CN108431720A - 振动源的计算局部化 - Google Patents

振动源的计算局部化 Download PDF

Info

Publication number
CN108431720A
CN108431720A CN201680075885.9A CN201680075885A CN108431720A CN 108431720 A CN108431720 A CN 108431720A CN 201680075885 A CN201680075885 A CN 201680075885A CN 108431720 A CN108431720 A CN 108431720A
Authority
CN
China
Prior art keywords
heart
expression
fibrillation
computation model
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680075885.9A
Other languages
English (en)
Other versions
CN108431720B (zh
Inventor
D·E·克鲁门
A·D·麦卡洛克
C·维隆科
G·贺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to CN202310136709.3A priority Critical patent/CN116269415A/zh
Publication of CN108431720A publication Critical patent/CN108431720A/zh
Application granted granted Critical
Publication of CN108431720B publication Critical patent/CN108431720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/339Displays specially adapted therefor
    • A61B5/341Vectorcardiography [VCG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/361Detecting fibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • G06T2207/10121Fluoroscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Cardiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)

Abstract

提供了用于纤颤源的计算定位的系统。在一些实现方式中,系统执行操作,所述操作包括生成患者心脏的电激活的表示并且基于相关性将生成的表示与心脏的一个或多个存储的表示进行比较以识别心脏的至少一个匹配的表示。该操作还可以包括基于至少一个匹配的表示来生成针对患者心脏的计算模型,其中该计算模型包括患者心脏中的一个或多个纤颤源的示出。另外,操作可以包括经由用户接口显示计算模型的至少一部分。还描述了相关的系统、方法和制品。

