Nanostructures and molecular mechanisms
Chen et al. Tailor-made stable Zr (IV)-based metal–organic frameworks for laser desorption/ionization mass spectrometry analysis of small molecules and simultaneous enrichment of phosphopeptides
Zhang et al. Chiral biointerface materials
Duraikkannu et al. A review on phase-inversion technique-based polymer microsphere fabrication
Liang et al. Nano-bio-interface engineering of metal-organic frameworks
CN108440765B (zh) 两亲环糊精cd与两亲杯芳烃ca的纳米超分子共组装体及制备方法和应用
Tao et al. Multiporous supramolecular microspheres for artificial photosynthesis
CN103880714B (zh) 含两性离子的水溶性交联剂及其制备方法与应用
Jiang et al. Bioinspired artificial nanochannels: construction and application
CN109078614A (zh) 一种基于枝状硼酸的糖蛋白分子表面印迹聚合物的制备方法及应用
Magnabosco et al. Effect of surface chemistry on incorporation of nanoparticles within calcite single crystals
Sun et al. Dopamine-mediated biomineralization of calcium phosphate as a strategy to facilely synthesize functionalized hybrids
Rowland et al. Bioinspired mineralizing microenvironments generated by liquid–liquid phase coexistence
CN110129252B (zh) 一种具有细胞粘附功能的可发光胶原多肽-镧系金属复合纳米材料的制备方法
Pan et al. Free-standing lamellar 3D architectures assembled from chitosan as a reusable titanium-immobilized affinity membrane for efficiently capturing phosphopeptides
CN108079954B (zh) 一种功能化氧化石墨烯复合纳米材料及制备和应用
Hu et al. Engineering biomimetic graphene nanodecoys camouflaged with the EGFR/HEK293 cell membrane for targeted capture of drug leads
US20170314008A1 (en) Enzyme immobilization using iron oxide yolk-shell nanostructure
CN106589366A (zh) 基于疏水羟基磷灰石纳米稳定粒子的皮克林乳液聚合制备表面分子印迹微球的方法及应用
CN107778367B (zh) 多肽、其应用及包含所述多肽的药物
CN108176080B (zh) 基于β-环糊精聚合物微球和ZIF-8架构手性分离介质的制备方法及应用
CN111874897A (zh) 一种高靶向性细胞膜磁性石墨烯药物筛选材料及制备方法和应用
Shashikumar et al. Trajectory in biological metal-organic frameworks: Biosensing and sustainable strategies-perspectives and challenges
Long et al. Advances in gigantic polyoxomolybdate chemistry
CN104672307B (zh) 一种提高阳离子短肽抗菌性和稳定性的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210205