CN108428910A - 用于燃料电池车辆的热管理系统 - Google Patents

用于燃料电池车辆的热管理系统 Download PDF

Info

Publication number
CN108428910A
CN108428910A CN201710616839.1A CN201710616839A CN108428910A CN 108428910 A CN108428910 A CN 108428910A CN 201710616839 A CN201710616839 A CN 201710616839A CN 108428910 A CN108428910 A CN 108428910A
Authority
CN
China
Prior art keywords
container
heat
fuel
management system
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710616839.1A
Other languages
English (en)
Other versions
CN108428910B (zh
Inventor
张埈豪
南东勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Motors Corp filed Critical Hyundai Motor Co
Publication of CN108428910A publication Critical patent/CN108428910A/zh
Application granted granted Critical
Publication of CN108428910B publication Critical patent/CN108428910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/71Arrangement of fuel cells within vehicles specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/54Fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04052Storage of heat in the fuel cell system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/908Fuel cell

Abstract

一种用于燃料电池车辆的热管理系统,其可以包括:燃料电池堆、固态氢存储设备以及氢供应管路,其中所述燃料电池堆接收氢和空气,并且配置为产生电并且排放水,其中所述固态氢存储设备包括第一容器、第二容器、第三容器和管路,所述第一容器容纳固态氢存储材料,所述第二容器容纳热化学的热能存储材料,所述第三容器容纳热传递介质,所述管路连接第一容器、第二容器和第三容器,以循环热传递介质,并且其中所述氢供应管路连接所述第一容器和燃料电池堆。

Description

用于燃料电池车辆的热管理系统
相关申请的交叉引用
本申请要求2017年2月15日提交的韩国专利申请第10-2017-0020669号的优先权,该申请的全部内容结合于此用于通过该引用的所有目的。
技术领域
本发明涉及一种用于燃料电池车辆的热管理系统。
背景技术
氢燃料电池是一种环境友好型能量产生设备,通过提供氢和空气,其可以产生电力并且排出纯净水,因此其可以被用于电动车辆的动力源。氢燃料电池可以从固态氢存储容器中接收氢。这种固态氢存储容器包括氢存储材料和配位氢化物(complex hydride),该种氢存储材料在特定温度下排放氢,该种基于金属氢化物的配位氢化物可以用于氢存储材料,以增加容量存储密度。
所述配位氢化物需要持续的热供应以排放氢,因此,这就需要增加具有预定尺寸的热交换器的热供应效率。用于增加热供应效率的研究和开发已经聚焦于改善固态氢存储容器的内部结构。
特别的,由于金属氢化物在预定高温下反应的特性,因此当应用至电动车辆时,有必要改善冷起动性能。在这种情况下,这就需要额外的周边设备(balance of plant,BOP),例如,可以设置氢热燃烧室(hydrogen heat combustor),或者可以使用电池电力,以加热固体氢存储容器。但是,这种额外的周边设备(BOP)增加了相关系统的体积并且导致了能量损失,因此导致了较低的燃料效率。
公开于本发明背景部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的各个方面致力于提供一种用于燃料电池车辆的热管理系统,其可以通过向固态氢存储容器持续地供应热而不存在额外的电力供应,并且可以通过利用在用于驱动燃料电池车辆的燃料电池中产生的全部电力,从而可以提高燃料效率。
本发明的各个方面致力于提供一种用于燃料电池车辆的热管理系统,其包括:燃料电池堆、固态氢存储设备以及氢供应管路。所述燃料电池堆可以接收氢和空气,并且配置为产生电并且排放水。所述固态氢存储设备可以包括第一容器、第二容器、第三容器和管路,所述第一容器容纳固态氢存储材料,所述第二容器容纳热化学的热能存储材料,所述第三容器容纳热传递介质,所述管路连接第一容器、第二容器和第三容器,以循环热传递介质。所述氢供应管路可以连接所述第一容器和燃料电池堆。
所述固态氢存储材料可以包括在吸留氢时产生热以及在接收热时排放氢的材料。所述热化学的热能存储材料可以包括在供应催化剂时产生热以及在接收热时分解为金属氧化物和催化剂并存储热能的材料。
随着固态氢存储材料的氢的吸留,所述热传递介质可以将第一容器的热传递至第二容器,并且随着催化剂供应至热化学的热能存储材料,所述热传递介质可以将第二容器的热传递至第一容器。所述固态氢存储材料可以包括:配位金属氢化物、金属氢化物、化学氢化物和氢存储合金中的至少一种。
所述催化剂可以为水,并且所述热化学的热能存储材料可以包括:Mg(OH)2、Ca(OH)2、Be(OH)2、Mn(OH)2、Ni(OH)2和Zn(OH)2中的至少一种。所述固态氢存储设备可包括:第四容器,其容纳催化剂;催化剂供应管路和催化剂排放管路,其连接第四容器与第二容器;以及第一阀,其设置于所述催化剂排放管路。所述第一阀可以包括:一个入口端、连接至第四容器的第一出口端以及连接至所述固态氢存储设备外部的第二出口端。
该种用于燃料电池车辆的热管理系统可以进一步包括:水供应管路,其配置为连接所述燃料电池堆和第四容器;以及第三阀,其配置为设置于所述水供应管路。所述第三阀可以包括:一个入口端、连接至第四容器的第五出口端以及连接至所述固态氢存储设备外部的第六出口端。
所述催化剂可以为氧,并且所述热化学的热能存储材料可以包括:Co3O4、Mn2O3、Li2O2、MgO2、Cr5O12、PtO2和Sb2O5中的至少一种。所述固态氢存储设备可以包括:空气供应设备,其将空气供应至所述第二容器;空气排放管路,其设置于所述第二容器,并且在热能存储期间排放空气;以及压力控制管路,其设置于所述第二容器,并且在热排放期间排放剩余空气。
第二阀可以设置于所述压力控制管路。所述第二阀可以包括:一个入口端、连接至固态氢存储设备的外部的第三出口端以及经由所述第三容器连接至固态氢存储设备外部的第四出口端。
当排放至所述压力控制管路的剩余空气的温度低于所述第三容器的热传递介质的温度时,所述第三出口端可以被打开。当排放至所述压力控制管路的剩余空气的温度高于所述第三容器的热传递介质的温度时,所述第四出口端可以被打开。所述的用于燃料电池车辆的热管理系统可以进一步包括:空气供应管路,其配置为连接所述燃料电池堆和所述空气供应设备。
所述固态氢存储设备可以包括辅助加热器,该辅助加热器向所述第一容器和第二容器中的至少一个供热。
根据本发明的实施方案,不需要用于向第一容器供热的单独的电力供应,并且在开始初始化学反应时或者在发生紧急情况时,除了短时间操作辅助加热器以外,可以不使用电力。因此,在燃料电池堆中产生的电力可以完全用于驱动车辆,从而提高了燃料效率。
此外,由于使用了具有极好的可逆性的热化学的热能存储材料,在充装和排放时期热损失较小,并且由于可以使用催化剂(H2O或者O2)来控制热散逸,因此根据本发明的示例性实施方案的用于燃料电池车辆的热管理系统是安全且环境友好的。此外,当催化剂供应至第二容器而没有操作燃料电池堆时,通过排放自第二容器的热能,由于可以执行加热,因此可以提高能量效率。
本发明的方法和装置具有其它的特性和优点,这些特性和优点从并入本文中的附图和随后的实施方案中将是显而易见的,或者将在并入本文中的附图和随后的实施方案中进行详细陈述,这些附图和实施方案共同用于解释本发明的特定原理。
附图说明
图1示出了根据本发明的各个示例性实施方案的固态氢存储设备的示意图。
图2示出了给图1中示出的固态氢存储设备充装氢的过程的示意图。
图3示出了从图1中示出的固态氢存储设备中排放氢的过程的示意图。
图4示出了根据本发明的各个示例性实施方案的固态氢存储设备的示意图。
图5示出了给图4中示出的固态氢存储设备充装氢的过程的示意图。
图6示出了从图4中示出的固态氢存储设备中排放氢的过程的示意图。
图7和图8示出了根据本发明的各个示例性实施方案的用于燃料电池车辆的热管理系统的示意图。
图9和图10示出了根据本发明的各个示例性实施方案的用于燃料电池车辆的热管理系统的示意图。
应当理解,附图不一定是按照比例绘制,而是呈现各种特征的简化表示,以对本发明的基本原理进行说明。本发明所公开的具体设计特征(包括例如具体尺寸、方向、位置和形状)将部分地由具体所要应用和使用的环境来确定。
在这些图中,贯穿附图的多幅图,相同的附图标记表示本发明的相同或等同的部分。
具体实施方式
下面将详细参考本发明的各个实施方案,这些实施方案的示例呈现在附图中并描述如下。尽管本发明将与示例性的实施方案相结合进行描述,应当理解本说明书并非旨在将本发明限制为这些示例性的实施方案。相反,本发明旨在不但覆盖这些示例性的实施方案,而且覆盖可以被包括在本发明的精神和由所附权利要求所限定的范围之内的各种选择形式、修改形式、等价形式及其它实施方案。
图1示出了根据本发明的第一示例性实施方案的固态氢存储设备的示意图。
参见图1,各个示例性的实施方案中的固态氢存储设备100包括:第一容器10、第二容器20、第三容器30和管路,所述第一容器10用于容纳固态氢存储材料,所述第二容器20用于容纳热化学的热能存储材料,所述第三容器30用于容纳热传递介质,所述管路用于循环热传递介质。
所述管路可以包括:连接至第一容器10和第三容器30的第一管路D1和第二管路D2,以及连接至第二容器20和第三容器30的第三管路D3和第四管路D4。热传递介质将热传输至第一容器10的固态氢存储材料和第二容器20的热化学的热能存储材料,但是热传递介质并不与这些材料进行反应。
在这种情况下,围绕在第一容器10的外侧或者以密封状态穿过第一容器10的内部的第一热交换管路H1可以设置在第一管路D1和第二管路D2之间。此外,围绕在第二容器20的外侧或者以密封状态穿过第二容器20的内部的第二热交换管路H2可以设置在第三管路D3和第四管路D4之间。
固态氢存储设备100可以包括第四容器40,该第四容器40容纳催化剂。该第四容器40凭借第五管路D5和第六管路D6连接至第二容器20。第五管路D5可以为催化剂供应管路,第六管路D6可以为催化剂排放管路。
第六管路D6设置有第一阀V1,该第一阀V1具有一个入口端P1和两个出口端P2和P3。第一阀V1的第一出口端P2可以连接至第四容器40,第二出口端P3可以连接至固态氢存储设备100的外部。
所述固态氢存储设备100可以包括辅助加热器50。当需要对第一容器10和第二容器20提供额外的热时,该辅助加热器50工作,以向第一容器10和第二容器20提供热。
当充装氢时存储在第一容器10中的固态氢存储材料产生热,并且在通过热供应而达到反应温度时,该固态氢存储材料排放氢。例如,所述固态氢存储材料可以包括:配位金属氢化物、金属氢化物、化学氢化物和氢存储合金中的至少一种。
固态氢存储材料中的配位金属氢化物可以包括:M1AlH4、M2(AlH4)2、M3BH4、M4(BH4)2、M5(BH4)3、M6NH2、M7(NH2)2、Li2NH、MgNH、锂-镁酰胺(lithium-magnesium amide)和锂-镁酰亚胺(lithium-magnesium imide)中的至少一种。这里,M1可以表示:Li(锂)、Na(钠)或者Al(铝),M2可以表示:Mg(镁)或者Ca(钙),M3可以表示:Li(锂)、Na(钠)、或者K(钾),M4可以表示:Mg(镁)或者Ca(钙),M5可以表示:Al(铝)或者Ti(钛),M6可以表示:Li(锂)或者Na(钠),M7可以表示:Mg(镁)或者Ca(钙)。
固态氢存储材料中的金属氢化物可以包括:M8H和M9H2中的至少一种。M8可以表示:Li(锂)、Na(钠)、K(钾)、Rb(铷)或者Cs(铯),M9可以表示:Mg(镁)、Ca(钙)、Sc(钪)、Ti(钛)或者V(钒)。固态氢存储材料中的化学氢化物可以包括:AlH3、NH3BH3、NH4B3H8、NH2B2H5和NaBP2H8中的至少一种。
固态氢存储材料中的氢存储合金可以包括:Ti-Cr-V合金、TiFe、Pd-M10、Li-M11、Mg-Co合金和La-Ni合金中的至少一种。M10可以表示:Ba(钡)、Y(钇)或者La(镧),M11可以表示:Ti(钛)、V(钒)、Zr(锆)、Nb(铌)或者Hf(铪)。
存储在第一容器10中的固态氢存储材料并不限制于上述的示例,任何可以被用于氢燃料电池的材料均可以被用于氢源来使用。表1示出了固态氢存储材料的示例。
(表1)
存储在第二容器20中的热化学的热能存储材料通过在供应催化剂时与催化剂进行化学反应而加热,并且在提供热时通过化学反应而将该热化学的热能存储材料分解为金属氧化物和催化剂。在第一示例性的实施方案中,所述催化剂为水(H2O),并且所述第四容器40存储水。在第一示例性的实施方案中,存储在第二容器20中的热化学的热能存储材料可以包括:氢氧化镁Mg(OH)2、氢氧化钙Ca(OH)2、氢氧化铍Be(OH)2、氢氧化锰Mn(OH)2、氢氧化镍Ni(OH)2、氢氧化锌Zn(OH)2等等中的至少一种。
随着热被供应时通过化学反应而将Mg(OH)2分解为MgO和H2O(水蒸气),并且在当前情况下,该化学反应为吸热反应。相反的,当水被供应到MgO时,通过化学反应MgO变为Mg(OH)2,并且在这种情况下,该化学反应为放热反应。类似的,随着热被提供时通过化学反应(吸热反应)而将Ca(OH)2分解为CaO和H2O(水蒸气),相反的,当水被供应到CaO时,通过化学反应(放热反应)而将CaO变为Ca(OH)2。表2示出了Mg(OH)2、Ca(OH)2、Be(OH)2、Mn(OH)2、Ni(OH)2和Zn(OH)2的反应方程式、反应温度(热存储温度)和热量。
(表2)
因此,该种热化学的热能存储材料利用了可逆的化学反应并因此具有较低的热损失,相较于利用了显热和潜伏热的热能存储材料,该种热化学的热能存储材料具有相对长的热能存储时间,从而甚至在包括有停车时期的长时期不使用时,也可以存储热能。
存储在第三容器30中的热传递介质可以包括:水、空气和油中的至少一种。
图2示出了给图1中示出的固态氢存储设备充装氢的过程的示意图。
参见图2,第一容器10中填充有氢。然后,第一容器10中的固态氢存储材料与氢进行化学反应,并产生热。凭借热传递介质,在第一容器10中产生的热传递到第三容器30,以加热热传递介质,并且加热的热传递介质被传递至第二容器20,以向第二容器20中的热化学的热能存储材料供热。通过化学反应(吸热反应),第二容器20中的热化学的热能存储材料分解为金属氧化物和催化剂(H2O)并且存储热能。
随着氢被填充(充装),热传递介质可以在第二管路D2和第三管路D3中移动。第二容器20中的催化剂(H2O,水蒸气)经由第六管路D6和第一阀V1供应至第四容器40,并随后作为水而存储在第四容器40中,或者可以被排放到固态氢存储设备100的外部。在当前过程中,当存储在第二容器20中的热能的量不充足时,辅助加热器50可以工作,以向第一容器10和第二容器20中的至少一个供热。
图3示出了从图1中示出的固态氢存储设备中排放氢的过程的示意图。
参见图3,催化剂(H2O)从第四容器40供应至第二容器20。然后,第二容器20中的热化学的热能存储材料与催化剂(H2O)进行化学反应,并产生热。凭借热传递介质,在第二容器20中产生的热传递到第三容器30,以加热热传递介质,并且加热的热传递介质被传递至第一容器10,以向第一容器10中的固态氢存储材料供热。然后,第一容器10中的固态氢存储材料达到预定的反应温度从而排放氢。
随着氢被排放,存储在第四容器40中的催化剂(H2O)经由第五管路D5而供应到第二容器20,并且热传递介质可以在第四管路D4和第一管路D1的内部移动。在第一容器10中的固态氢存储材料达到反应温度之前,第二容器20中的热存储量会被耗尽,或者在初始冷起动时期,辅助加热器50可以工作,以向第一容器10和第二容器20中的至少一个供热。
图4示出了根据本发明的第二示例性实施方案的固态氢存储设备的示意图。
参见图4,在第二示例性的实施方案的固态氢存储设备200中,所述热化学的热能存储材料的催化剂为氧气(O2),并且空气供应设备41代替了第一示例性的实施方案中的第四容器。在第二示例性的实施方案中,存储在第二容器20中的热化学的热能存储材料可以包括:钴氧化物(Co3O4)、锰氧化物(Mn2O3)、锂氧化物(Li2O2)、镁氧化物(MgO2)、铬氧化物(Cr5O12)、铂氧化物(PtO2)、锑氧化物(Sb2O5)等等中的至少一种。
当供热时,通过化学反应,2个Co3O4分解为6个CoO和O2,在这种情况下,该化学反应为吸热反应。相反的,当氧被供应到6个CoO时,通过化学反应6个CoO变为2个Co3O4,并且在这种情况下,该化学反应为放热反应。类似地,当供热时,通过化学反应(吸热反应),5个Mn2O3分解为5个Mn3O4(四氧化三锰)和O2,相反的,当氧供应至5个Mn3O4时,通过化学反应(放热反应),5个Mn3O4变为5个Mn2O3。表3示出了Co3O4、Mn2O3、Li2O2、MgO2、Cr5O12、PtO2和Sb2O5的反应方程式、反应温度(热存储温度)和热量。
(表3)
空气供应设备41经由第七管路D7连接至第二容器20,以将催化剂(O2)供应至第二容器20。第二容器20连接至在存储热能时用于排放空气的第八管路D8(空气排放管路),以及连接至在放热时通过排放剩余空气来控制压力的第九管路D9(压力控制管路)。
第九管路D9可以设置有第二阀V2,该第二阀V2具有一个入口端P4和两个出口端P5和P6。第二阀V2的第三出口端P5可以打开而到达固态氢存储设备200的外部,而第四出口端P6可以经由第三容器30连接至第十管路10,该第十管路10打开而到达固态氢存储设备200的外部。
除了上面所描述的配置,该第二示例性的实施方案中的固态氢存储设备200具有与第一示例性的实施方案中的固态氢存储设备100相同或相似的配置,因此对其重复的描述将会省略。
图5示出了给图4中示出的固态氢存储设备充装氢的过程的示意图。
参见图5,第一容器10中填充有氢。然后,第一容器10中的固态氢存储材料与氢进行化学反应,并产生热。凭借热传递介质,在第一容器10中产生的热传递到第三容器30,以加热热传递介质,并且加热的热传递介质被传递至第二容器20,以向第二容器20中的热化学的热能存储材料供热。通过化学反应(吸热反应),第二容器20中的热化学的热能存储材料分解为金属氧化物和催化剂(O2)并且存储热能。
随着氢的充装,热传递介质可以在第二管路D2和第三管路D3中移动。第二容器20中的催化剂(O2)可以经由第八管路D8排出到固态氢存储设备200的外部。在当前过程中,当存储在第二容器20中的热能的量不充足时,辅助加热器50可以工作,以向第一容器10和第二容器20中的至少一个供热。
图6示出了从图4中示出的固态氢存储设备中排放氢的过程的示意图。
参见图6,催化剂(O2)从空气供应设备41供应至第二容器20。然后,第二容器20中的热化学的热能存储材料与催化剂(O2)进行化学反应,并产生热。凭借热传递介质,在第二容器20中产生的热传递到第三容器30,以加热热传递介质,并且加热的热传递介质被传递至第一容器10,以向第一容器10中的固态氢存储材料供热。然后,第一容器10中的固态氢存储材料达到预定的反应温度从而排放氢。
随着氢被排放,存储在第四容器40中的催化剂(O2)经由第七管路D7供应到第二容器20,并且热传递介质可以在第四管路D4和第一管路D1的内部移动。第二容器20中的剩余空气可以经由第九管路D9和用于第二容器20的压力控制的第二阀V2而被排放到固态氢存储设备200的外部。
在上述情况中,当从第二容器20排放的剩余空气的温度低于第三容器30的热传递介质的温度时,第三出口端P5可以打开,而当剩余空气的温度高于第三容器30的热传递介质的温度时,第四出口端P6将打开。在后面的情况中,剩余空气的热被供应至第三容器30的热传递介质,并随后排出到固态氢存储设备200的外部。
配置为用于检测从第二容器20中排放的剩余空气温度的温度检测器可以设置在第九管路D9上,并且控制器配置为根据温度传感器的测量结果来控制第三出口端P5和第四出口端P6的打开。在后面的情况中,固态氢存储设备200的热效率可以进一步地提高。
在第一容器10中的固态氢存储材料达到反应温度之前,第二容器20中的热存储量会被耗尽,或者在初始冷起动时期,辅助加热器50可以工作,以向第一容器10和第二容器20中的至少一个供热。
图7和图8示出了根据本发明的第三示例性实施方案的用于燃料电池车辆的热管理系统的示意图。该种用于燃料电池车辆的热管理系统可以被称作燃料电池系统。图7示出了氢的充装过程,图8示出了氢的排出过程。
参见图7,根据第三示例性的实施方案中的用于燃料电池车辆的热管理系统300包括:燃料电池堆60、前面提及的第一示例性的实施方案中的固态氢存储设备100、氢供应管路71和水供应管路72,所述氢供应管路71设置为连接固态氢存储设备100中的第一容器10与燃料电池堆60,所述水供应管路72设置为连接燃料电池堆60与固态氢存储设备100中的第四容器40。
所述燃料电池堆60可以为氢燃料电池堆,其接收氢和空气并且配置为产生电力并且排放纯净水。所述氢供应管路71连接第一容器10的氢出口与燃料电池堆60的燃料入口,所述水供应管路72连接燃料电池堆60的水出口与第四容器40。
水供应管路72可以设置有第三阀V3,该第三阀V3具有一个入口端P7和两个出口端P8和P9。第三阀V3的第五出口端P8可以连接至第四容器40,第六出口端P9可以连接至用于燃料电池车辆的热管理系统300的外部。
当第一容器10填充(或充装)氢时,该第一容器10中的固态氢存储材料与氢进行化学反应,并且产生热。凭借热传递介质,在第一容器10中产生的热传递到第三容器30,以加热热传递介质,并且加热的热传递介质被传递至第二容器20,以向第二容器20中的热化学的热能存储材料供热。通过化学反应(吸热反应),第二容器20中的热化学的热能存储材料分解为金属氧化物和催化剂(H2O)并且存储热能。
随着氢的充装,第二容器20中的催化剂(H2O,水蒸气)经由第六管路D6和第一阀V1供应至第四容器40,并随后作为水而存储在第四容器40中,或者可以被排放到固态氢存储设备100的外部。当存储在第二容器20中的热能的量不充足时,辅助加热器50可以工作,以向第一容器10和第二容器20中的至少一个供热。
参见图8,催化剂(H2O)从第四容器40供应至第二容器20。然后,第二容器20中的热化学的热能存储材料与催化剂(H2O)进行化学反应,并产生热。凭借热传递介质,在第二容器20中产生的热传递到第三容器30,以加热热传递介质,并且加热的热传递介质被传递至第一容器10,以向第一容器10中的固态氢存储材料供热。
然后,第一容器10的固态氢存储材料达到排放氢的预定反应温度,并且氢经由氢供应管路71供应到燃料电池堆60。通过接收氢和氧,燃料电池堆60产生电力,并且排出作为反应副产品的水。排出的水经由水供应管路72和第三阀V3传递至第四容器40,并随后可以存储在第四容器40中或者可以排出到用于燃料电池车辆的热管理系统300的外部。
随着氢被排放,在第一容器10中的固态氢存储材料达到反应温度之前,第二容器20中的热存储量可能被耗尽,或者在初始冷起动时期,辅助加热器50可以工作,以向第一容器10和第二容器20中的至少一个供热。
图9和图10示出了根据本发明的第四示例性实施方案的用于燃料电池车辆的热管理系统的示意图。该种用于燃料电池车辆的热管理系统可以被称作燃料电池系统。图9示出了氢充装过程,图10示出了氢排出过程。
参见图9,根据第四示例性的实施方案中的用于燃料电池车辆的热管理系统400包括:燃料电池堆60、前面提及的第二示例性的实施方案中的固态氢存储设备200、氢供应管路71和空气供应管路73,所述氢供应管路71设置为连接固态氢存储设备200中的第一容器10与燃料电池堆60,所述空气供应管路73设置为连接固态氢存储设备200的空气供应设备41与燃料电池堆60。
所述燃料电池堆60和氢供应管路71与第三示例性的实施方案中的燃料电池堆和氢供应管路相同,并且空气供应管路73连接空气供应设备41与燃料电池堆60的空气入口管路。
当第一容器10充装有氢时,该第一容器10中的固态氢存储材料与氢进行化学反应,并且产生热。凭借热传递介质,在第一容器10中产生的热传递到第三容器30,以加热热传递介质,并且加热的热传递介质被传递至第二容器20,以向第二容器20中的热化学的热能存储材料供热。通过化学反应(吸热反应),第二容器20中的热化学的热能存储材料分解为金属氧化物和催化剂(H2O)并且存储热能。
随着氢的充装,第二容器20中的催化剂(O2)经由第八管路D8排出到固态氢存储设备200的外部。当存储在第二容器20中的热能的量不充足时,辅助加热器50可以工作,以向第一容器10和第二容器20中的至少一个供热。
参见图10,催化剂(O2)经由第七管路D7从空气供应设备41供应至第二容器20。然后,第二容器20中的热化学的热能存储材料与催化剂(O2)进行化学反应,并产生热。凭借热传递介质,在第二容器20中产生的热传递到第三容器30,以加热热传递介质,并且加热的热传递介质被传递至第一容器10,以向第一容器10中的固态氢存储材料供热。
然后,第一容器10的固态氢存储材料达到排放氢的预定反应温度,并且氢经由氢供应管路71供应到燃料电池堆60。同时,空气经由空气供应管路73从空气供应设备41供应至燃料电池堆60的空气入口。通过接收氢和空气,燃料电池堆60产生电力,并且排出作为反应副产品的水。
随着氢被排放,在第一容器10中的固态氢存储材料达到反应温度之前,第二容器20中的热存储量可能被耗尽,或者在初始冷起动时期,辅助加热器50可以工作,以向第一容器10和第二容器20中的至少一个供热。
根据该种用于燃料电池车辆的热管理系统300和400,由于热化学的热能存储材料被用作用于排放氢的主要热源,这就不需要用于向第一容器10供热的单独的电力供应,并且在开始初始化学反应时或者在发生紧急情况时,除了短时间操作辅助加热器50以外,可以不使用电力。因此,在燃料电池堆60中产生的电力可以完全用于驱动车辆,从而提高了燃料效率。
此外,由于使用了具有极好的可逆性的热化学的热能存储材料,在充装和排放时期热损失很小,并且由于可以控制使用了催化剂(H2O或者O2)的热散逸,该种用于燃料电池车辆的热管理系统是安全且环境友好的。此外,在需要加热的情况下,当催化剂供应至第二容器20而没有操作燃料电池堆60时,通过排放自第二容器20热能,由于可以执行加热,因此可以提高能量效率。
为了方便解释和精确限定所附权利要求,术语“上”、“下”、“内”、“外”、“上面”、“下面”、“向上”、“向下”、“前”、“后”、“后部”、“内侧”、“外侧”、“向内”、“向外”、“内部的”、“外部的”、“向前”、“向后”被用于参考附图中所显示的这些特征的位置来描述示例性具体实施方案的特征。
前面对本发明具体示例性的实施方案所呈现的描述是出于说明和描述的目的。前面的描述并不旨在成为穷举的,也并不旨在把本发明限制为所公开的精确形式,显然,根据上述教导很多改变和变化都是可能的。选择示例性实施方案并进行描述是为了解释本发明的特定原理及其实际应用,从而使得本领域的其它技术人员能够实现并利用本发明的各种示例性实施方案及其不同选择形式和修改形式。本发明的范围由所附权利要求及其等价形式所限定。

Claims (15)

1.一种用于燃料电池车辆的热管理系统,其包括:
燃料电池堆,其配置为接收氢和空气,以产生电并且排放水;
固态氢存储设备,其配置为包括第一容器、第二容器、第三容器和管路,所述第一容器容纳固态氢存储材料,所述第二容器容纳热化学的热能存储材料,所述第三容器容纳热传递介质,所述管路连接第一容器、第二容器和第三容器,以循环热传递介质;以及
氢供应管路,其配置为连接所述第一容器和燃料电池堆。
2.根据权利要求1所述的用于燃料电池车辆的热管理系统,其中:
所述固态氢存储材料包括在吸留氢时产生热以及在接收热时排放氢的材料;
所述热化学的热能存储材料包括在供应催化剂时产生热以及在接收热期间分解为金属氧化物和催化剂并存储热能的材料。
3.根据权利要求2所述的用于燃料电池车辆的热管理系统,其中:
随着固态氢存储材料的氢的吸留,所述热传递介质将第一容器的热传递至第二容器,并且随着催化剂供应至热化学的热能存储材料,所述热传递介质将第二容器的热传递至第一容器。
4.根据权利要求2所述的用于燃料电池车辆的热管理系统,其中:
所述固态氢存储材料包括:配位金属氢化物、金属氢化物、化学氢化物和氢存储合金中的至少一种。
5.根据权利要求2所述的用于燃料电池车辆的热管理系统,其中:
所述催化剂为水;
所述热化学的热能存储材料包括:Mg(OH)2、Ca(OH)2、Be(OH)2、Mn(OH)2、Ni(OH)2和Zn(OH)2中的至少一种。
6.根据权利要求5所述的用于燃料电池车辆的热管理系统,其中:
所述固态氢存储设备包括:
第四容器,其容纳催化剂;
催化剂供应管路和催化剂排放管路,其连接第四容器与第二容器;以及
第一阀,其设置于所述催化剂排放管路。
7.根据权利要求6所述的用于燃料电池车辆的热管理系统,其中:
所述第一阀包括:入口端、连接至所述第四容器的第一出口端以及连接至所述固态氢存储设备外部的第二出口端。
8.根据权利要求6所述的用于燃料电池车辆的热管理系统,进一步包括:
水供应管路,其配置为连接所述燃料电池堆和第四容器;以及
第三阀,其配置为设置于所述水供应管路。
9.根据权利要求8所述的用于燃料电池车辆的热管理系统,其中:
所述第三阀包括:一个入口端、连接至所述第四容器的第五出口端以及连接至所述固态氢存储设备外部的第六出口端。
10.根据权利要求2所述的用于燃料电池车辆的热管理系统,其中:
所述催化剂为氧;
所述热化学的热能存储材料包括:Co3O4、Mn2O3、Li2O2、MgO2、Cr5O12、PtO2和Sb2O5中的至少一种。
11.根据权利要求10所述的用于燃料电池车辆的热管理系统,其中:
所述固态氢存储设备包括:
空气供应设备,其将空气供应至所述第二容器;
空气排放管路,其设置于所述第二容器,并且在热能存储期间排放空气;以及
压力控制管路,其设置于所述第二容器,并且在热排放期间排放剩余空气。
12.根据权利要求11所述的用于燃料电池车辆的热管理系统,其中:
第二阀,其设置于所述压力控制管路;
所述第二阀包括:入口端、连接至所述固态氢存储设备的外部的第三出口端以及经由所述第三容器连接至固态氢存储设备外部的第四出口端。
13.根据权利要求12所述的用于燃料电池车辆的热管理系统,其中:
当排放至所述压力控制管路的剩余空气的温度低于所述第三容器的热传递介质的温度时,所述第三出口端配置为打开;
当排放至所述压力控制管路的剩余空气的温度高于所述第三容器的热传递介质的温度时,所述第四出口端配置为打开。
14.根据权利要求11所述的用于燃料电池车辆的热管理系统,进一步包括:
空气供应管路,其配置为连接所述燃料电池堆和所述空气供应设备。
15.根据权利要求1所述的用于燃料电池车辆的热管理系统,其中:
所述固态氢存储设备包括辅助加热器,该辅助加热器向所述第一容器和第二容器中的至少一个供热。
CN201710616839.1A 2017-02-15 2017-07-26 用于燃料电池车辆的热管理系统 Active CN108428910B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170020669A KR102274017B1 (ko) 2017-02-15 2017-02-15 연료전지 자동차용 열관리 시스템
KR10-2017-0020669 2017-02-15

Publications (2)

Publication Number Publication Date
CN108428910A true CN108428910A (zh) 2018-08-21
CN108428910B CN108428910B (zh) 2021-09-17

Family

ID=62982744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710616839.1A Active CN108428910B (zh) 2017-02-15 2017-07-26 用于燃料电池车辆的热管理系统

Country Status (4)

Country Link
US (2) US10468693B2 (zh)
KR (1) KR102274017B1 (zh)
CN (1) CN108428910B (zh)
DE (1) DE102017112830A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113525176A (zh) * 2021-07-12 2021-10-22 深圳氢时代新能源科技有限公司 燃料电池车的热管理系统、方法和设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2929204T3 (es) * 2019-12-23 2022-11-25 Helmholtz Zentrum Hereon Gmbh Dispositivo para el funcionamiento de un consumidor de hidrógeno exotérmico con acumulador de hidruro metálico
KR20230000793A (ko) * 2021-06-25 2023-01-03 현대모비스 주식회사 연료 전지 온도 관리 장치 및 이를 이용한 연료 전지 시스템
CN113561824B (zh) * 2021-08-09 2023-04-18 四川帝威能源技术有限公司 一种加氢充电一体桩及余热回收系统
KR102657368B1 (ko) * 2022-02-25 2024-04-12 김지원 수소전기차의 충전노즐 및 물배출구 결빙 방지 장치
CN114725452A (zh) * 2022-04-18 2022-07-08 佛山科学技术学院 一种基于金属氢化物固态储氢技术的燃料电池助力自行车
CN117012999A (zh) * 2023-09-27 2023-11-07 有研工程技术研究院有限公司 低温储供氢装置与燃料电池一体化电源系统及其使用方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080202A (ja) * 2000-07-03 2002-03-19 Toyota Motor Corp 燃料電池用燃料ガスの生成システム
JP2002089792A (ja) * 2000-09-18 2002-03-27 Toyota Motor Corp 水素貯蔵装置およびこれを備える燃料電池システム並びに移動体
CN1405911A (zh) * 2001-08-16 2003-03-26 亚太燃料电池科技股份有限公司 燃料电池发电系统及其废热循环冷却系统
US20040025808A1 (en) * 2001-08-07 2004-02-12 Cheng Christopher T. Portable hydrogen generation using metal emulsions
US20040205997A1 (en) * 2003-04-15 2004-10-21 David Youngblood Portable heat and gaseous fuel generator that does not require electrical power input or electrical control
CN1543686A (zh) * 2001-06-15 2004-11-03 兹特克公司 零排放/低排放和共生产型能量供应站
CN1922100A (zh) * 2004-02-26 2007-02-28 通用汽车公司 包含氢化物和氢氧化物的储氢材料及方法
CN101162782A (zh) * 2006-10-09 2008-04-16 比亚迪股份有限公司 燃料电池储氢装置以及储氢和充氢系统
US7405013B2 (en) * 2004-06-07 2008-07-29 Gm Global Technology Operations, Inc. Thermoelectric conversion of heat released during use of a power-plant or hydrogen storage material
US7410714B1 (en) * 2004-07-15 2008-08-12 The United States Of America As Represented By The Administration Of Nasa Unitized regenerative fuel cell system
JP2008189538A (ja) * 2007-02-08 2008-08-21 Nissan Motor Co Ltd 水素発生システム、水素発生システムの運転方法及び水素燃料車両
CN102195056A (zh) * 2010-03-05 2011-09-21 苏州氢洁电源科技有限公司 带金属氢化物储氢单元的燃料电池便携式手提电源
CA2830364A1 (en) * 2011-04-05 2012-10-11 Blacklight Power, Inc. H2o-based electrochemical hydrogen-catalyst power system
CN1980857B (zh) * 2004-02-26 2012-12-05 通用汽车公司 包含氢化物和氢氧化物的储氢材料体系及其再生方法
CN203617394U (zh) * 2013-11-01 2014-05-28 南京双登科技发展研究院有限公司 便携式质子交换膜燃料电池电源系统
CN104169211A (zh) * 2011-12-15 2014-11-26 南威尔士大学商业服务有限公司 新型金属氢化物及它们在氢储存应用中的用途
WO2015063170A1 (en) * 2013-10-29 2015-05-07 Total Marketing Services Power generation system
CN104936889A (zh) * 2012-12-21 2015-09-23 赛勒收购有限公司 储氢材料
CN105651091A (zh) * 2016-02-19 2016-06-08 上海交通大学 传热增强型化学蓄热装置及应用该蓄热装置的蓄热系统

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369234A (en) * 1979-10-01 1983-01-18 Solomon Zaromb Electrochemical power generation
US5512145A (en) * 1994-10-07 1996-04-30 The Cooper Union For The Advancement Of Science And Art Energy conversion system
US6459231B1 (en) * 1999-05-03 2002-10-01 Takeo Kagatani Power device
US6368735B1 (en) * 1999-10-19 2002-04-09 Ford Global Technologies, Inc. Fuel cell power generation system and method for powering an electric vehicle
US7316718B2 (en) * 2001-07-11 2008-01-08 Millennium Cell, Inc. Differential pressure-driven borohydride based generator
US20030033991A1 (en) * 2001-08-07 2003-02-20 Cheng Christopher T. Portable hydrogen generation using metal emulsions
US6737184B2 (en) * 2001-11-09 2004-05-18 Hydrogenics Corporation Chemical hydride hydrogen generation system and an energy system incorporating the same
US6770186B2 (en) * 2001-11-13 2004-08-03 Eldat Communication Ltd. Rechargeable hydrogen-fueled motor vehicle
US7169489B2 (en) * 2002-03-15 2007-01-30 Fuelsell Technologies, Inc. Hydrogen storage, distribution, and recovery system
US6811764B2 (en) * 2002-09-12 2004-11-02 General Motors Corporation Hydrogen generation system using stabilized borohydrides for hydrogen storage
US7524342B2 (en) * 2002-10-29 2009-04-28 William J. Brinkley, III Method and apparatus for generating hydrogen gas on demand from water with recovery of water and complete recycling of consumable material
US7105033B2 (en) * 2003-02-05 2006-09-12 Millennium Cell, Inc. Hydrogen gas generation system
US7115244B2 (en) * 2003-09-30 2006-10-03 General Electric Company Hydrogen storage compositions and methods of manufacture thereof
US7665328B2 (en) * 2004-02-13 2010-02-23 Battelle Energy Alliance, Llc Method of producing hydrogen, and rendering a contaminated biomass inert
US7153489B2 (en) * 2004-02-13 2006-12-26 Battelle Energy Alliance, Llc Method of producing hydrogen
US20070020175A1 (en) * 2005-07-25 2007-01-25 Graham David R Method and apparatus for reducing hazardous materials in hydrogen generation processes
US8372168B2 (en) * 2005-09-16 2013-02-12 Protonex Technology Corporation Hydrogen generating fuel cartridge with volume exchange configuration
WO2007102026A2 (en) * 2006-03-07 2007-09-13 Afc Energy Plc Electrodes of a fuel cell
US7651542B2 (en) * 2006-07-27 2010-01-26 Thulite, Inc System for generating hydrogen from a chemical hydride
DE102006042456A1 (de) 2006-09-09 2008-03-27 Volkswagen Ag Metallhydridspeicher
CN101152956A (zh) * 2006-09-29 2008-04-02 日立麦克赛尔株式会社 氢制造装置、燃料电池系统及电子设备
FR2924787B1 (fr) 2007-12-10 2010-02-12 Centre Nat Rech Scient Reservoir de stockage d'hydrogene.
KR101042299B1 (ko) 2007-12-13 2011-06-17 기아자동차주식회사 연료전지 자동차용 수소저장 시스템
WO2009151500A1 (en) * 2008-04-02 2009-12-17 Cedar Ridge Research Llc Aluminum-alkali hydroxide recyclable hydrogen generator
US20130236393A1 (en) * 2008-06-25 2013-09-12 Unither Developpement Hydrogen-generating colloidal suspension
US20120122017A1 (en) * 2009-08-07 2012-05-17 Mills Randell L Heterogeneous hydrogen-catalyst power system
US20130084474A1 (en) * 2010-03-18 2013-04-04 Randell L. Mills Electrochemical hydrogen-catalyst power system
US20120052001A1 (en) * 2010-08-26 2012-03-01 Woodall Jerry M Energy storage and generation of hydrogen and heat on demand
US8951312B2 (en) * 2011-11-09 2015-02-10 Alvin Gabriel Stern Compact, safe and portable hydrogen generation apparatus for hydrogen on-demand applications
CN103420335B (zh) * 2012-10-12 2015-05-06 太仓克莱普沙能源科技有限公司 用于产生氢气的组合物、反应器、装置及生产氢气的方法
WO2014152403A2 (en) * 2013-03-15 2014-09-25 Mcalister Technologies, Llc Methods for joule-thompson cooling and heating of combustion chamber events and associated systems and apparatus
US9624103B1 (en) * 2013-04-25 2017-04-18 Jerry M Woodall Method and system for continuously producing hydrogen, heat and aluminum oxides on-demand
US9731967B1 (en) * 2013-10-15 2017-08-15 Jerry M Woodall System for continuously producing hydrogen, heat and aluminum oxides on demand
DE102013223589B4 (de) 2013-11-19 2016-11-17 Hydrogenious Technologies Gmbh Anlage und Verfahren zum Speichern von Energie
US9470111B2 (en) * 2014-02-14 2016-10-18 Serdar Firkan Air independent propulsion and power generation system based on exothermic reaction sourced thermal cycle
WO2015148715A1 (en) * 2014-03-25 2015-10-01 Arizona Science And Technology Enterprises, Llc Hydrogen generator and fuel cell system and method
US9985308B2 (en) * 2015-06-12 2018-05-29 Palo Alto Research Center Incorporated Controlled hydrogen production from hydrolysable hydride gels
DE102015222695B4 (de) 2015-11-17 2021-07-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Energiesystem und Verfahren zum Speichern und/oder Bereitstellen von Wasserstoff
US10361442B2 (en) * 2016-11-08 2019-07-23 Bloom Energy Corporation SOFC system and method which maintain a reducing anode environment

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080202A (ja) * 2000-07-03 2002-03-19 Toyota Motor Corp 燃料電池用燃料ガスの生成システム
JP2002089792A (ja) * 2000-09-18 2002-03-27 Toyota Motor Corp 水素貯蔵装置およびこれを備える燃料電池システム並びに移動体
CN1543686A (zh) * 2001-06-15 2004-11-03 兹特克公司 零排放/低排放和共生产型能量供应站
US20040025808A1 (en) * 2001-08-07 2004-02-12 Cheng Christopher T. Portable hydrogen generation using metal emulsions
CN1405911A (zh) * 2001-08-16 2003-03-26 亚太燃料电池科技股份有限公司 燃料电池发电系统及其废热循环冷却系统
US20040205997A1 (en) * 2003-04-15 2004-10-21 David Youngblood Portable heat and gaseous fuel generator that does not require electrical power input or electrical control
CN1922100A (zh) * 2004-02-26 2007-02-28 通用汽车公司 包含氢化物和氢氧化物的储氢材料及方法
CN1980857B (zh) * 2004-02-26 2012-12-05 通用汽车公司 包含氢化物和氢氧化物的储氢材料体系及其再生方法
US7405013B2 (en) * 2004-06-07 2008-07-29 Gm Global Technology Operations, Inc. Thermoelectric conversion of heat released during use of a power-plant or hydrogen storage material
US7410714B1 (en) * 2004-07-15 2008-08-12 The United States Of America As Represented By The Administration Of Nasa Unitized regenerative fuel cell system
CN101162782A (zh) * 2006-10-09 2008-04-16 比亚迪股份有限公司 燃料电池储氢装置以及储氢和充氢系统
JP2008189538A (ja) * 2007-02-08 2008-08-21 Nissan Motor Co Ltd 水素発生システム、水素発生システムの運転方法及び水素燃料車両
CN102195056A (zh) * 2010-03-05 2011-09-21 苏州氢洁电源科技有限公司 带金属氢化物储氢单元的燃料电池便携式手提电源
CA2830364A1 (en) * 2011-04-05 2012-10-11 Blacklight Power, Inc. H2o-based electrochemical hydrogen-catalyst power system
CN104169211A (zh) * 2011-12-15 2014-11-26 南威尔士大学商业服务有限公司 新型金属氢化物及它们在氢储存应用中的用途
CN104936889A (zh) * 2012-12-21 2015-09-23 赛勒收购有限公司 储氢材料
WO2015063170A1 (en) * 2013-10-29 2015-05-07 Total Marketing Services Power generation system
CN203617394U (zh) * 2013-11-01 2014-05-28 南京双登科技发展研究院有限公司 便携式质子交换膜燃料电池电源系统
CN105651091A (zh) * 2016-02-19 2016-06-08 上海交通大学 传热增强型化学蓄热装置及应用该蓄热装置的蓄热系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113525176A (zh) * 2021-07-12 2021-10-22 深圳氢时代新能源科技有限公司 燃料电池车的热管理系统、方法和设备

Also Published As

Publication number Publication date
KR102274017B1 (ko) 2021-07-06
US20190393520A1 (en) 2019-12-26
US10826086B2 (en) 2020-11-03
US10468693B2 (en) 2019-11-05
CN108428910B (zh) 2021-09-17
US20180233753A1 (en) 2018-08-16
KR20180094403A (ko) 2018-08-23
DE102017112830A1 (de) 2018-08-16

Similar Documents

Publication Publication Date Title
CN108428910A (zh) 用于燃料电池车辆的热管理系统
US6195999B1 (en) Electrochemical engine
US7678479B2 (en) Hydrogen fuel delivery systems
US8215342B2 (en) Hydrogen supplies and related methods
CN101124154B (zh) 包含氢化物和氢氧化物的储氢体系材料和方法
US11158870B2 (en) High power fuel cell system
WO2019156627A1 (en) A portable fuel cell apparatus and system
US8790839B2 (en) High temperature fuel cell system
EP3208877B1 (en) Solid state hydrogen storage device
Elitzur et al. Electric energy storage using aluminum and water for hydrogen production on-demand
CN105593051A (zh) 具有多级氧气压缩的金属/氧气电池组
KR102169149B1 (ko) 연료전지용 저압 메탈하이브리드 수소 충방전 시스템
US20220131214A1 (en) High energy density fuel cell apparatus and system with a hydride-based hydrogen generator as a scalable power solution concept
EP2976802B1 (en) Metal/oxygen battery with multistage oxygen compression
JP5040339B2 (ja) 水素発生システム、水素発生システムの運転方法及び水素燃料車両
KR102472063B1 (ko) 연료전지 시스템
US11876269B2 (en) Passive flow battery
US20230045434A1 (en) Metal Hydride-Hydrogen Tank System With A Frost-Start Capability
JPH07153484A (ja) ニッケル・水素バッテリシステム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant