CN108424947A - 一种利用微生物还原co2同时产甲烷和乙酸的方法 - Google Patents

一种利用微生物还原co2同时产甲烷和乙酸的方法 Download PDF

Info

Publication number
CN108424947A
CN108424947A CN201810217180.7A CN201810217180A CN108424947A CN 108424947 A CN108424947 A CN 108424947A CN 201810217180 A CN201810217180 A CN 201810217180A CN 108424947 A CN108424947 A CN 108424947A
Authority
CN
China
Prior art keywords
acetic acid
reduction
methane phase
methane
minimal medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810217180.7A
Other languages
English (en)
Inventor
牟伯中
刘金峰
杨世忠
周蕾
马蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201810217180.7A priority Critical patent/CN108424947A/zh
Publication of CN108424947A publication Critical patent/CN108424947A/zh
Priority to PCT/CN2018/102690 priority patent/WO2019174194A1/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/95Specific microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及一种利用微生物还原CO2同时产甲烷和乙酸的方法,在通用无机盐培养基中接种含有产甲烷菌和产酸菌的混合菌系,加入Fe0并通入CO2气体培养,收获甲烷和乙酸。与现有技术相比,本发明在常温常压条件进行,具有低能耗、环境友好、操作简单、原料廉价易得、转化速率较高等优势。

Description

一种利用微生物还原CO2同时产甲烷和乙酸的方法
技术领域
本发明涉及CO2资源化利用领域,尤其是涉及一种利用微生物还原CO2同时产甲烷和乙酸的方法。
背景技术
自工业革命后,化石燃料的大量使用导致空气中CO2的浓度增加,由此引发的温室效应等环境问题日益严重,如何控制并减少CO2的含量已成为当今世界亟待解决的重大问题之一。其中,CO2的资源化利用技术是将CO2转化成具有附加价值的化学品,此方法不但能有效减少CO2排放,也能带来一定的经济效益。采用化学转化CO2的方法,通常需要在高温、高压以及催化剂存在的条件下进行,其反应条件苛刻、能耗大、成本高。利用生物转化的方式实现CO2资源化利用因其无需外加催化剂、选择性高、成本低、收益高、潜在经济价值高、经济环保等优势备受关注。目前,生物转化中普遍采用微藻法,即,使用光能自养型微生物微藻转化CO2,该方法存在筛选过程复杂,培育成本高,油脂分离过程能耗大的问题。
CO2还原型产甲烷菌和产乙酸菌属于严格厌氧的微生物,广泛存在于厌氧活性污泥、油藏等自然环境中。分别能够利用CO2和氢气产生甲烷(CO2+4H2→CH4+2H2O)和乙酸(2CO2+4H2→CH3COOH+2H2O),并且上述过程均为热力学自发反应。由此,环境微生物具有转化CO2产生多种有机质,从而实现CO2资源化利用的潜力。同时,微生物转化CO2过程中需要氢气的参与。在自然环境中,氢气大多来源于有机质的厌氧降解并且保持较低的氢气分压,因此,有限的氢气来源很大程度上限制了微生物转化CO2产生有机质的过程。公开号为CN102925492A的中国发明专利公布了一种利用生物电化学系统还原CO2生产甲烷和乙酸的方法,具体如下:在生物电化学系统中制备生物阴极,在阴极室和阳极室中通入CO2循环曝气,设定阴极极化电势-850~-1150mV(vs.Ag/AgCl),阴极上的微生物可以直接从电极或电极产生的氢气获得电子进行二氧化碳还原,并生成甲烷和乙酸。此方法存在操作过程复杂、能耗大、菌系复杂不易调控、成本高等问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种作简单、成本低廉、效率高、产物多样、条件温和、能耗低、环境友好型的利用微生物还原CO2同时产甲烷和乙酸的方法。
本发明的目的可以通过以下技术方案来实现:一种利用微生物还原CO2同时产甲烷和乙酸的方法,其特征在于,在通用无机盐培养基中接种含有产甲烷菌和产酸菌的混合菌系,加入Fe0并通入CO2气体培养,收获甲烷和乙酸。
所述的产甲烷菌和产酸菌的混合菌系由但不限于油藏产出液中分离富集得到。
进一步地,所述的混合菌系包括Methanosarcina(甲烷八叠球菌属,购买自美国典型培养物保藏中心,保藏号ATCC No.43572)和Clostridiaceae(梭菌科,购买自美国典型培养物保藏中心,保藏号ATCC No.55383)。
进一步地,所述的混合菌系包括Methanosarcina和Clostridiaceae的菌体数比例为1:2~5:1。
所述的Fe0的粒径为10~50μm。
进一步地,所述的Fe0与通用无机盐培养基比例为0.01~0.7mol(Fe0)/L(无机盐培养基)。
进一步地,所述的培养温度为23℃~36℃,pH为6.0~8.0。
进一步地,所述的Fe0与通用无机盐培养基比例为0.1mol(Fe0)/L(无机盐培养基),培养温度为30℃,pH为7.0。
通用无机盐培养基参照马蕾等在学术期刊International Biodeterioration&Biodegradation报道的学术论文(DOI:10.1016/j.ibiod.2017.12.002)配置。
进一步地,无机盐培养基(g/L):NaCl,0.2;MgCl×6H2O,1.2;NH4Cl,0.25;KCl,1.3;CaCl2×2H2O,0.1;KH2PO4,0.53;Na2HPO4×3H2O,2.18;Na2S×9H2O,0.5。
培养装置中加入上述培养基、零价铁和CO2气体,密封,接种含Methanosarcina(ATCC 43572)和Clostridiaceae(ATCC 55383)的混合菌系,接种率为2-20%。在常压、常温避光条件下培养。
厌氧培养开始即有甲烷和乙酸产生并累积,并且产生速率较快,甲烷自培养装置顶空收集,培养结束后在培养液中收集乙酸。
本发明的目的是建立一种利用微生物还原CO2同时产生甲烷和乙酸的方法,并利用零价态金属(Fe0)作为电子供体刺激微生物代谢并促进CO2转化的方法。其特征是利用含有产甲烷菌和产酸菌的混合菌,包括Methanosarcina(ATCC 43572)和Clostridiaceae(ATCC 55383),以Fe0作为电子供体,不添加有机质的常温条件将CO2生物转化为甲烷和乙酸。
电子供体在微生物转化CO2产甲烷和乙酸过程中发挥着重要作用。利用零价态金属铁作为电子供体在厌氧环境中可以有效促进氢气产生(Fe0+2H2O→Fe2++H2+2OH-),从而进一步促进微生物转化CO2同时产生甲烷和乙酸的过程。基于上述认识,本发明提出一种使用Fe0作为电子供体在富集菌系的作用下转化CO2同时产生甲烷和乙酸的方法。
与现有技术相比,本发明的有益效果:
(1)在无外加碳源、无外加能量的常温、常压环境中利用微生物还原CO2同时产生甲烷和乙酸。反应条件温和、操作简单、成本低廉、能耗低、无环境污染。
(2)微生物合成产物甲烷和乙酸分别主要存在于气相和液相,便于产品的回收利用。
(3)本发明还原CO2产生甲烷和乙酸的速率较快,CO2转化率为82%。
附图说明
图1为甲烷与二氧化碳含量随时间变化图。
图2为乙酸产量随时间变化图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
以下实施例详细的描述是为了便于更好的理解本发明,但并非对本发明的限制。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改或等同替换,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动,其均应涵盖在本发明的保护范围之中。
实施例1:
(1)配置无机盐培养基(参照马蕾等在学术期刊InternationalBiodeterioration&Biodegradation报道的学术论文DOI:10.1016/j.ibiod.2017.12.002)
无机盐培养基(g/L):NaCl,0.2;MgCl×6H2O,1.2;NH4Cl,0.25;KCl,1.3;CaCl2×2H2O,0.1;KH2PO4,0.53;Na2HPO4×3H2O,2.18;Na2S×9H2O,0.5。无机盐培养基pH值调至7.0。
培养装置中加入0.1645g零价铁、30mL培养基(0.1mol(Fe0)/L(无机盐培养基))和CO2气体,密封,接种7%(2mL)含Methanosarcina(ATCC 43572)和Clostridiaceae(ATCC55383)的菌系,菌体数比例为1:1。在30℃常压避光条件下培养。
转化过程中甲烷和二氧化碳的含量变化见图1。图中:G1:Fe0+CO2;G2:含有CO2的无菌对照组。
从图1中可以看出,在培养时间为1~65天,含Fe0的转化CO2的培养体系,产甲烷速率达到48.43μmol/(L·d),培养结束得到的甲烷产量约为102.3μmol。同时,在不同培养阶段检测体系中乙酸的含量,在培养时间为1~65天,含Fe0的CO2体系中,产乙酸速率达到4.8μmol/(L·d)。结果见图2。图2为培养体系G1(Fe0+CO2)中乙酸含量随培养时间的变化图。
实施例2:
(1)无机盐培养基(参照马蕾等在学术期刊International Biodeterioration&Biodegradation报道的学术论文DOI:10.1016/j.ibiod.2017.12.002)
无机盐培养基(g/L):NaCl,0.2;MgCl×6H2O,1.2;NH4Cl,0.25;KCl,1.3;CaCl2×2H2O,0.1;KH2PO4,0.53;Na2HPO4×3H2O,2.18;Na2S×9H2O,0.5。无机盐培养基pH值调至6.0。
(2)厌氧培养体系的构建
培养装置中加入0.0165g零价铁、30mL培养基(0.01mol(Fe0)/L(无机盐培养基))和CO2气体,密封,接种2%(0.6mL)含Methanosarcina和Clostridiaceae的菌系(以新疆油田油藏产出液作为接种物,加入乙醇、乙酸和酵母粉作为碳源,在23℃下厌氧富集培养,转接3次,分离得到),菌体数比例为1:2。在23℃常压避光条件下培养。
经过65天的培养,含Fe0的CO2体系中,产甲烷和乙酸的速率分别为:12.92和1.35μmol/(L·d)。
实施例3
(1)无机盐培养基(参照马蕾等在学术期刊International Biodeterioration&Biodegradation报道的学术论文DOI:10.1016/j.ibiod.2017.12.002)
无机盐培养基(g/L):NaCl,0.2;MgCl×6H2O,1.2;NH4Cl,0.25;KCl,1.3;CaCl2×2H2O,0.1;KH2PO4,0.53;Na2HPO4×3H2O,2.18;Na2S×9H2O,0.5。无机盐培养基pH值调至8.0。
(2)厌氧培养体系的构建
培养装置中加入1.176g零价铁、30mL培养基(0.7mol(Fe0)/L(无机盐培养基))和CO2气体,密封,接种20%(6mL)含Methanosarcina(ATCC 43572)和Clostridiaceae(ATCC55383)的菌系,菌体数比例为5:1。在36℃常压避光条件下培养。
经过65天的培养,含Fe0的CO2体系中,产甲烷和乙酸的速率分别为:41.77和4.23μmol/(L·d)。

Claims (8)

1.一种利用微生物还原CO2同时产甲烷和乙酸的方法,其特征在于,在通用无机盐培养基中接种含有产甲烷菌和产酸菌的混合菌系,加入Fe0并通入CO2气体培养,收获甲烷和乙酸。
2.根据权利要求1所述的一种利用微生物还原CO2同时产甲烷和乙酸的方法,其特征在于,所述的产甲烷菌和产酸菌的混合菌系由但不限于油藏产出液中分离富集得到。
3.根据权利要求1或2所述的一种利用微生物还原CO2同时产甲烷和乙酸的方法,其特征在于,所述的混合菌系包括甲烷八叠球菌属Methanosarcina,保藏号ATCC No.43572和梭菌科Clostridiaceae保藏号ATCC No.55383。
4.根据权利要求3所述的一种利用微生物还原CO2同时产甲烷和乙酸的方法,其特征在于,所述的混合菌系包括Methanosarcina和Clostridiaceae的菌体数比例为1:2~5:1。
5.根据权利要求1所述的一种利用微生物还原CO2同时产甲烷和乙酸的方法,其特征在于,所述的Fe0的粒径为10~50μm。
6.根据权利要求1所述的一种利用微生物还原CO2同时产甲烷和乙酸的方法,其特征在于,所述的Fe0与通用无机盐培养基比例为0.01~0.7mol(Fe0)/L(无机盐培养基)。
7.根据权利要求1所述的一种利用微生物还原CO2同时产甲烷和乙酸的方法,其特征在于,所述的培养温度为23℃~36℃,pH为6.0~8.0。
8.根据权利要求1或6或7所述的一种利用微生物还原CO2同时产甲烷和乙酸的方法,其特征在于,所述的Fe0与通用无机盐培养基比例为0.1mol(Fe0)/L(无机盐培养基),培养温度为30℃,pH为7.0。
CN201810217180.7A 2018-03-15 2018-03-15 一种利用微生物还原co2同时产甲烷和乙酸的方法 Pending CN108424947A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810217180.7A CN108424947A (zh) 2018-03-15 2018-03-15 一种利用微生物还原co2同时产甲烷和乙酸的方法
PCT/CN2018/102690 WO2019174194A1 (zh) 2018-03-15 2018-08-28 一种利用微生物还原co2同时产甲烷和乙酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810217180.7A CN108424947A (zh) 2018-03-15 2018-03-15 一种利用微生物还原co2同时产甲烷和乙酸的方法

Publications (1)

Publication Number Publication Date
CN108424947A true CN108424947A (zh) 2018-08-21

Family

ID=63158309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810217180.7A Pending CN108424947A (zh) 2018-03-15 2018-03-15 一种利用微生物还原co2同时产甲烷和乙酸的方法

Country Status (2)

Country Link
CN (1) CN108424947A (zh)
WO (1) WO2019174194A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019174194A1 (zh) * 2018-03-15 2019-09-19 华东理工大学 一种利用微生物还原co2同时产甲烷和乙酸的方法
CN110316818A (zh) * 2019-06-04 2019-10-11 北京交通大学 一种基于co2曝气的自养反硝化强化工艺方法及装置
CN111019977A (zh) * 2019-12-30 2020-04-17 福建农林大学 一种驱动甲烷八叠球菌产甲烷的方法
CN113881716A (zh) * 2021-10-27 2022-01-04 江南大学 一种促进碳链延长微生物电合成有机酸的方法
CN115646141A (zh) * 2022-09-29 2023-01-31 中国化学工程第六建设有限公司 降低碳排放的污水处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087821A2 (en) * 2009-12-22 2011-07-21 University Of Massachusetts Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current
CN102925492A (zh) * 2012-11-09 2013-02-13 中国科学院成都生物研究所 一种利用生物电化学系统还原二氧化碳生产甲烷和乙酸的方法
CN103670347A (zh) * 2013-10-14 2014-03-26 华东理工大学 活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法
CN106544369A (zh) * 2016-10-11 2017-03-29 华东理工大学 促进油藏微生物转化co2产甲烷的方法
US20170240936A1 (en) * 2016-02-19 2017-08-24 Invista North America S.A.R.L. Biocatalytic processes and materials for enhanced carbon utilization

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108424947A (zh) * 2018-03-15 2018-08-21 华东理工大学 一种利用微生物还原co2同时产甲烷和乙酸的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087821A2 (en) * 2009-12-22 2011-07-21 University Of Massachusetts Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current
CN102925492A (zh) * 2012-11-09 2013-02-13 中国科学院成都生物研究所 一种利用生物电化学系统还原二氧化碳生产甲烷和乙酸的方法
CN103670347A (zh) * 2013-10-14 2014-03-26 华东理工大学 活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法
US20170240936A1 (en) * 2016-02-19 2017-08-24 Invista North America S.A.R.L. Biocatalytic processes and materials for enhanced carbon utilization
CN106544369A (zh) * 2016-10-11 2017-03-29 华东理工大学 促进油藏微生物转化co2产甲烷的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEI MA ET AL.: ""Microbial reduction of CO2 from injected NaH CO3w ith degradation of n-hexadecane in the enrichment culture derived from a petroleum reservoir"", 《INTERNATIONAL BIODETERIORATION & BIODEGRADATION》 *
牟伯中 等: "油藏环境中CO2生物固定与转化及资源化利用", 《微生物学杂志》 *
郭广寨 等: "不同粒径零价铁(ZVI)对污水污泥H2S和CH4释放速率的影响", 《环境工程学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019174194A1 (zh) * 2018-03-15 2019-09-19 华东理工大学 一种利用微生物还原co2同时产甲烷和乙酸的方法
CN110316818A (zh) * 2019-06-04 2019-10-11 北京交通大学 一种基于co2曝气的自养反硝化强化工艺方法及装置
CN111019977A (zh) * 2019-12-30 2020-04-17 福建农林大学 一种驱动甲烷八叠球菌产甲烷的方法
CN113881716A (zh) * 2021-10-27 2022-01-04 江南大学 一种促进碳链延长微生物电合成有机酸的方法
CN113881716B (zh) * 2021-10-27 2023-12-19 江南大学 一种促进碳链延长微生物电合成有机酸的方法
CN115646141A (zh) * 2022-09-29 2023-01-31 中国化学工程第六建设有限公司 降低碳排放的污水处理方法

Also Published As

Publication number Publication date
WO2019174194A1 (zh) 2019-09-19

Similar Documents

Publication Publication Date Title
CN108424947A (zh) 一种利用微生物还原co2同时产甲烷和乙酸的方法
Ueno et al. Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora
He et al. One-step production of C6–C8 carboxylates by mixed culture solely grown on CO
Xafenias et al. Electrochemical startup increases 1, 3-propanediol titers in mixed-culture glycerol fermentations
Kuppam et al. Biohydrogen production: integrated approaches to improve the process efficiency
Vassilev et al. Cathodic biofilms–A prerequisite for microbial electrosynthesis
Rojas et al. Enhancing the gas–liquid mass transfer during microbial electrosynthesis by the variation of CO2 flow rate
US20190301029A1 (en) Bioelectrosynthesis of organic compounds
CN106244661A (zh) 一种混菌体系发酵生产丙酸的方法
CN104263764A (zh) 一种富集同型产乙酸菌污泥厌氧高效产乙酸工艺
Uyar et al. Hydrogen production via photofermentation
Sivagurunathan et al. Biohydrogen production from wastewaters
CN102586343A (zh) 一种从l-丙氨酸制备丙酮酸的生物催化方法
Watanabe et al. Biohydrogen using leachate from an industrial waste landfill as inoculum
CN100567478C (zh) 甲烷氧化菌的一种培养方法
CN108517337A (zh) 一种促进二氧化碳生物转化为甲烷的方法
Liang et al. Bioconversion of volatile fatty acids from organic wastes to produce high-value products by photosynthetic bacteria: A review
CN110004202A (zh) 一种微生物共培养催化碳水化合物合成己酸的方法
CN104651875A (zh) 将乙醇转化为乙酸的同时产甲烷的方法
CN100355898C (zh) 一种海洋绿藻两步法生物光解水制氢方法
Fakhru'l-Razi et al. Bio-hydrogen synthesis from wastewater by anaerobic fermentation using microflora
CN108179112B (zh) 蛋白核小球藻联合菌类产氢的方法
Maeda et al. Influence of sulfate-reducing bacteria on outdoor hydrogen production by photosynthetic bacterium with seawater
Guo et al. Characterization of H 2 photoproduction by marine green alga Tetraselmis subcordiformis integrated with an alkaline fuel cell
Li et al. Spatially-ordered layer-by-layer biofilms of a two-species microbial consortium promote hydrogen production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180821

RJ01 Rejection of invention patent application after publication