Description

振动源的计算局部化
相关申请的交叉引用
本申请要求于2015年12月22日提交的名称为“COMPUTATIONAL LOCALIZATION OFVENTRICULAR FIBRILLATION SOURCES”的美国临时专利申请第62/271,113号的优先权,并且还要求于2016年12月22日提交的名称为“COMPUTATIONAL LOCALIZATION OFFIBRILLATION SOURCES”的美国非临时专利申请第15/389,245号的优先权,这些申请的公开内容通过引用并入本文。
技术领域
本文描述的主题涉及纤颤源的计算定位,并且更具体地涉及心室纤颤(VF)和/或心房纤颤(AF)源的识别。
背景技术
心室纤颤(VF)和心房纤颤(AF)可引起症状、发病(晕厥或中风)和死亡。稳定的电转子、反复发生的电病灶源以及其他机制是VF/AF持续和/或临床显著发作的重要驱动因素。为了治疗VF/AF,可以使用治疗消融、射频(RF)、低温、超声波和/或外部辐射源来瞄准和/或消除这些机制。使用非侵入性方法来绘制VF和/或AF的维持机制的能力将在这种心律失常的处理中提供显著的益处。
用于可靠地识别VF/AF维持机制(例如转子或病灶源)位置的当前方法目前是不理想的。它们通常需要有创手术,插入昂贵的64电极篮状导管,和/或使用昂贵、难以获得/制造以及笨重的身体表面背心来映射心律失常,这可能会干扰除颤器垫的放置。因此,这样的程序昂贵,耗时并且对患者有潜在危险。因此,以较低成本和/或较少侵入性程序来识别纤颤源的存在和/或位置的方法可以提供显著的临床益处。
发明内容
在一些方面,提供了一种方法、计算机程序产品和系统。在一个实现方式中,提供了用于纤颤源的计算定位的系统。该系统可以包括(或者以其他方式利用)至少一个处理器和/或存储器,该处理器和/或存储器可以被配置为执行操作,所述操作包括生成患者心脏的电激活的表示,并基于相关性将所述生成的表示与一个或多个存储的心脏的表示进行比较以识别心脏的至少一个匹配的表示。该操作还可以包括基于至少一个匹配的表示来生成针对患者心脏的计算模型,其中该计算模型包括患者心脏中的一个或多个纤颤源的示出。另外,操作可以包括经由用户接口显示计算模型的至少一部分。
在一些方面,生成的表示和/或一个或多个存储的表示可以包括三维数据(例如,可以是3D模型)。在一些方面,生成的表示和/或一个或多个存储的表示可以包括矢量心动图。比较表示可以包括针对一个或多个存储的表示中的每一个,确定所述生成的表示与所存储的表示之间的相关因子,并且至少一个匹配的表示可以被识别为具有最高相关因子的所存储的表示。
在一些变型中,操作可以进一步包括生成具有不同形状、几何形状、纤维取向、瘢痕、纤颤源类型和纤颤源位置的多个计算心脏模型。该操作还可以包括基于患者心脏的形状或瘢痕形成来过滤多个计算心脏模型以识别过滤后的集合,和/或基于过滤后的集合来选择用于比较的一个或多个存储的表示。在各种实现方式中,过滤可以基于计算机化的断层摄影成像数据、磁共振成像数据、超声波心动描记术数据、X射线数据、荧光透视数据和/或诸如此类。
在一些变型中,计算模型包括左心房、右心房、左心室和右心室中的一个或多个,和/或一个或多个纤颤源可被映射到左心房、右心房、左心室和右心室中的一个或多个。一个或多个纤颤源可以包括转子或者病灶源,或者一些其他的心室纤颤源或者心房纤颤源。在一些变型中,计算模型包括心脏形状中的三维网格和/或映射到网格的心脏电激活的有限状态纤颤源映射。
在一些变型中,操作可以进一步包括基于患者的心脏来生成心电图绘图,和/或基于心电图绘图来生成矢量心动图。在一些变型中,操作可以进一步包括基于(原始)计算模型来生成针对患者心脏的第二计算模型,其中生成第二计算模型以包括少于一个或多个纤颤源的数量的纤颤源。可以经由用户接口来显示计算模型和第二计算模型的并排比较。在一些方面,第二计算模型可以通过从计算模型中去除一个或多个纤颤源中的一个来生成。在一些变型中,操作可以进一步包括确定计算模型与第二计算模型之间的纤颤变化。
当前主题的实现方式可以包括与本说明书一致的系统和方法,包括如所描述的一个或多个特征以及包括有形地实施的机器可读介质的物品,所述机器可读介质可操作以使一个或多个机器(例如,计算机等)导致本文描述的操作。类似地,还描述了计算机系统,其可以包括一个或多个处理器以及耦合到一个或多个处理器的一个或多个存储器。可包括计算机可读存储介质的存储器可包括一个或多个程序、对其进行编码、存储等,所述一个或多个程序使一个或多个处理器执行本文描述的操作中的一个或多个。与当前主题的一个或多个实现一致的计算机实现的方法可以由驻留在单个计算系统或多个计算系统中的一个或多个数据处理器来实现。这样的多个计算系统可以被连接并且可以经由一个或多个连接交换数据和/或命令或其他指令等,这些连接包括但不限于通过网络(例如因特网、无线广域网、局域网、广域网、有线网络等),经由多个计算系统中的一个或多个之间的直接连接的连接,等等。
在附图和下面的描述中阐述了本文描述的主题的一个或多个变型的细节。本文描述的主题的其它特征和优点将从说明书和附图以及权利要求中显而易见。虽然为了与企业资源软件系统或其他商业软件解决方案或架构有关的说明目的描述了当前公开的主题的某些特征,但应容易理解的是,这些特征并非旨在进行限制。遵循本公开的权利要求旨在限定受保护主题的范围。
附图说明
并入本说明书并构成本说明书的一部分的附图示出了本文公开的主题的某些方面,并且与说明书一起帮助解释与所公开的实现方式相关联的一些原理。在附图中,
图1描绘了根据一些示例性实现方式的用于纤颤源的计算定位的系统的框图;
图2A描绘了根据一些示例性实现方式的患者右心房中的激活时间的图;
图2B描绘了根据一些示例性实现方式的患者左心房中的激活时间的图;
图2C描绘了根据一些示例性实现方式的用于VF的纤颤源映射;
图2D描绘了根据一些示例性实现方式的用于AF的纤颤源映射;
图3A描绘了根据一些示例性实现方式的右心室中的电转子的双心室计算模型;
图3B描绘了根据一些示例性实现方式的具有识别的转子的双心室计算模型;
图4A描绘了根据一些示例性实现方式的根据计算模型计算的心电图(EKG)数据的图表;
图4B描绘了根据一些示例性实现方式的根据计算模型计算的矢量心动图(VCG);
图5A描绘了根据一些示例性实现方式的在患者的左心室VF期间心脏激活的心内膜等时图;
图5B描绘了根据一些示例性实现方式的根据心内膜电压的在患者解剖结构内的VF源位置;
图6A描绘了根据一些示例性实现方式的在人类VF期间的EKG读数的图;
图6B描绘了根据一些示例性实现方式的从记录的EKG数据导出的VCG;
图7A描绘了根据一些示例性实现方式的在不同时间点具有VF的双心室计算模型;
图7B描绘了根据一些示例性实现方式的在时间间隔上计算的EKG描迹的图;
图7C描绘了根据一些示例性实现方式的在时间间隔上计算的VCG描迹;
图8A描绘了根据一些示例性实现方式的左右心房的计算模型;
图8B描绘了根据一些示例性实现方式的具有维持标识的转子的模拟的患病基质的右和左心房的计算模型;
图9描绘了根据一些示例性实现方式的示例计算装置的框图;
图10描绘了根据一些示例性实现方式的用于纤颤源的计算定位的方法的示例;
图11描绘了根据一些示例性实现方式的用于计算消融的效果和心脏纤颤的随后风险的方法的示例;以及
图12描绘了根据一些示例性实现方式的处于相同解剖位置的转子的模拟VCG和测得的人类VCG。
实际上,类似的附图标记表示相似的结构、特征或元件。
具体实施方式
如上所述,可能需要以较低成本和/或侵入性较小的程序/方法来识别纤颤源的存在和/或位置。因此,描述了用于识别患有心室纤颤(VF)或心房纤颤(AF)的患者中的转子或病灶源(在本文中统称为“纤颤机制”)的存在和/或位置的非侵入性系统和方法。在一些实现方式中,可以将容易获得的十二导联心电图(EKG)传感器设备应用于患者皮肤的表面,而不是非常专业化和昂贵的需要使用二十或更多电极的手术植入和/或外部心电图(“EKG”或“ECG”)背心的一次性64电极篮式导管。
图1示出了系统100的功能框图,其中可以实现与所描述的主题相一致的特征。如图所示,系统100可以包括能够与一个或多个用户访问设备140和/或一个或多个传感器设备150A-D(统称为传感器设备150)通信的计算系统110。在一些方面,计算系统100可以利用一个或多个接口118进行通信。系统100中的设备之间的通信可以通过使用直接通信,诸如通过使用诸如蓝牙、近场通信(NFC)、ZigBee、WiFi、它们的某种组合等的无线连接。另外地或替代地,系统100中的设备之间的通信可以通过使用诸如通用串行总线(USB)之类的硬连线连接和/或诸如此类。通信可以附加地或可选地通过间接通信发生,诸如通过网络160,其可以包括局域网、广域网、无线网络、因特网、它们的某种组合等。
通过网络160的通信可以利用诸如基站、节点B、演进节点B(eNB)、接入节点(AN)、热点等之类的网络接入设备165。在一些方面,用户访问设备140中的任何一个可以包括个人计算机、台式计算机、膝上型计算机、工作站、蜂窝电话、数字媒体设备、智能电话、智能手表、PDA(个人数字助理)、平板电脑、硬件/软件服务器、传感器、传感器设备、终端、接入终端(AT)、移动站、用户设备(UE)、订户单元等。在一些方面中,传感器设备150中的任何一个可以包括EKG传感器/设备、矢量心动图(VCG)传感器/设备、心脏成像设备和/或类似物。在一些实现方式中,心脏成像设备可以包括计算机断层摄影(CT或CAT)扫描设备、磁共振成像(MRI)扫描设备、司可吉比扫描设备、铊扫描设备、多门控采集扫描设备、X射线设备、超声波心动描记术设备、荧光透视设备和/或类似设备中的一个或多个。在各种实现方式中,可以提供数据(例如,心脏成像数据)和/或可以不存在相应的设备(例如,心脏成像设备)。计算系统110、用户访问设备140和/或传感器设备150之间的有线或无线通信可根据各种协议和/或接入技术(例如,全球移动通信系统(GSM)、通用移动电信系统(UMTS)、诸如WiFi和/或蓝牙之类的由IEEE开发的技术、诸如长期演进(LTE)和/或CDMA2000等的由第三代合作伙伴计划(3GPP)或3GPP2开发的技术等)而发生。
所示系统100的至少一部分可以包括与存储的数据、模型、算法等交互和/或接收、发送、定义、创建和/或更新数据的硬件和/或软件。如图所示,计算系统110可以包括处理器190,处理器190可以用于管理/控制计算系统110的操作。如进一步所示,计算系统110可以包括核心软件112和/或一个或多个软件模块114。核心软件112可以提供高级编程软件系统的一个或多个特征。软件模块114可以提供更专门的功能。例如,核心软件112和/或软件模块114可以包括传感器管理和/或数据处理功能。在一些方面,核心软件112或其他类似的软件/硬件能够访问诸如数据库120之类的数据库层。数据库120可以存储任何种类的数据,可能包括但不限于从传感器设备150、计算模型、EKG数据、VCG数据、机器学习算法、数据转换算法等取回的数据。
例如,如图所示,数据库120可以包括模型库192、患者特定的模型194、患者数据库195、VCG库196、数据变换算法197和/或机器学习算法198。模型库192可以容纳心脏、心脏的一部分、其他器官等的多个计算模型。模型库192中的计算模型可以是高分辨率的(例如,大于约500、000的自由度)有限元模型。计算模型的至少一部分可以分别通过在仿真VF或AF期间并入Fenton-Karma、Bueno-Cherry-Fenton、十Tussher-Noble或类似的、详细的人类心室或心房动作电位的离子模型来生成。
患者特定的模型194可以包括与模型库192中的模型相似的计算模型,但是可以基于来自实际患者的数据来生成患者特定的模型194中的模型。例如,如图所示,可以应用心内膜传感器设备150A来记录来自患者130A的心脏内部的数据。在相同(或大致相同)的时间,EKG传感器150B可以被施加到患者130A的外部以记录EKG读数。基于这些读数的组合,可以生成并存储一个或多个患者特定的模型194。在一些实现方式中,患者特定的模型194可以附加地或可选地基于CT扫描数据、MRI扫描数据、司可吉比扫描数据、铊扫描数据、多门采集扫描数据、荧光透视数据、x-射线数据、超声波心动图数据和/或其他心脏成像数据,其可以用于识别患者130N的心脏的形状、瘢痕等。
VCG库196可以包括用于模型库192的计算模型和/或患者特定的模型194的VCG数据。例如,VCG模型可以基于模型库192中的计算模型(例如,基于与每个模型相关的EKG数据)来模拟。在一些实现方式中,VCG模型可以包括心脏或其某些部分中的电活动的三维描记。在一些方面,VCG数据可以包括时空VCG数据。VCG库196中的VCG数据可以充当诊断模板,针对该诊断模板可以匹配从患者数据构建的VCG。例如,可以将该VCG库数据与患者的VCG数据进行比较,以识别患者体内VF/AF源的位置。例如,如图所示,EKG传感器设备150D可以从患者130N获得EKG数据。该EKG数据可以用于生成VCG数据,并且可以将所生成的VCG数据与来自VCG库196的VCG数据进行比较。基于这些数据集之间的相关水平,可以如本文所描述的那样识别VF/AF源。在一些实现方式中,可基于患者130N的心脏的物理特性(例如,形状、瘢痕等)对来自VCG库196的VCG数据进行过滤以供比较,所述患者130N的心脏的物理特性能够基于通过心脏成像设备150C获得的数据来确定,心脏成像设备150C可以包括CT扫描设备、MRI扫描设备、超声波心动描记设备等。在一些实现方式中,VCG库196内的数据可以附加地/替代地存储在模型库192内。例如,每个计算心脏模型可以包括VCG数据或与VCG数据相关联。
在一些实现方式中,模型库192内的计算模型可以基于患者特定的模型194来生成和/或验证。例如,VCG库196中的VCG可以通过将它们与人类VCG进行比较来验证,其中人类VCG可以从患者特定的模型194获得。例如,图12示出了基于人类转子1210和模拟转子1250从相同心室位置生成的VCG 1220、1260的比较。在一些方面,人转子1210可以是患者体内的VF源。如图所示,转子可以处于左心室内的中心室后侧位置和/或当从心内膜看时沿逆时针方向旋转。相应的第一VCG 1220示出了针对该患者的针对VF的特定周期的临床VCG循环。
在一些方面,第二VCG 1260示出了模拟VCG循环,该模拟VCG循环非常接近临床VCG1220(例如,对于VF的相同周期)。第二VCG 1260可以存储在VCG库196内和/或从VCG库196取回。对应的计算机模拟转子1250可以模拟由来自VCG 1260的数据指示的VF源。如图所示,模拟VF源转子1250的位置也可以位于左心室内的中心室后侧位置,和/或当从心内膜观察时沿逆时针方向旋转。如图所示,基于定时信息来对VCG 1220、1260进行着色。
回头参考图1,在一些方面,患者特定的模型194中的VCG可以由现有的表面EKG的人类数据集构建,表面EKG的人类数据集可以存储在患者数据库195中和/或从患者数据库195提供,具有已知的转子和使用从有诱导性VF的患者取得的并发电极侵入性心内膜记录识别的病灶源位置。
在一些方面,患者特定的模型194的鲁棒性可以增加模型库192的准确度和/或值,其可以增加识别患者130内的VF/AF源的可能性和/或确定患者130的心脏内的VF/AF源的具体位置的准确度。机器学习算法198可以基于患者特定的模型194进行训练以基于接收到EKG传感器数据、CT扫描数据、VCG和/或类似物来生成用于检测患者体内的VF/AF的算法。例如,相关的EKG数据和VCG可用于训练机器学习算法以识别VF/AF机制和基因座。在一些示例实施例中,可以提供用于导出诊断标准以预测VF/AF转子的存在和位置的算法。为此,可以提供自动诊断工具来自动地将根据具有VF/AF的患者的表面EKG计算的VCG与诊断模板(例如,VCG库196)进行比较以使用统计分类和/或机器学习技术识别VF/AF机制和位置。
在一些实现方式中,数据转换算法197可以用于标准化从患者130A测量的EKG和/或VCG数据,以使用统计分类和/或机器学习技术来考虑患者在胸部尺寸、肺几何形状、肌肉组织程度、身体脂肪组成和/或其他可能影响表面电极测量的因素之间的差异。
在一些实现方式中,模型库192、患者特定的模型194、VCG库196、机器学习算法198、数据转换算法197和/或患者数据库195可以特定于VF/AF机制。例如,模型库192和患者特定的模型194可以包括针对转子的模型和针对病灶源的单独模型。因此,VCG库196可以包括基于转子的VCG以及基于病灶源的单独的VCG。由于转子和病灶源在VCG中以不同的方式实现,所以使用单独的模型/VCG组可以用来识别该机制,以及它的位置。
在一些方面,核心软件112可被配置为响应于接收到由用户或计算机系统通过一个或多个传感器设备150、用户访问设备140等发起的指令、数据或查询而将来自数据库120的信息加载到存储器116(例如,主存储器)。虽然数据库120被示出为位于计算系统内,但是在各种实现方式中,数据库120的至少一部分可以与计算系统110分离。
在一些方面中,软件模块114中的一个或多个可以被配置为利用存储在存储器116中的数据、存储在数据库120中的数据和/或计算系统110可访问的数据。在一些方面,计算系统110能够利用外部软件,所述外部软件可以提供可能在计算系统110处不可用的附加功能或服务。在一些方面,外部软件可以包括云服务。在一些方面,计算系统110可以聚集或以其他方式提供网关,用户可以经由网关访问由外部软件提供的功能。在一些实现方式中,数据库120和/或其内容可以位于一个或多个服务器上,并且/或者计算系统110、用户访问设备140和/或传感器设备150之间的通信可以通过网络160发生。
在一些方面,数据库120可以物理地存储在硬件服务器中或者跨越多个硬件服务器物理地存储。在一些方面,系统100可以被实现为基于云的系统和/或数据处理系统。
图2A描绘了根据一些示例性实现方式的患者的右心房210中的纤颤源激活图200(根据阴影标尺以毫秒为单位)。如图所示,右心房210的更长和/或更持续的激活可围绕源220旋转。该源220可被认为是AF的来源,并且更具体而言,是转子。在一些方面,转子可被认为是针对AF的组织中心,其本质上至少部分地旋转(例如,激活时间的持续时间为最长的区域)。尽管示出和描述了右心房210,但转子可以存在于心脏的任何腔室内。
图2B描绘了根据一些示例性实现方式的患者左心房260中的纤颤源激活图250(根据阴影标尺以毫秒为单位)。如图所示,左心房260的更长和/或更持续的激活可以从源270发出。该源270可以被认为是AF的源,并且更具体地说是病灶源。在一些方面,可以将病灶源视为向远侧生成AF的组织中心(例如,发出激活时间的最长持续时间的区域)。尽管示出和描述了左心房270,但是可以在心脏的任何腔室内存在病灶源。
图2C描绘了根据一些示例性实现方式的针对VF的纤颤源映射280。在一些方面,纤颤源映射280可以是本文描述的计算机算法的产物。如图所示,根据VF源285位于心室的特定区域处的VF周期的百分比,对心脏内维持VF的区域进行阴影处理。
图2D描绘了根据一些示例性实现方式的针对AF的纤颤源映射290。在一些方面,纤颤源映射290可以是本文所述的计算机算法的产物。如图所示,根据AF源295位于心房的特定区域处的AF周期的百分比,对心脏内维持AF的区域进行阴影处理。
识别VF/AF的源220、270、285和295的位置可能是有益的,因为其位置的认知可以帮助引导手术程序并最小化医学专业人员所需的猜测量。例如,在患有AF的患者中,单个转子(例如,如图2A所示)或者病灶源(例如,如图2B所示)可以作为消融的目标。另外,根据从这些源发出的周期/时间的百分比(例如,如图2C和图2D所示),可以优先考虑源。然后消融可以传递到维持临床心律失常而不是传递到非源组织的区域。继而,该过程的成功机会可以增加,因为源220、270的位置可以被具体地作为目标。此外,手术期间其他器官、神经、骨骼、肌肉等损伤的风险较低,恢复时间缩短和/或瘢痕形成最小。
心力衰竭是一种复杂的疾病,其可能涉及和/或基于心室形状的变化、纤维取向、离子通道表达重塑和/或其他病症/变化。因此,例如,根据图1的计算系统110,可基于特定患者的状况/变化来生成、修改、显示心脏的计算模型或以其他方式利用心脏的计算模型来识别VF/AF的源/位置。
可基于代表心脏的成像信息(例如,三维)和/或代表心脏的电生理学的电数据来生成心脏(或其部分)的计算模型。考虑到条件/变化,在用于生成计算模型的数据和结合计算模型使用的参数/度量可能特定于给定患者的情况下,计算模型的至少一些可以是患者特定的。但是,生成患者特定的模型所需的时间、精力、成本和侵入性程序可能会令人望而却步。例如,为了从心脏内测量电特性,可能要求心内膜记录导管或装置的定位。因此,计算模型的至少一些可能是一般模型,因为它们不是特定患者心脏的表示。这些计算模型可以基于患者特定的模型或其他患者特定的数据、基于人类心脏的测量的/已知的特性和/或类似物来手动生成。然后生成的模型可以被“变形”成更具体的患者配置,例如,如图1的计算系统110中所指出的。
一般模型可以修改以生成附加的一般模型。例如,基于已经被验证为足够精确的一般模型(例如,通过与患者特定的模型或从患者获得的其他数据的比较),心脏的形状和/或心脏内的瘢痕的位置可以被改变。由于心脏的形状和/或瘢痕可能会影响VF/AF,因此增加具有不同听力形状/瘢痕的模型可以提供定位VF/AF源的额外的准确性。在一些实现方式中,可以在模型库192内生成和/或存储数千个计算模型。这些生成技术中的任何一个都可以是手动的、至少部分自动的、和/或基于机器学习的。在一些方面,计算模型可被视为心律失常的有限元计算模型。
可以生成和/或接收对患者的心脏电特性的测量。例如,计算系统100可以接收和/或记录患者的EKG数据。在一些实现方式中,EKG数据可以从EKG传感器设备(例如12导联EKG)获得,其从患者的多个身体位置(例如,在胸部、手臂、腿、头等的表面)记录心脏电功能的连续的、动态信号。另外,计算系统100可以接收和/或记录患者的心内膜数据。在一些实现方式中,心内膜数据可以从位于心脏的至少一个腔室内的可控映射和/或消融导管获得(例如,位于针对VF的左心室和/或右心室中的消融导管,或位于针对心房纤颤的左心房和/或右心房内的消融导管),或者从一个或多个篮式导管获得,所述一个或多个篮式导管诸如位于心脏的至少一个腔室内的64电极篮式导管(例如,针对VF的左心室中的一个和右心室中的一个,或者针对AF的左心房AF中的一个和右心房中的一个),篮式导管记录患者心脏内心脏电功能的连续的、动态信号。
在一些方面,心内膜数据可以与EKG数据匹配(例如,在时间上),使得计算系统100可以从患者心脏的内部和外部访问代表心脏电功能的数据。基于心内膜和EKG数据之间的关系,可以识别模式并且/或者可以定义相关以便识别VF/AF源(例如转子或病灶源)。在一些实现方式中,可以在患者的心脏被激发时和/或当患者的心脏处于放松状态时测量心内膜和EKG数据。在一个示例实现方式中,可以在一个或多个位置处根据心脏内的常规起搏来记录心脏的电活动,以建立心脏激发和表面EKG记录和/或计算的VCG之间的关系。在另一个实现方式中,可以在患者体内诱发VF/AF,并且可以测量/记录在这段时间内的电数据。由于数据示出患者心脏在VF/AF期间的行为,可以将其与基线数据和来自其他患者的数据进行比较,以识别VF/AF来源。
可以接收患者心脏(例如,左心房、右心房、左心室和/或右心室)的成像数据。例如,计算系统可以接收和/或记录包括从临床心脏CT扫描设备、2D或3D超声波心动描记设备、心肌灌注扫描设备、MRI设备、正电子扫描设备、X射线设备、荧光透视设备和/或能够生成或提供心脏(和/或其一部分)的图像的其他设备获得的心脏图像(或其部分)的图像数据。为了将心脏的3D解剖模型与心内膜和/或EKG数据组合,数据处理器可以登记(例如对准)数据,使得心内膜和/或EKG数据与心脏(例如其心室或心房区域)的适当取向对准。
可以生成具有关于患者电活动的数据的四维(4D)患者特定的计算模型。例如,计算系统110可以基于利用来自电活动数据的附加动态接收的3D数据来生成4D模型。4D计算模型可随时间提供心脏(或其部分)的形态学和解剖学的3D表示,并且可提供心脏(或其部分)的时变电动态,诸如随时间变化的EKG和/或心内膜数据。电动态可以包括激活模式和/或通过心肌的激活的电子轨迹。电动态可以包括电复极/恢复的模式(例如,序列)。该模型还可能包括附加/可选方面,如可能在个体患者中测量或模拟的灌注或梗塞的区域分布。
在一些实现方式中,计算模型可以包括如下的EKG数据,其覆盖和/或登记在患者心脏的3D双心室几何形状、心脏的人纤维结构、由存在心肌缺血引起的异质电导率区域、梗塞、解剖性(和/或功能性)导电缺陷(例如,部分和/或完整束支传导阻滞),和/或类似缺陷上。模型可以使用有限元网格生成。可以根据诸如临床CT数据、灌注图像、MRI数据和/或其他类型的图像数据之类的图像数据来生成心脏的患者特定的有限元网格(其可以包括其心室解剖结构)。
计算模型还可以包括心脏的纤维架构。例如,可以使用用于将DT-MR测量登记到解剖模型的对数-欧几里德内插框架来凭经验估计心脏的纤维架构。重建的扩散张量可以拟合成相应解剖网格中的对数转换分量的场,以插入局部纤维、片和片垂直轴。可经由大变形微分同胚映射将所得模型中的纤维取向映射到患者,并基于模板和目标患者心室几何形状之间的3D变形梯度重新定向以解释心室形状差异对纤维取向的影响。所得纤维片模型形成横向各向同性或正交异性心室电导率(其可具有例如约7:1的纤维片各向异性比率)的局部基础。
计算模型还可以包括心肌缺血区域、梗塞区域和/或其他类似区域。在这种情况下,可以从例如在应激和休息期间获得的灌注图像和/或司可吉比灌注图像来识别心肌缺血或梗塞区域。心肌缺血或梗塞边界区域可以在心脏的生成的解剖网格上划分界限。例如,患者可能有后间隙梗塞,并可能有较差的梗塞。这些区域可以在计算模型中被登记为正常和梗塞组织的二元场。
计算模型还可以包括心肌电导特性,例如肌纤维中左心室和右心室心内膜或大部分心肌组织的电导率和横向取向以及边界区和/或梗塞或缺血性区中的导电性。该电位可以通过修改以适应心力衰竭期间发生的通道动力学变化的人心室肌细胞模型来描述。动作电位传播可以在单域或双域反应扩散数学架构中建模。心室区域的电导率可以分成左心室和右心室心内膜下区域(例如,3mm透壁邻近心室腔)、梗塞区域和剩余的大部分心肌。如果未明确建模,则可以允许心内膜区域中的电导率变化高达大约10倍于大量心肌的电导率,以解释Purkinje系统的快速传导。在梗塞或缺血区域,电导率可以是各向同性的,并且可以允许电导率在大部分心肌中的电导率的约10%-90%之间变化。
图3A描绘了根据一些示例性实现方式的左心室310和右心室310的双心室计算模型300。计算模型300被示出为左心室310的一系列有限状态,其具有在不同位置中的心肌电压电位的模拟心肌电压映射320a-d(统称为纤颤映射320)。然而,如本文所述,根据指示VF的模式,计算模型300可以是左心室310和右心室310的三维模型,其具有围绕左心室310的表面移动/穿过左心室310的表面的纤颤源映射320(例如作为第四维)。在一些方面,纤颤源映射320可以代表心内膜、EKG和/或VCG数据。
在一些方面,可以基于纤颤源映射320来识别VF的源。例如,基于纤颤映射320,计算系统110可以确定指示VF的电压绕可以在这种情况下被识别为转子的前心律失常基底的特定点/区域旋转(例如,可选地作为其他中的病灶激活),如通过图3B中的白色部位所示的突出显示的源330所指示的。在一些方面,源330可以是患病心脏基底的位置。
在一些实现方式中,计算模型300可以经由用户接口来显示,并且可以包括动画(例如,示出纤颤映射320的移动和/或源330的VF/AF周期/大小的强度/百分比)。在一些方面,计算模型300可以是4D模型和/或纤颤源映射320可以被视为第四维。虽然仅示出了左心室310和纤颤映射320的四个状态,但是任何数量的状态都是可能的(例如,直到无穷大)。在一些实现方式中,关于源330的信息(例如,位置、特定位置处的激活的频率/百分比、机制等)可以被存储和/或显示给用户。
纤颤源的确定位置的不同粒度水平是可能的。例如,在一些实现方式中,纤颤机制(例如转子或病灶源),心脏的特定腔室(例如左心房或右心房或心室)和/或纤颤源的区域(例如前LV)来可以被识别。然而,在一些实现方式中,可以识别特定的位置,其可以基于观察到的纤颤源花费一定量的时间的位置或从哪里发出来进行估计。识别VF/AF的源的位置的准确性可以基于观察到的VCG模式的灵敏度、根据其生成VCG模式库的计算模型的鲁棒性和/或机器学习方法的能力。
如上所述,计算模型可以基于和/或包括EKG数据。图4A描绘了根据一些示例性实现方式的从计算模型计算的EKG数据的图表410。在某些方面,可通过使用12导联EKG传感器设备生成EKG数据。尽管这里的示例涉及心内膜和/或EKG数据,但是数据可以附加地或可选地包括其他类型的电数据,诸如VCG数据。例如,图4B描绘了根据一些示例性实现方式的具有来自侧视点的VCG描迹的VCG 420模型和具有来自上位视点的描迹的VCG模型430。在一些方面,位于VCG描迹内部的黑色心脏模型仅用于透视,并且可能不形成VCG描迹420、430的一部分。在一些实现方式中,可基于EKG数据生成VCG模型420、430。
如上所述,VCG模型420、430可以是根据VF/AF的大量现实双心室计算模型(例如,模型库192中的计算模型和/或患者特定的模型194)构建的时空VCG模型。在一些实现方式中,模型库192可以包括模拟来自不同解剖心脏节段的转子/病灶源的模型。或多或少的位置是可能的,并且在一些方面,模拟的位置可以包含大多数潜在的源位置。
在一些方面,可以旋转VCG数据的坐标轴和/或相应计算模型的坐标轴,直到它们彼此正确对准,如前面关于图1的数据变换算法197所描述的那样。
图5A描绘了根据一些示例性实现方式的在VF期间患者左心室510中的纤颤映射500。类似于图2A的纤颤源映射200,纤颤映射500可以指示源520处的VF转子。例如,图5B描绘了根据一些示例性实现方式的转子的纤颤源映射550。在一些方面,该映射550可以是患者560的后视图。如纤颤源映射550的截面图570所示,在病人的左心室可以存在瘢痕组织580、边缘区组织585和/或正常组织590的区域。在一些方面,心肌瘢痕/边界带组织580、585可以维持VF,并且因此应该被识别用于消融和/或外部放射治疗,以便减少患者560的未来心律不齐的可能性。在一些方面,该瘢痕组织580和/或边界带组织585可以被认为是心律不齐的心脏基底。
为了识别患者体内VF/AF的来源,可以将本文描述的计算模型与从患者获得的数据进行比较。在某些方面,患者可能知道他们有VF/AF,但不知道VF/AF来源的位置。此时,患者可能希望了解其VF/AF的确切来源(例如,患者的VF/AF有多差和/或他们的心脏死亡风险)、是否植入式心脏复律除颤器(ICD)是有益的、是消融术还是手术对于预防未来的心律失常是有益的、手术的风险是什么等等。使用本文所述的主题,患者可能能够去看对患者进行非侵入性测量的医生,将测量数据提供给计算装置,并接收数据以更好地解决患者的问题和顾虑。
在一些实现方式中,非侵入性测量可以包括从患者获得EKG数据,诸如通过使用12导联EKG传感器。例如,图6A描绘了根据一些示例性实现方式的在VF期间的EKG读数的图表610。在某些方面,EKG数据是在诱发VF/AF期间获得的。基于EKG读数,可以针对患者生成VCG模型和/或描迹。例如,图6B描绘了根据一些示例性实现方式的来自侧视点的VCG模型620和来自上位视点的VCG模型630。在一些方面,黑色心脏模型被提供仅用于定向,并且不构成VCG模型620、630或VCG描迹的一部分。在一些实现方式中,可以在不使用EKG读数的情况下生成VCG模型620、630。
例如,一旦针对患者获得了VCG模型620、630,就可以将它们与存储在VCG库196中的VCG模型进行比较。基于患者导出的VCG模型620、630与模拟/存储的VCG模型之间计算的相似度,可以识别VF/AF源。在一些方面,可以在一个或多个(例如,两个)正交平面中测量相似度。在一些实现方式中,可以使用皮尔森相关或类似的比较算法来比较VCG。基于相关因子,可以在患者体内识别VF/AF源。
由于患者可能有多于一个VF/AF源,所以可以进行多重比较。例如,可以在一系列时间间隔内从患者获得VCG。在一些方面,可以针对每个VF周期(其持续时间可以大约为200ms),可以以持续时间为1ms的每个时间间隔生成VCG。每个VF周期VCG可以与存储的VF周期VCG进行比较,以识别哪个VCG与患者的关系最为密切。可以基于哪个VCG具有最高的相关性来识别来自模型库192的相应计算模型。与所识别的计算模型相关联的数据(包括但不限于如本文所述的VF源类型、位置、旋转方向(如果有的话)等)可以被认为是代表在特定时间间隔期间的患者的心脏。基于所识别的计算模型的至少一部分,可以针对患者生成估计的计算模型。在一些实现方式中,可以基于患者心脏的形状、瘢痕位置、传导特性等(例如,如通过CT、MRI、回声、X射线、荧光透视或其他成像数据等确定的)来识别来自模型库192的感兴趣的计算模型的子集。所识别的一组计算模型可以与来自VCG库196的VCG相关,来自VCG库196的VCG可以是被选择用于与患者进行比较的VCG。
不同的转子位置可以创建明显不同的VCG回路。因此,根据患者导出的VCG的生成与VF/AF来源的已知/估计模式的比较可以作为用于识别患者中VF/AF来源的准确方法。
在一些实现方式中,可以生成诸如图2C的纤颤源映射280和/或图2D的纤颤源映射290之类的纤颤源映射,以用于说明VF/AF源的位置。例如,基于比较VCG,可以确定VF/AF源在一个或多个位置花费多长时间。该时间/百分比信息可以用于生成纤颤源映射,和/或该映射可以覆盖在心脏成像数据上。利用纤颤源映射来显示心脏成像数据(例如,3D模型)可以允许医学专业人员识别关于VF/AF源的附加特性,和/或以源位置为目标以用于射频源、低温、超声波或激光消融、外部射束辐射、血管重建、基因转移治疗或其他干预措施,以减少未来的心律失常负担。
在一些实现方式中,可以基于患者导出的VCG与存储的VCG的比较来生成额外的计算模型。例如,可以从模型库192识别与患者内识别的VF/AF源最相似的一个或多个模型。这些一个或多个模型可以被组合以生成复合模型,其可以包括代表患者中的所有VF/AF源的数据。使用复合模型,可以去除一个VF/AF源(例如,模拟去除)以生成新模型,新模型可以与复合模型进行比较以确定每个VF/AF源的去除是否有利于患者。如果复合模型和新模型之间显现的VF/AF变化低于阈值/百分比,则可以确定VF/AF源的去除可能对患者不利。阈值/百分比可以取决于患者、医疗专业人员和/或其他因素而变化。
虽然上述测量/比较是针对患者的左心室的,但是测量/比较可以以类似的方式执行,但是是关于患者的右心室的。例如,图7A描绘了根据一些示例性实现方式的右心室710的计算模型700。如图所示,计算模型700可以包括多个心肌电压映射710a-d,其被示出为一系列有限状态,其可以形成右心室710中的心脏电激活的映射。
计算模型700可以基于EKG数据和/或可以用于生成EKG数据。例如,图7B描绘了根据一些示例性实现方式的根据计算模型生成的EKG读数的图表730。用于创建EKG读数的过程可以通过首先从每个时间段的计算模型的电偶极子计算VCG。然后可以计算心电图描迹。例如,图7C描绘了根据一些示例性实现方式的从心脏模型生成的VCG模型740、750。根据计算模型来计算一个或多个VCG模型,诸如来自横向视点的VCG模型740和来自垂直视点的VCG模型750。之后可以从这些数据中导出心电图描迹。重要的是,如本文所述,VCG模型740、750允许与来自患者的VCG数据进行比较和匹配。如图所示,VCG模型740、750基于定时信息被着色。
虽然上述测量/比较是针对处于VF的患者的左心室和右心室的,但是可以以类似的方式进行测量/比较,但是是关于AF期间患者的右心房或左心房的。例如,图8A描绘了根据一些示例性实现方式的左心房和右心房810的计算模型800。如图所示,计算模型800可以包括心肌电压映射820a-d,其可以表示和/或基于心内膜和/或EKG数据。从计算模型800中,可以识别AF的源的位置(白点)。例如,图8B描绘了根据一些示例性实现方式的具有识别的转子基底830(由白点表示)的右心房810的计算模型800。
图9示出了根据一些示例性实现方式的可用于实现所描述的设备和/或组件中的一个或多个的示例计算装置900。例如,计算装置900的至少一部分可以用于实现计算设备110的至少一部分、提供数据库120的装置、提供外部软件130的装置、用户访问设备140中的一个或多个、传感器设备150中的一个或多个和/或访问设备165。计算装置900可以执行本文描述的过程中的一个或多个。
如图所示,计算装置900可以包括一个或多个处理器,诸如处理器910,以执行可以实现与本文描述的操作一致的操作的指令。装置900可以包括用于存储可执行指令和/或信息的存储器920。存储器920可以包括固态存储器、固态磁盘驱动器、磁盘驱动器或任何其他信息存储设备。在一些方面,存储器920可以针对数据库的至少一部分(例如,数据库120或一些其他数据组织)提供存储。装置900可以包括到有线网络或无线网络(例如图1的网络160)的网络接口940。无线网络可以包括WiFi、WiMax和蜂窝网络(2G/3G/4G/5G),和/或任何其他无线网络。为了实现无线通信,网络接口940例如可以利用一个或多个天线,诸如天线980。
装置900可以包括一个或多个用户接口,诸如用户接口950。用户接口950可以包括硬件或软件接口,诸如键盘、鼠标或其他接口,其中一些接口可以包括与显示器930集成的触摸屏。显示器930可以用于显示诸如促销优惠或当前库存之类的信息,向用户提供提示,接收用户输入和/或类似信息。在各种实现方式中,用户接口950可以包括一个或多个外围设备和/或用户接口950可以被配置为与这些外围设备进行通信。
在一些方面,用户接口950可以包括本文描述的传感器中的一个或多个,和/或可以包括到本文描述的一个或多个传感器的接口。这些传感器的操作可以至少部分地由传感器模块960控制。装置900还可以包括和输入和输出过滤器970,其可以过滤从传感器或其他用户接口接收、通过网络接口接收和/或发送和/或诸如此类的信息。例如,通过传感器检测到的信号可以通过过滤器970以进行适当的信号调节,然后可以将过滤后的数据传递给微控制器传感器模块960和/或处理器910以用于验证和处理(例如,在经由网络接口940发送结果或指示之前)。装置900可以通过使用一个或多个电源(例如电源990)供电。如图所示,装置900的组件中的一个或多个可以通过系统总线999传送和/或接收电力。在一些方面,装置900可被认为是利用服务器的至少一部分的服务器或装置的至少一部分。
图10示出了根据一些示例性实现方式的用于纤颤源的计算定位的方法的流程图。在各种实现方式中,方法1000(或其至少一部分)可以由计算设备110、提供数据库120的装置、提供外部软件130的装置、用户访问设备140中的一个或多个、传感器设备150中的一个或多个、访问设备165、计算装置900、其他相关装置和/或其一部分中的一个或多个来执行。
方法1000可以在操作框1010开始,其中装置900例如可以生成具有不同形状、瘢痕和纤颤源的心脏模型。可以附加地或可选地使用其它方面,诸如几何形状、纤维取向、纤颤源类型、纤颤源位置等。
方法1000可以前进到操作框1020,其中装置900例如可以基于心脏模型来生成矢量心动图绘图。例如,心脏模型可用于计算模型VCG和/或生成全面的VCG库。
方法1000可以前进到操作框1030,其中装置900例如可以基于患者的心脏形状和/或瘢痕来过滤心脏模型。在一些方面,过滤可以基于计算机断层摄影成像数据、磁共振成像数据、超声波心动图数据、X射线数据、荧光透视数据等。
方法1000可以前进到操作框1040,其中装置900例如可以基于患者的心脏来生成矢量心动图绘图。
方法1000可以前进到操作框1050,其中装置900例如可以将患者的矢量心动图绘图与心脏模型矢量心动图绘图进行比较。可以从VCG库中取回矢量心动图绘图。在一些实现方式中,可以基于过滤的心脏模型来选择VCG库中的矢量心动图绘图的子集。该比较可以包括针对每个存储的VCG确定所生成的VCG与所存储的VCG之间的相关因子,并且至少一个匹配的VCG可以被识别为具有最高相关因子的所存储的VCG。
方法1000可以前进到操作框1060,其中装置900例如可以生成患者心脏中的纤颤源的映射。在一些实现方式中,计算模型可以包括心脏形状中的三维网格和映射到网格的心脏电激活的有限状态纤颤源映射。在一些实现方式中,方法1000可以涉及基于患者的心脏来生成心电图绘图,和/或基于心电图绘图来生成患者心脏的电激活的表示。
方法1000可以前进到操作框1070,其中装置900例如可以通过用户接口(例如,用户接口950)显示映射。该映射可以通过使用心脏模型来显示,心脏模型可以包括左心房、右心房、心室或右心室中的一个或多个。模型可以是二维的、三维的、四维的,和/或可以是动画的。在一些方面中,显示可以使得能够使用射频、低温、超声波、激光、外部射束辐射等来引导消融手术。
在一些实现方式中,方法1000可以涉及基于一个或多个存储的计算模型来生成多个矢量心动图绘图,和/或基于多个矢量心动图绘图来生成一个或多个心电图绘图。
方法1000和/或其一部分的执行可以允许以更高的准确性、降低的侵入性和/或降低的成本来识别VF/AF源。
图11示出了根据一些示例性实现方式(例如,类似于图12中的示出)的用于纤颤源的计算定位的方法的流程图。在各种实现方式中,方法1000(或其至少一部分)可以由计算设备110、提供数据库120的装置、提供外部软件130的装置、用户访问设备140中的一个或多个、传感器设备150中的一个或多个、访问设备165、计算装置900、其他相关装置和/或其一部分中的一个或多个来执行。
方法1100可以在操作框1110处开始,其中装置900例如可以确定患者心脏中的纤颤的源。在一些实现方式中,纤颤源的识别可以与关于图10的方法1000所讨论的识别程序类似。
方法1100可以进行到操作框1120,其中装置900例如可以基于患者的心脏形状、瘢痕和/或纤颤源来生成心脏模型。
方法1100可以前进到操作框1130,其中装置900例如可以生成去除了至少一个纤颤源的另一心脏模型。在一些方面,可以通过从原始计算模型中去除一个或多个纤颤源中的一个来生成计算模型。
方法1100可以前进到操作框1140,其中装置900例如可以确定另一个心脏模型中的纤颤的变化。
如果有额外的源需要评估,则方法1100可以返回到操作框1130。例如,如果识别了三个VF/AF源,则方法1100可以单独评估源中的每个的去除,或者与任何数量的另外两个源(例如,七个独特评估)组合来评估。通过该过程,用户(例如,医疗专业人员)可以识别在去除VF/AF源方面的最佳行动方案。
方法1100可以前进到操作框1150,其中装置900例如可以通过用户接口(例如,用户接口950)显示心脏模型的至少一部分。心脏模型可以包括左心房、右心房、心室或右心室中的一个或多个。模型可以是二维的、三维的、四维的、和/或可以是动画的。在一些方面,可以提供具有和不具有VF/AF源的模型的并排比较。在一些方面,方法1100可以包括确定新计算模型和原始计算模型之间的纤颤变化。在一些方面,显示并排比较可以通过提供预测消融结果数据和/或对优化消融策略的选择来实现靶向心室纤颤或心室纤颤消融治疗。
方法1100和/或其一部分的执行可以允许确定每个单独的VF/AF源的消除是否可以有益于患者。例如,如果特定源被去除的模型中VF/AF的变化没有减少阈值量(例如百分比),则可以避免去除(或降低特定源的强度)的侵入性过程。
虽然本文关于VF和AF描述了几个方面,但其他实施方式也是可能的。例如,可以观察到人类和/或动物体内的其他心律失常或模式和/或可以识别其来源。如果识别患者体内的异常模式的来源,则可以向用户(例如,医疗专业人员)显示(例如,以二维或三维建模),使得用户可以看到患者的身体内部而不用做切口。
可以在数字电子电路、集成电路、专门设计的专用集成电路(ASIC)、现场可编程门阵列(FPGA)计算机硬件、固件、软件或其组合中实现本文描述的主题的一个或多个方面或特征。这些各个方面或特征可以包括在可编程系统上可执行和/或可解释的一个或多个计算机程序中实现,所述可编程系统包括至少一个可编程处理器,其可以是特殊的或通用的,耦合以从存储系统、至少一个输入设备和至少一个输出设备接收数据和指令以及发送数据和指令到存储系统、至少一个输入设备和至少一个输出设备。可编程系统或计算系统可以包括客户端和服务器。客户端和服务器通常彼此远离并且通常通过通信网络进行交互。客户端和服务器之间的关系是通过运行在各个计算机上的计算机程序产生的,并且彼此具有客户端-服务器关系。
这些也可被称为程序、软件、软件应用程序、应用程序、组件或代码的计算机程序包括用于可编程处理器的机器指令,并且可以以高级程序和/或面向对象的编程语言和/或汇编/机器语言来实现。如本文所使用的,术语“机器可读介质”是指用于提供机器指令和/或数据到可编程处理器的任何计算机程序产品、装置和/或设备,诸如例如磁盘、光盘、存储器和可编程逻辑器件(PLD),包括接收机器指令作为机器可读信号的机器可读介质。术语“机器可读信号”是指用于向可编程处理器提供机器指令和/或数据的任何信号。机器可读介质可以非暂时地存储这样的机器指令,例如像非暂时性固态存储器或磁性硬盘驱动器或任何等同的存储介质那样。机器可读介质可以可选地或附加地以暂时性方式存储这样的机器指令,诸如例如处理器高速缓存或与一个或多个物理处理器核相关联的其他随机存取存储器一样。
为了提供与用户的交互,本文所描述的主题的一个或多个方面或特征可以在具有显示设备的计算机上实现,所述显示设备例如阴极射线管(CRT)或液晶显示器(LCD)或用于向用户显示信息的发光二极管(LED)监视器以及用户可通过其向计算机提供输入的键盘和定点设备(例如鼠标或轨迹球)。其他类型的设备也可以用来提供与用户的交互。例如,提供给用户的反馈可以是任何形式的感官反馈,例如视觉反馈、听觉反馈或触觉反馈;并且可以以任何形式接收来自用户的输入,包括声学输入、语音输入、触觉输入和/或诸如此类。其他可能的输入设备包括触摸屏或其他触敏设备,例如单点或多点电阻式或电容式触控板、语音识别硬件和软件、光学扫描仪、光学指针、数字图像捕捉设备和相关联的解释软件等。
取决于期望的配置,本文描述的主题可体现在系统、装置、方法和/或物品中。在前面的描述中阐述的实现方式并不代表与本文所描述的主题一致的所有实施方式。相反,它们仅仅是与所描述的主题一致的方面的一些示例。尽管上面已经详细描述了一些变型,但是其他修改或添加也是可能的。特别地,除了本文阐述的那些特征和/或变体之外,还可以提供其他特征和/或变体。例如,以上描述的实施方式可以针对所公开的特征的各种组合和子组合以及/或者以上公开的几个其他特征的组合和子组合。
在以上描述和权利要求书中,诸如“至少一个”或“一个或多个”的短语可出现在元素或特征的联合列表之前。术语“和/或”也可以出现在两个或更多个元素或特征的列表中。除非另外隐含地或明确地与其使用的上下文矛盾,否则这样的短语旨在表示单独列出的元素或特征中的任何一个或者列举的元素或特征中的任何一个与其他列举的元素或特征中的任何一个的组合。例如,短语“A和B中的至少一个”,“A和B中的一个或更多个”以及“A和/或B”各自旨在表示“A单独、B单独或A和B一起”。类似的解释也适用于包括三个或更多项目的列表。例如,短语“A,B和C中的至少一个;”,“A、B和C中的一个或更多个”以及“A、B和/或C”各自旨在表示“A单独、B单独、C单独、A和B一起、A和C一起、B和C一起或A和B和C一起”。上面和权利要求中使用的术语“基于”,旨在表示“至少部分基于”,使得未被列举的特征或元素也是允许的。
所示方法仅是示例性的。虽然所述方法被示为具有特定的操作流程,但是两个或更多个操作可以组合成单个操作,单个操作可以在两个或更多个单独的操作中执行,所示操作中的一个或多个可以不存在于各种实现方式中,和/或未示出的附加操作可以是方法的一部分。另外,附图中描述的和/或本文描述的逻辑流程不一定要求所示的特定顺序或顺次的顺序来实现期望的结果。其他实现方式可以在以下权利要求的范围内。

Claims (51)

1.一种系统,包括:
至少一个处理器;以及
存储指令的至少一个存储器,所述指令在由所述至少一个处理器执行时,引起操作,所述操作包括:
生成患者心脏的电激活的表示;
将生成的表示与心脏的一个或多个存储的表示进行比较以识别心脏的至少一个匹配的表示;
基于所述至少一个匹配的表示,生成针对所述患者心脏的计算模型,其中,所述计算模型包括所述患者心脏中的一个或多个纤颤源的示出;以及
经由用户接口来显示所述计算模型的至少一部分。
2.根据权利要求1所述的系统,其中,所述生成的表示和所述一个或多个存储的表示包括三维数据。
3.根据权利要求1所述的系统,其中,所述生成的表示和所述一个或多个存储的表示包括矢量心动图。
4.根据权利要求1所述的系统,其中,所述比较包括针对所述一个或多个存储的表示中的每一个,确定所述生成的表示与所述存储的表示之间的相关因子,并且其中,所述至少一个匹配的表示被识别为具有最高的相关因子的所述存储的表示。
5.根据权利要求1所述的系统,其中,所述操作还包括:
生成具有不同形状、几何形状、纤维取向、瘢痕、纤颤源类型和/或纤颤源位置的多个计算心脏模型;
基于所述患者心脏的形状和/或瘢痕来过滤所述多个计算心脏模型以识别过滤后的集合;以及
基于所述过滤后的集合来选择用于所述比较的所述一个或多个存储的表示。
6.根据权利要求5所述的系统,其中,所述过滤是基于计算机断层摄影成像数据、磁共振成像数据、超声波心动图数据、X射线数据或荧光透视数据的。
7.根据权利要求1所述的系统,其中,所述计算模型包括左心房、右心房、左心室和右心室中的一个或多个,并且其中,所述一个或多个纤颤源被映射到所述左心房、所述右心房、所述左心室和所述右心室中的一个或多个。
8.根据权利要求1所述的系统,其中,所述计算模型包括心脏形状中的三维网格和映射到所述网格的心脏电激活的有限状态纤颤源映射。
9.根据权利要求1所述的系统,其中,所述一个或多个纤颤源包括转子或病灶源。
10.根据权利要求1所述的系统,其中,所述一个或多个纤颤源包括心室纤颤源或心房纤颤源。
11.根据权利要求1所述的系统,其中,所述显示能够使用射频、低温、超声波、激光或外部射束辐射来引导消融手术。
12.根据权利要求1所述的系统,其中,所述操作还包括:
基于所述患者心脏来生成心电图绘图;以及
基于所述心电图绘图来生成所述患者心脏的电激活的表示。
13.根据权利要求1所述的系统,其中,所述操作还包括:
基于一个或多个存储的计算模型来生成多个矢量心动图绘图;以及
基于所述多个矢量心动图绘图来生成一个或多个心电图绘图。
14.根据权利要求1所述的系统,其中,所述操作还包括:
基于所述计算模型来生成针对所述患者心脏的第二计算模型,其中,所述第二计算模型包括数量小于所述一个或多个纤颤源的多个纤颤源;以及
经由所述用户接口来显示所述计算模型和所述第二计算模型的并排比较。
15.根据权利要求14所述的系统,其中,所述第二计算模型是通过从所述计算模型中去除所述一个或多个纤颤源中的一个来生成的。
16.根据权利要求14所述的系统,其中,所述操作还包括:
确定所述计算模型和所述第二计算模型之间的纤颤变化。
17.根据权利要求14所述的系统,其中,显示所述并排比较通过提供预测性消融结果数据和/或对优化的消融策略的选择,来实现靶向心室纤颤或心室纤颤消融治疗。
18.一种方法,包括:
生成患者心脏的电激活的表示;
将生成的表示与心脏的一个或多个存储的表示进行比较以识别心脏的至少一个匹配的表示;
基于所述至少一个匹配的表示,生成针对所述患者心脏的计算模型,其中,所述计算模型包括所述患者心脏中的一个或多个纤颤源的示出;以及
经由用户接口来显示所述计算模型的至少一部分。
19.根据权利要求18所述的方法,其中,所述生成的表示和所述一个或多个存储的表示包括三维数据。
20.根据权利要求18所述的方法,其中,所述生成的表示和所述一个或多个存储的表示包括矢量心动图。
21.根据权利要求18所述的方法,其中,所述比较包括针对所述一个或多个存储的表示中的每一个,确定所述生成的表示与所述存储的表示之间的相关因子,并且其中,所述至少一个匹配的表示被识别为具有最高的相关因子的所述存储的表示。
22.根据权利要求18所述的方法,还包括:
生成具有不同形状、几何形状、纤维取向、瘢痕、纤颤源类型和/或纤颤源位置的多个计算心脏模型;
基于所述患者心脏的形状和/或瘢痕来过滤所述多个计算心脏模型以识别过滤后的集合;以及
基于所述过滤后的集合来选择用于所述比较的所述一个或多个存储的表示。
23.根据权利要求22所述的方法,其中,所述过滤是基于计算机断层摄影成像数据、磁共振成像数据、超声波心动图数据、X射线数据或荧光透视数据的。
24.根据权利要求18所述的方法,其中,所述计算模型包括左心房、右心房、左心室和右心室中的一个或多个,并且其中,所述一个或多个纤颤源被映射到所述左心房、所述右心房、所述左心室和所述右心室中的一个或多个。
25.根据权利要求18所述的方法,其中,所述计算模型包括心脏形状中的三维网格和映射到所述网格的心脏电激活的有限状态纤颤源映射。
26.根据权利要求18所述的方法,其中,所述一个或多个纤颤源包括转子或病灶源。
27.根据权利要求18所述的方法,其中,所述一个或多个纤颤源包括心室纤颤源或心房纤颤源。
28.根据权利要求18所述的方法,其中,所述显示能够使用射频、低温、超声波、激光或外部射束辐射来引导消融手术。
29.根据权利要求18所述的方法,还包括:
基于所述患者心脏来生成心电图绘图;以及
基于所述心电图绘图来生成所述患者心脏的电激活的表示。
30.根据权利要求18所述的方法,还包括:
基于一个或多个存储的计算模型来生成多个矢量心动图绘图;以及
基于所述多个矢量心动图绘图来生成一个或多个心电图绘图。
31.根据权利要求18所述的方法,还包括:
基于所述计算模型来生成针对所述患者心脏的第二计算模型,其中,所述第二计算模型包括数量小于所述一个或多个纤颤源的多个纤颤源;以及
经由所述用户接口来显示所述计算模型和所述第二计算模型的并排比较。
32.根据权利要求31所述的方法,其中,所述第二计算模型是通过从所述计算模型中去除所述一个或多个纤颤源中的一个而生成的。
33.根据权利要求31所述的方法,还包括:
确定所述计算模型和所述第二计算模型之间的纤颤变化。
34.根据权利要求31所述的方法,其中,显示所述并排比较通过提供预测性消融结果数据和/或对优化的消融策略的选择来实现靶向心室纤颤或心室纤颤消融治疗。
35.一种包括存储指令的非暂时性机器可读介质的计算机程序产品,所述指令在由至少一个可编程处理器执行时,使所述至少一个可编程处理器执行操作,所述操作包括:
生成患者心脏的电激活的表示;
将生成的表示与心脏的一个或多个存储的表示进行比较以识别心脏的至少一个匹配的表示;
基于所述至少一个匹配的表示,生成针对所述患者心脏的计算模型,其中,所述计算模型包括所述患者心脏中的一个或多个纤颤源的示出;以及
经由用户接口来显示所述计算模型的至少一部分。
36.根据权利要求35所述的计算机程序产品,其中,所述生成的表示和所述一个或多个存储的表示包括三维数据。
37.根据权利要求35所述的计算机程序产品,其中,所述生成的表示和所述一个或多个存储的表示包括矢量心动图。
38.根据权利要求35所述的计算机程序产品,其中,所述比较包括针对所述一个或多个存储的表示中的每一个,确定所述生成的表示与所述存储的表示之间的相关因子,并且其中,所述至少一个匹配的表示被识别为具有最高的相关因子的所述存储的表示。
39.根据权利要求35所述的计算机程序产品,其中,所述操作还包括:
生成具有不同形状、几何形状、纤维取向、瘢痕、纤颤源类型和/或纤颤源位置的多个计算心脏模型;
基于所述患者心脏的形状和/或瘢痕来过滤所述多个计算心脏模型以识别过滤后的集合;以及
基于所述过滤后的集合来选择用于所述比较的所述一个或多个存储的表示。
40.根据权利要求39所述的计算机程序产品,其中,所述过滤是基于计算机断层摄影成像数据、磁共振成像数据、超声波心动图数据、X射线数据或荧光透视数据的。
41.根据权利要求35所述的计算机程序产品,其中,所述计算模型包括左心房、右心房、左心室和右心室中的一个或多个,并且其中,所述一个或多个纤颤源被映射到所述左心房、所述右心房、所述左心室和所述右心室中的一个或多个。
42.根据权利要求35所述的计算机程序产品,其中,所述计算模型包括心脏形状中的三维网格和映射到所述网格的心脏电激活的有限状态纤颤源映射。
43.根据权利要求35所述的计算机程序产品,其中,所述一个或多个纤颤源包括转子或病灶源。
44.根据权利要求35所述的计算机程序产品,其中,所述一个或多个纤颤源包括心室纤颤源或心房纤颤源。
45.根据权利要求35所述的计算机程序产品,其中,所述显示能够使用射频、低温、超声波、激光或外部射束辐射来引导消融手术。
46.根据权利要求35所述的计算机程序产品,其中,所述操作还包括:
基于所述患者心脏来生成心电图绘图;以及
基于所述心电图绘图来生成所述患者心脏的电激活的表示。
47.根据权利要求35所述的计算机程序产品,其中,所述操作还包括:
基于一个或多个存储的计算模型来生成多个矢量心动图绘图;以及
基于所述多个矢量心动图绘图来生成一个或多个心电图绘图。
48.根据权利要求35所述的计算机程序产品,其中,所述操作还包括:
基于所述计算模型来生成针对所述患者心脏的第二计算模型,其中,所述第二计算模型包括数量小于所述一个或多个纤颤源的多个纤颤源;以及
经由所述用户接口来显示所述计算模型和所述第二计算模型的并排比较。
49.根据权利要求48所述的计算机程序产品,其中,所述第二计算模型是通过从所述计算模型中去除所述一个或多个纤颤源中的一个来生成的。
50.根据权利要求48所述的计算机程序产品,其中,所述操作还包括:
确定所述计算模型和所述第二计算模型之间的纤颤变化。
51.根据权利要求48所述的计算机程序产品,其中,显示所述并排比较通过提供预测性消融结果数据和/或对优化的消融策略的选择来实现靶向心室纤颤或心室纤颤消融治疗。
CN201680075885.9A 2015-12-22 2016-12-22 用于定位纤颤源的系统和方法 Active CN108431720B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310136709.3A CN116269415A (zh) 2015-12-22 2016-12-22 振动源的计算局部化

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562271113P 2015-12-22 2015-12-22
US62/271,113 2015-12-22
PCT/US2016/068449 WO2017112910A1 (en) 2015-12-22 2016-12-22 Computational localization of fibrillation sources

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310136709.3A Division CN116269415A (zh) 2015-12-22 2016-12-22 振动源的计算局部化

Publications (2)

Publication Number Publication Date
CN108431720A true CN108431720A (zh) 2018-08-21
CN108431720B CN108431720B (zh) 2023-03-03

Family

ID=59067085

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310136709.3A Pending CN116269415A (zh) 2015-12-22 2016-12-22 振动源的计算局部化
CN201680075885.9A Active CN108431720B (zh) 2015-12-22 2016-12-22 用于定位纤颤源的系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310136709.3A Pending CN116269415A (zh) 2015-12-22 2016-12-22 振动源的计算局部化

Country Status (8)

Country Link
US (5) US10319144B2 (zh)
EP (2) EP4417111A2 (zh)
JP (3) JP7082332B2 (zh)
CN (2) CN116269415A (zh)
AU (3) AU2016379418A1 (zh)
CA (1) CA3006777A1 (zh)
DE (1) DE112016005886T5 (zh)
WO (1) WO2017112910A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111297474A (zh) * 2019-12-19 2020-06-19 成都迈格因科技有限公司 心房颤动病灶的个体化定位标测系统
CN113286557A (zh) * 2018-11-13 2021-08-20 维克多医疗股份有限公司 利用源位置对图像的增强
CN113939243A (zh) * 2018-12-31 2022-01-14 加利福尼亚大学董事会 增强的计算心脏模拟
CN114680899A (zh) * 2020-12-28 2022-07-01 财团法人卫生研究院 预测冠状动脉的阻塞的电子装置和方法
CN115251943A (zh) * 2019-06-10 2022-11-01 维克多医疗股份有限公司 心脏图形显示系统
CN117958949A (zh) * 2024-03-28 2024-05-03 天津市鹰泰利安康医疗科技有限责任公司 一种房颤射频消融方法及系统

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015073927A2 (en) 2013-11-15 2015-05-21 The Regents Of The University Of California Compositions, devices and methods for diagnosing heart failure and for patient-specific modeling to predict outcomes of cardiac resynchronization therapy
US11289207B2 (en) 2015-07-09 2022-03-29 Peacs Investments B.V. System for visualizing heart activation
US11484239B2 (en) * 2016-09-07 2022-11-01 Ablacon Inc. Systems, devices, components and methods for detecting the locations of sources of cardiac rhythm disorders in a patient's heart
US11389102B2 (en) * 2018-03-16 2022-07-19 Ablacon Inc. Systems, devices, components and methods for detecting the locations of sources of cardiac rhythm disorders in a patient's heart
US10319144B2 (en) 2015-12-22 2019-06-11 The Regents Of The University Of California Computational localization of fibrillation sources
US11458320B2 (en) 2016-09-06 2022-10-04 Peacs Investments B.V. Method of cardiac resynchronization therapy
US20180303345A1 (en) * 2017-04-20 2018-10-25 Catheter Precision, Inc. System and Method for Imaging Episodic Cardiac Conditions
US11246662B2 (en) 2017-08-01 2022-02-15 Catheter Precision, Inc. Methods of cardiac mapping and model merging
EP3441937B1 (en) 2017-08-08 2020-04-22 Adas3D Medical, Sl A computer implemented method for calculating values indicative for the local spatial structure of conducting properties of heart muscle tissue and computer programs thereof
WO2019118640A1 (en) * 2017-12-13 2019-06-20 Washington University System and method for determining segments for ablation
US10973429B2 (en) 2018-01-23 2021-04-13 Chelak Iecg, Inc. Precise localization of cardiac arrhythmia using internal electrocardiograph (ECG) signals sensed and stored by implantable device
US11482338B2 (en) * 2018-03-06 2022-10-25 Biosense Webster (Israel) Ltd. Simulation of heart pacing for modeling arrhythmia
US10860754B2 (en) 2018-04-26 2020-12-08 Vektor Medical, Inc. Calibration of simulated cardiograms
US12076119B2 (en) 2018-04-26 2024-09-03 Vektor Medical, Inc. Bootstrapping a simulation-based electromagnetic output of a different anatomy
US11259871B2 (en) * 2018-04-26 2022-03-01 Vektor Medical, Inc. Identify ablation pattern for use in an ablation
US11065060B2 (en) 2018-04-26 2021-07-20 Vektor Medical, Inc. Identify ablation pattern for use in an ablation
CA3145797A1 (en) 2018-07-05 2020-01-09 The Regents Of The University Of California Computational simulations of anatomical structures and body surface electrode positioning
CN109091138B (zh) * 2018-07-12 2021-10-26 上海微创电生理医疗科技股份有限公司 心律失常起源点的判断装置及标测系统
CA3111578A1 (en) * 2018-09-04 2020-03-12 EMvision Medical Devices Ltd Apparatus and process for medical imaging
US10856759B2 (en) * 2018-11-08 2020-12-08 Biosense Webster (Israel) Ltd. Iterative coherent mapping of cardiac electrophysiological (EP) activation including reentry effects
US12048487B2 (en) * 2019-05-06 2024-07-30 Biosense Webster (Israel) Ltd. Systems and methods for improving cardiac ablation procedures
US10595736B1 (en) 2019-06-10 2020-03-24 Vektor Medical, Inc. Heart graphic display system
US12033051B2 (en) 2019-12-19 2024-07-09 Lawrence Livermore National Security, Llc Machine learning based reconstruction of intracardiac electrical behavior based on electrocardiograms
WO2021163227A1 (en) * 2020-02-10 2021-08-19 The Regents Of The University Of California Functional computed tomography for identifying arrhythmogenic cardiac substrate
US11974853B2 (en) 2020-10-30 2024-05-07 Vektor Medical, Inc. Heart graphic display system
WO2022140627A1 (en) * 2020-12-22 2022-06-30 The Regents Of The University Of California Atlas-based characterization of patent-specific cardiac electromechanical activation maps
US11338131B1 (en) 2021-05-05 2022-05-24 Vektor Medical, Inc. Guiding implantation of an energy delivery component in a body
CA3228337A1 (en) 2021-08-09 2023-02-16 Vektor Medical, Inc. Tissue state graphic display system
US11534224B1 (en) 2021-12-02 2022-12-27 Vektor Medical, Inc. Interactive ablation workflow system
WO2023212207A1 (en) * 2022-04-27 2023-11-02 Prima Medical, Inc. Systems and methods for feature state change detection and uses thereof
US20240350120A1 (en) * 2023-04-21 2024-10-24 GE Precision Healthcare LLC Systems for comparative analysis of cardiac information

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448454A (zh) * 2006-05-17 2009-06-03 圣朱德医疗有限公司房颤分公司 用于映射复杂碎裂电描记图信息的系统和方法
CN103271737A (zh) * 2013-05-23 2013-09-04 山东师范大学 基于云模型和散点图的窦性心率震荡趋势提取方法
CN103417208A (zh) * 2013-07-12 2013-12-04 浙江工商大学 房颤检测装置及检测方法
US20140022250A1 (en) * 2012-07-19 2014-01-23 Siemens Aktiengesellschaft System and Method for Patient Specific Planning and Guidance of Ablative Procedures for Cardiac Arrhythmias
CN103718191A (zh) * 2011-05-02 2014-04-09 加利福尼亚大学董事会 使用成形消融术来靶向心律紊乱的系统和方法
CN104367318A (zh) * 2014-11-07 2015-02-25 北京海思敏医疗技术有限公司 房颤检测方法和装置
US20150150643A1 (en) * 2013-12-02 2015-06-04 The Johns Hopkins University Personalized computational modeling of atrial fibrosis to guide catheter ablation of atrial fibrillation
US20150216438A1 (en) * 2014-02-04 2015-08-06 Cardioinsight Technologies, Inc. Integrated analysis of electrophysiological data
CN104873190A (zh) * 2008-10-09 2015-09-02 加利福尼亚大学董事会 用于自动定位生物节律紊乱的源的机器和过程

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273038A (en) 1990-07-09 1993-12-28 Beavin William C Computer simulation of live organ
US6370412B1 (en) 1999-10-07 2002-04-09 Massachusetts Institute Of Technology Method and apparatus for guiding ablative therapy of abnormal biological electrical excitation
US6501979B1 (en) 2000-03-09 2002-12-31 Koninklijke Philips Electronics N.V. Methods and devices for combined ECG and PPU controlled magnetic resonance imaging
JP2004505658A (ja) 2000-08-03 2004-02-26 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド 誘導を合成し精度の尺度を形成するための心電図システム
CA2418478A1 (en) 2000-08-15 2002-02-21 The Regents Of The University Of California Method and apparatus for reducing contamination of an electrical signal
US7041061B2 (en) 2002-07-19 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for quantification of cardiac wall motion asynchrony
WO2004047628A2 (en) * 2002-11-01 2004-06-10 University Of Lausanne Methods of analyzing atrial fibrillations
CA2566635A1 (en) 2003-05-13 2004-11-25 Medical Insight A/S Method and system for simulating x-ray images
US7010347B2 (en) * 2004-02-14 2006-03-07 Pacesetter, Inc. Optimization of impedance signals for closed loop programming of cardiac resynchronization therapy devices
RS49856B (sr) 2004-01-16 2008-08-07 Boško Bojović Uređaj i postupak za vizuelnu trodimenzionalnu prezentaciju ecg podataka
EP1711104B1 (en) * 2004-01-16 2014-03-12 Compumedics Limited Method and apparatus for ecg-derived sleep disordered breathing monitoring, detection and classification
EP1850943B1 (en) 2005-01-13 2013-06-05 Donaldson Company, Inc. Air filter cartridge and air cleaner assembly
US20080021336A1 (en) 2006-04-24 2008-01-24 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac synchrony and dyssynchrony
DE102005032974B4 (de) 2005-07-14 2013-11-07 Siemens Aktiengesellschaft Verfahren zur 3D-Visualisierung vaskulärer Einsatzstücke im menschlichen Körper mit dem C-Bogen
US7792563B2 (en) 2006-03-16 2010-09-07 Massachusetts Institute Of Technology Method and apparatus for the guided ablative therapy of fast ventricular arrhythmia
JP2009535360A (ja) 2006-04-26 2009-10-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高分子量神経治療薬の対流増加送達のための組成物および方法
US7841986B2 (en) 2006-05-10 2010-11-30 Regents Of The University Of Minnesota Methods and apparatus of three dimensional cardiac electrophysiological imaging
US7828735B2 (en) 2006-05-11 2010-11-09 The Trustees Of Columbia In The City Of New York Methods for providing diagnostic information using endocardial surface data for a patient's heart
WO2008063498A1 (en) 2006-11-13 2008-05-29 Washington University Of St. Louis Cardiac pacing using the inferior nodal extension
JP4857188B2 (ja) 2007-05-16 2012-01-18 アルプス電気株式会社 固定接点パターンならびにそれを備えたスイッチ装置
US20100280355A1 (en) 2007-12-14 2010-11-04 Grimm Richard A System and method to characterize cardiac function
EP2240241B1 (en) 2008-01-28 2014-04-30 St. Jude Medical AB Implantable heart stimulator for measuring dyssynchrony using impedance
US8019409B2 (en) 2008-06-09 2011-09-13 Pacesetter, Inc. Cardiac resynchronization therapy optimization using electromechanical delay from realtime electrode motion tracking
WO2010052303A1 (en) 2008-11-06 2010-05-14 Oslo Universitetssykehus Hf Analysis of ventricular electro-mechanical activation data
JP5911726B2 (ja) 2008-11-10 2016-04-27 カーディオインサイト テクノロジーズ インコーポレイテッド 電気生理学データの視覚化
JP5553319B2 (ja) * 2008-11-24 2014-07-16 コーニンクレッカ フィリップス エヌ ヴェ 心臓を画像化する画像化装置
RU2435518C2 (ru) 2008-11-27 2011-12-10 Амиран Шотаевич РЕВИШВИЛИ Способ неинвазивного электрофизиологического исследования сердца
US8209012B2 (en) 2008-12-11 2012-06-26 Pacesetter, Inc. Mechanical indicators for individually adapting therapy in an implantable cardiac therapy device
WO2010107866A2 (en) 2009-03-20 2010-09-23 Emory University Catecholamine derivatives for obesity and neurological disorders
US9332915B2 (en) * 2013-03-15 2016-05-10 The Regents Of The University Of California System and method to identify sources associated with biological rhythm disorders
US10434319B2 (en) * 2009-10-09 2019-10-08 The Regents Of The University Of California System and method of identifying sources associated with biological rhythm disorders
CN102686150B (zh) * 2009-12-28 2014-12-10 甘布罗伦迪亚股份公司 监测受检者的心血管系统的特性
US8880159B2 (en) 2010-04-07 2014-11-04 The Johns Hopkins University Methods for determining risk of ventricular arrhythmia
CA2795770A1 (en) * 2010-04-08 2011-10-13 Topera, Inc. Methods, system and apparatus for the detection, diagnosis and treatment of biological rhythm disorders
US20110307231A1 (en) * 2010-06-09 2011-12-15 Jens Kirchner Method and arrangement for creating an individualized, computer-aided model of a system, and a corresponding computer program and a corresponding machine-readable storage medium
US20110311116A1 (en) 2010-06-17 2011-12-22 Creighton University System and methods for anatomical structure labeling
JP5597492B2 (ja) 2010-09-08 2014-10-01 株式会社東芝 超音波診断装置、画像処理装置およびプログラム
US8532352B2 (en) 2010-10-06 2013-09-10 Siemens Aktiengesellschaft Method and system for intraoperative guidance using physiological image fusion
CN103260524B (zh) 2010-10-26 2015-06-10 奥斯陆大学医院Hf 用于心肌节段做功分析的方法
CN103354730B (zh) * 2010-12-30 2016-01-27 圣犹达医疗用品电生理部门有限公司 用于诊断心律失常和引导导管治疗的系统和方法
WO2012106729A1 (en) * 2011-02-04 2012-08-09 Phase Space Systems Corporation System and method for evaluating an electrophysiological signal
EP2672889B1 (en) 2011-02-11 2021-04-07 The Johns Hopkins University System and method for planning a patient-specific cardiac procedure
US9510763B2 (en) 2011-05-03 2016-12-06 Medtronic, Inc. Assessing intra-cardiac activation patterns and electrical dyssynchrony
US9524552B2 (en) 2011-08-03 2016-12-20 The Regents Of The University Of California 2D/3D registration of a digital mouse atlas with X-ray projection images and optical camera photos
WO2013056050A1 (en) * 2011-10-12 2013-04-18 Cardioinsight Technologies, Inc. Sensing zone for spatially relevant electrical information
US9668745B2 (en) 2011-12-19 2017-06-06 Depuy Ireland Unlimited Company Anatomical concentric spheres THA
US10311978B2 (en) 2012-01-30 2019-06-04 Siemens Healthcare Gmbh Method and system for patient specific planning of cardiac therapies on preoperative clinical data and medical images
WO2013192459A1 (en) * 2012-06-20 2013-12-27 Intermountain Invention Management, Llc Atrial fibrillation treatment systems and methods
WO2014043216A1 (en) * 2012-09-13 2014-03-20 University Of South Florida Systems and methods for diagnosing cardiovascular conditions
WO2014055980A1 (en) 2012-10-05 2014-04-10 The Regents Of The University Of Michigan Automated analysis of multi-lead electrocardiogram data to identify the exit sites of physiological conditions
US10912476B2 (en) * 2013-01-16 2021-02-09 University Of Vermont Catheters, systems, and related methods for mapping, minimizing, and treating cardiac fibrillation
US8880158B2 (en) * 2013-01-16 2014-11-04 University Of Vermont Methods and systems for determining spatiotemporal variability for mapping cardiac fibrillation
US20140241988A1 (en) 2013-01-31 2014-08-28 The Regents Of The University Of Michigan Methods and compositions for treating atrial fibrillation
GB201302194D0 (en) 2013-02-07 2013-03-27 Crisalix Sa 3D platform for aesthetic simulation
US9495746B2 (en) 2013-03-15 2016-11-15 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for real-time 2D/3D deformable registration using metric learning
US9211110B2 (en) 2013-03-15 2015-12-15 The Regents Of The University Of Michigan Lung ventillation measurements using ultrasound
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US20160135702A1 (en) 2013-06-21 2016-05-19 The Board Of Trustees Of The Leland Stanford Junior University Techniques for Predicting Cardiac Arrhythmias Based on Signals from Leads of Electrocardiography
US9463072B2 (en) 2013-08-09 2016-10-11 Siemens Aktiengesellschaft System and method for patient specific planning and guidance of electrophysiology interventions
KR101855369B1 (ko) 2013-08-28 2018-05-08 지멘스 헬스케어 게엠베하 의료 이미지들 및 임상학적 데이터로부터 생리학적 심장 측정치들을 추정하기 위한 시스템들 및 방법들
WO2015073927A2 (en) 2013-11-15 2015-05-21 The Regents Of The University Of California Compositions, devices and methods for diagnosing heart failure and for patient-specific modeling to predict outcomes of cardiac resynchronization therapy
US10561321B2 (en) * 2013-12-12 2020-02-18 Alivecor, Inc. Continuous monitoring of a user's health with a mobile device
CN106102583B (zh) * 2014-01-10 2024-08-09 泰勒顿国际控股公司 瘢痕和纤维心脏区的检测
CN106535741B (zh) 2014-04-02 2020-09-29 西门子保健有限责任公司 用于根据医学图像和体表电位来表征心脏的电性质的系统和方法
WO2015160602A1 (en) * 2014-04-15 2015-10-22 Siemens Aktiengesellschaft Efficient treatment of atrial fibrilation using three-dimensional electrical potential model
US9380940B2 (en) 2014-05-05 2016-07-05 Pacesetter, Inc. Method and system for displaying a three dimensional visualization of cardiac motion
WO2015196140A1 (en) * 2014-06-20 2015-12-23 The Regents Of The University Of California Patient-specific modeling of ventricular activation pattern using surface ecg-derived vectorcardiogram in bundle branch block
WO2016014949A1 (en) 2014-07-24 2016-01-28 Blake Robert C System and method for cardiac ablation
EP3461452B1 (en) 2014-09-02 2020-10-07 Maino Dott. Bortolo Giuliano Surgical template for palatal implants
US10687898B2 (en) * 2014-11-14 2020-06-23 The Johns Hopkins University Systems and methods for atrial fibrillation treatment and risk assessment
US10213148B2 (en) 2014-12-05 2019-02-26 Pacesetter, Inc. Spinal cord stimulation guidance system and method of use
PT3247300T (pt) 2015-01-09 2020-09-03 Sara Isabel Azevedo Da Silva Sistema de planeamento de cirurgia ortopédica
EP3282940A1 (en) 2015-04-14 2018-02-21 Koninklijke Philips N.V. Method and system for ecg based cardiac ischemia detection
EP3370617A4 (en) 2015-11-06 2019-08-07 Washington University in St. Louis NON-INVASIVE SYSTEM FOR IMAGING AND TREATING CARDIAC ARRHYTHMIAS
WO2017096332A1 (en) 2015-12-03 2017-06-08 Blake Robert Clayton Iii Systems and methods for identifying optimized ablation targets for treating and preventing arrhythmias sustained by reentrant circuits
US10319144B2 (en) 2015-12-22 2019-06-11 The Regents Of The University Of California Computational localization of fibrillation sources
US11291423B2 (en) 2017-07-14 2022-04-05 Materialise N.V. System and method of radiograph correction and visualization
US11786744B2 (en) 2018-03-16 2023-10-17 Zoll Medical Corporation Wearable medical device for continuous heart monitoring with intermittent additional signal data provided via one or more touch-sensitive electrodes
US12076119B2 (en) 2018-04-26 2024-09-03 Vektor Medical, Inc. Bootstrapping a simulation-based electromagnetic output of a different anatomy
CA3145797A1 (en) 2018-07-05 2020-01-09 The Regents Of The University Of California Computational simulations of anatomical structures and body surface electrode positioning

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448454A (zh) * 2006-05-17 2009-06-03 圣朱德医疗有限公司房颤分公司 用于映射复杂碎裂电描记图信息的系统和方法
CN104873190A (zh) * 2008-10-09 2015-09-02 加利福尼亚大学董事会 用于自动定位生物节律紊乱的源的机器和过程
CN103718191A (zh) * 2011-05-02 2014-04-09 加利福尼亚大学董事会 使用成形消融术来靶向心律紊乱的系统和方法
US20140022250A1 (en) * 2012-07-19 2014-01-23 Siemens Aktiengesellschaft System and Method for Patient Specific Planning and Guidance of Ablative Procedures for Cardiac Arrhythmias
CN103271737A (zh) * 2013-05-23 2013-09-04 山东师范大学 基于云模型和散点图的窦性心率震荡趋势提取方法
CN103417208A (zh) * 2013-07-12 2013-12-04 浙江工商大学 房颤检测装置及检测方法
US20150150643A1 (en) * 2013-12-02 2015-06-04 The Johns Hopkins University Personalized computational modeling of atrial fibrosis to guide catheter ablation of atrial fibrillation
US20150216438A1 (en) * 2014-02-04 2015-08-06 Cardioinsight Technologies, Inc. Integrated analysis of electrophysiological data
CN104367318A (zh) * 2014-11-07 2015-02-25 北京海思敏医疗技术有限公司 房颤检测方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHRISTOPHER T. VILLONGCO等: "Patient-specific modeling of ventricular activation pattern using surface ECG-derived vectorcardiogram in bundle branch block", 《PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113286557A (zh) * 2018-11-13 2021-08-20 维克多医疗股份有限公司 利用源位置对图像的增强
CN113939243A (zh) * 2018-12-31 2022-01-14 加利福尼亚大学董事会 增强的计算心脏模拟
CN115251943A (zh) * 2019-06-10 2022-11-01 维克多医疗股份有限公司 心脏图形显示系统
CN111297474A (zh) * 2019-12-19 2020-06-19 成都迈格因科技有限公司 心房颤动病灶的个体化定位标测系统
WO2021120536A1 (zh) * 2019-12-19 2021-06-24 成都迈格因科技有限公司 心房颤动病灶的个体化定位标测系统
CN114680899A (zh) * 2020-12-28 2022-07-01 财团法人卫生研究院 预测冠状动脉的阻塞的电子装置和方法
CN117958949A (zh) * 2024-03-28 2024-05-03 天津市鹰泰利安康医疗科技有限责任公司 一种房颤射频消融方法及系统
CN117958949B (zh) * 2024-03-28 2024-05-28 天津市鹰泰利安康医疗科技有限责任公司 一种房颤射频消融模拟方法及系统

Also Published As

Publication number Publication date
JP2023109181A (ja) 2023-08-07
US20230026088A1 (en) 2023-01-26
AU2022203066A1 (en) 2022-05-26
CA3006777A1 (en) 2017-06-29
JP7536341B2 (ja) 2024-08-20
EP4417111A2 (en) 2024-08-21
DE112016005886T5 (de) 2018-08-30
AU2016379418A1 (en) 2018-06-14
JP7471672B2 (ja) 2024-04-22
AU2024203672A1 (en) 2024-06-20
US20170178403A1 (en) 2017-06-22
US11189092B2 (en) 2021-11-30
US11380055B2 (en) 2022-07-05
US20190304183A1 (en) 2019-10-03
US20190206127A1 (en) 2019-07-04
AU2022203066B2 (en) 2024-05-23
CN108431720B (zh) 2023-03-03
EP3394698A4 (en) 2019-07-24
WO2017112910A1 (en) 2017-06-29
EP3394698A1 (en) 2018-10-31
US20230290067A1 (en) 2023-09-14
US10319144B2 (en) 2019-06-11
JP2019509070A (ja) 2019-04-04
JP2022116067A (ja) 2022-08-09
CN116269415A (zh) 2023-06-23
US11676340B2 (en) 2023-06-13
US12131424B2 (en) 2024-10-29
JP7082332B2 (ja) 2022-06-08

Similar Documents

Publication Publication Date Title
CN108431720A (zh) 振动源的计算局部化
JP6527124B2 (ja) 患者の治療を容易にするシステムおよび方法
US9277970B2 (en) System and method for patient specific planning and guidance of ablative procedures for cardiac arrhythmias
US9463072B2 (en) System and method for patient specific planning and guidance of electrophysiology interventions
CN106456269B (zh) 对包括心脏的电传导系统的影响在内的患者特定心脏电生理的实时仿真的系统和方法
EP2945530B1 (en) Composite singularity mapping
Giffard-Roisin et al. Transfer learning from simulations on a reference anatomy for ECGI in personalized cardiac resynchronization therapy
JP2015093201A (ja) 反転ecgマッピング
Burton et al. A framework for image-based modeling of acute myocardial ischemia using intramurally recorded extracellular potentials
Nauleau et al. A 3‐D rendering algorithm for electromechanical wave imaging of a beating heart
Yadan et al. An expert review of the inverse problem in electrocardiographic imaging for the non-invasive identification of atrial fibrillation drivers
Schulze et al. ECG imaging of ventricular tachycardia: evaluation against simultaneous non-contact mapping and CMR-derived grey zone
Ravon et al. A parameter optimization to solve the inverse problem in electrocardiography
Miri et al. Applicability of body surface potential map in computerized optimization of biventricular pacing
Zappon et al. Quantifying variabilities in cardiac digital twin models of the electrocardiogram
Yang Noninvasive Cardiac Electrical Imaging of Activation Sequence and Activation Recovery Interval, and Localization of Ventricular Arrhythmias
WO2022140627A1 (en) Atlas-based characterization of patent-specific cardiac electromechanical activation maps
Seyedebrahimi Simulation of transmembrane potential propagation in three dimensional ventricular tissue using Aliev Panfilov model
Barley Bioelectrical strategies for image-guided therapies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant