CN108417640B - 一种基于毛细凝聚现象的纳米纤维焊接方法 - Google Patents

一种基于毛细凝聚现象的纳米纤维焊接方法 Download PDF

Info

Publication number
CN108417640B
CN108417640B CN201810158136.3A CN201810158136A CN108417640B CN 108417640 B CN108417640 B CN 108417640B CN 201810158136 A CN201810158136 A CN 201810158136A CN 108417640 B CN108417640 B CN 108417640B
Authority
CN
China
Prior art keywords
nanofiber
method based
welding method
zro
capillary condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810158136.3A
Other languages
English (en)
Other versions
CN108417640A (zh
Inventor
单福凯
孟优
崔友朝
刘国侠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201810158136.3A priority Critical patent/CN108417640B/zh
Publication of CN108417640A publication Critical patent/CN108417640A/zh
Application granted granted Critical
Publication of CN108417640B publication Critical patent/CN108417640B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明公开了一种基于毛细凝聚现象的纳米纤维焊接方法,首先制备ZrO2高k介质薄膜;再制备纳米纤维;对毛细焊接处理;进行高温煅烧;最后将离子束沉积源漏电极,得到纳米纤维场效应晶体管。本发明的有益效果是减少了纤维间的接触电阻,提高了器件的整体性能。

Description

一种基于毛细凝聚现象的纳米纤维焊接方法
技术领域
本发明属于静电纺丝纳米纤维场效应晶体管技术领域,涉及一种新型的基于毛细凝聚现象的纳米纤维焊接方法和高性能的静电纺丝纳米纤维晶体管的制备方法。
背景技术
最近一、二十年,伴随着纳米科技的崛起,一维纳米材料已成为科学研究的热点之一;凭借其独特的物理结构,展现出了优于块材和薄膜的电、磁、力、热、光等物理及化学特性(Chem.Soc.Rev.41,5285,2012)。物理、化学气相沉积技术凭借其高质量的单晶制备工艺、精确的组分控制已成为目前科学研究的首选。但是这项技术需要昂贵的设备、苛刻的真空生长环境、所制备的产品尺寸较小,这些特点无疑增加了生产成本并且限制其大面积生产和应用。相比之下,静电纺丝(Electrospinning)工艺具有独特的优点:1)不需要昂贵的实验设备,在大气环境中即可进行,生产成本低;2)产量高,可大面积成膜,能够满足未来产业化的需求;3)经过前驱体调控,很容易定量均匀的掺入目标元素,实现分子水平上的均匀掺杂;4)可以原位制作光电子器件,避免了复杂的转移过程。因此,凭借上述优势,静电纺丝技术有望在未来替代各种一维纳米材料制备技术成为产业上生产一维纳米材料的主流制备工艺(Adv.Mater.16,1151,2004)。
尽管研究人员付出了大量的努力,但是静电纺丝纳米纤维场效应晶体管的器件性能还是差强人意。无论是有机半导体材料还是金属氧化物半导体材料,已报道的器件性能都远小于应用要求,极大的压制了这个极被看好的研究方向的发展。根据我们对器件结构的分析,性能低劣的主要原因是半导体纳米纤维间的接触电阻。电纺纳米纤维的相互交叠会形成一种三维网络结构,不良的电子接触显然会造成器件性能的恶化。现有的纳米纤维焊接技术主要是热压焊接和化学交联焊接。然而,热压焊接很难应用到熔点较高的聚合物材料,比如聚酰亚胺;交联焊接所使用的交联剂对自然环境和人体健康是有害的。至今,并没有一种简单易行、应用范围广泛和环保的焊接办法,来解决纳米纤维的不良电子接触。
毛细凝聚是一种神奇的自然现象,也被科学家广泛研究,用来实现干燥环境集水、可控水传输和纳米结构组装等。根据开尔文公式和众多的科学研究,在小的结构尺度上,即使没有达到饱和蒸气压,液体的毛细凝聚也是会发生的。纳米纤维间的空隙具有极小的结构尺度,完全可以实现空隙处的蒸汽凝聚。因此设计一种基于毛细凝聚现象的纳米纤维焊接方法和高性能的静电纺丝纳米纤维晶体管的制备方法是完全可行的,具有良好的经济效益和社会效益。
发明内容
本发明的目的在于提供一种基于毛细凝聚现象的纳米纤维焊接方法,本发明的有益效果是通过纳米纤维间的蒸汽凝聚实现纳米纤维的焊接,减少了纤维间的接触电阻,提高了器件的整体性能。
本发明所采用的技术方案是按照以下步骤进行:
步骤1:制备ZrO2高k介质薄膜;
先将硝酸锆加入乙二醇甲醚中,配制ZrO2介电层前驱体溶液,在磁力搅拌器中旋转,得到纯净透明的介电层前驱体溶液;采用单面抛光P型低阻硅作为衬底,用氢氟酸、丙酮和酒精依次对低阻硅衬底超声波清洗,再用去离子水冲洗后用高纯氮气吹干备用;使用匀胶机在P型低阻硅衬底上旋涂ZrO2介电层前驱体溶液,放置于烤胶台上烘烤,再进行高温退火,得到ZrO2高k介质薄膜;
步骤2:制备纳米纤维;
将氯化铟、聚乙烯吡咯烷酮加入到N,N二甲基甲酰胺中,用磁力搅拌器旋转,得到透明的粘性的前驱体溶液备用;将ZrO2高k介质薄膜放置在静电纺丝装置接收端,静电纺丝装置针头处连接直流高压电源,在电场力、库仑力、表面张力作用下,前驱体溶液喷出并剧烈抖动,纳米纤维直径显著下降,最后被接收端接受,得到均匀分布的In2O3复合纳米纤维;
步骤3:毛细焊接处理;
将In2O3复合纳米纤维放置于溶剂蒸汽中处理,处理后得到具有良好纳米纤维间接触的In2O3复合纳米纤维;
步骤4:高温煅烧;
对In2O3复合纳米纤维进行高温煅烧,分解其中的有机物,形成得到氧化物纳米纤维网络;
步骤5:离子束沉积源漏电极;
将氧化物纳米纤维网络放入离子束腔室,将离子束的灯丝预热;待灯丝预热完成后对Au、Ti或Al靶材预溅射,预溅射的作用是去除Au、Ti或Al靶材表面的污染物;再将遮蔽的定型In2O3纳米纤维网络暴露并移至相应的Au、Ti或Al靶位,再次对靶材进行溅射,使得In2O3纳米纤维网络沉积Au、Ti或Al金属薄膜,即制得In2O3/ZrO2纳米纤维场效应晶体管。
进一步,步骤1中将硝酸锆加入乙二醇甲醚中,配制浓度为0.2摩尔/升的ZrO2介电层前驱体溶液。
所述步骤1中匀胶机先设置500转/分匀胶旋涂5秒,然后设置5000转/分匀胶旋涂30秒后放置于150℃的烤胶台上烘烤10分钟,再对其进行高温600℃退火,退火时间为2小时。
进一步,步骤2中将0.2克氯化铟、0.8克聚乙烯吡咯烷酮,聚乙烯吡咯烷酮为130万分子量,加入到5ml N,N二甲基甲酰胺中。
进一步,步骤2中静电纺丝装置针头处连接直流高压电源,接收端距离针头为15cm。
进一步,步骤3中溶剂蒸汽为N,N二甲基甲酰胺、酒精、水、双氧水蒸汽。
进一步,步骤4中对In2O3复合纳米纤维进行500℃高温煅烧90分钟。
进一步,步骤5中真空度为3×10-4Pa,氩气流量为4SCCM,将离子束的灯丝电流加至4A后预热5分钟。
进一步,步骤5中待灯丝预热完成后设置加速电流为10mA、放电电压70V和工作气压4×10-2Pa;对Au、Ti或Al靶材预溅射10分钟。
附图说明
图1为本发明制备的毛细焊接纳米纤维场效应晶体管的结构原理示意图;
图2为本发明涉及的纳米纤维毛细焊接前后纳米纤维形貌对比;
图3为本发明制备的毛细焊接纳米纤维场效应晶体管的输出特性曲线;
图4为本发明制备的毛细焊接纳米纤维场效应晶体管的转移特性曲线。
具体实施方式
图1为本发明制备的毛细焊接纳米纤维场效应晶体管的结构原理示意图,下面结合具体实施方式对本发明进行详细说明。
本实施例涉及的毛细焊接制备纳米纤维场效应晶体管的工艺步骤主要包括:
(1)制备ZrO2高k介质薄膜:
先将硝酸锆加入乙二醇甲醚中,配制浓度为0.2摩尔/升的ZrO2介电层前驱体溶液,在磁力搅拌器中旋转12小时,得到纯净透明的介电层前驱体溶液;采用单面抛光P型低阻硅(~0.0015Ω·cm)作为衬底,用氢氟酸、丙酮和酒精依次对低阻硅衬底超声波清洗各10分钟,再用去离子水冲洗后用高纯氮气吹干备用;使用匀胶机在P型低阻硅衬底上旋涂ZrO2介电层前驱体溶液,匀胶机先设置500转/分匀胶旋涂5秒,然后设置5000转/分匀胶旋涂30秒后放置于150℃的烤胶台上烘烤10分钟,再对其进行高温600℃退火,退火时间为2小时,得到厚度为20纳米的ZrO2高k介质薄膜;
(2)制备纳米纤维:
将0.2克氯化铟、0.8克聚乙烯吡咯烷酮(130万分子量)加入到5ml N,N二甲基甲酰胺中,用磁力搅拌器旋转12小时,得到透明的粘性的前驱体溶液备用;将步骤1制备得到的ZrO2高k介质薄膜放置在静电纺丝装置接收端,静电纺丝装置针头处连接直流高压电源,接收端距离针头为15cm;设置注射泵推进速度为0.5毫升/小时,直流高压为15千伏,在电场力、库仑力、表面张力等作用下,前驱体溶液喷出并剧烈抖动,纳米纤维直径显著下降,最后被接收端接受,得到均匀分布的In2O3复合纳米纤维;
(3)毛细焊接处理:
将步骤2制备的In2O3复合纳米纤维放置于溶剂(N,N二甲基甲酰胺、酒精、水、双氧水等)蒸汽中,用溶剂蒸汽处理10秒,处理后得到具有良好纳米纤维间接触的毛细焊接纳米纤维(图2);
(4)高温煅烧:
对步骤3得到的In2O3复合纳米纤维进行500℃高温煅烧90分钟,分解其中的有机物,形成得到氧化物纳米纤维网络;
(5)离子束沉积源漏电极:
将步骤4中制得的氧化物纳米纤维网络即In2O3纳米纤维网络放入离子束腔室,设置真空度为3×10-4Pa,氩气流量为4SCCM,将离子束的灯丝电流加至4A后预热5分钟;待灯丝预热完成后设置加速电流为10mA、放电电压70V和工作气压4×10-2Pa;对Au、Ti或Al靶材预溅射10分钟,预溅射的作用是去除Au、Ti或Al靶材表面的污染物;再将遮蔽的定型In2O3纳米纤维网络暴露并移至相应的Au、Ti或Al靶位,在保持上述参数不变的情况下再次对靶材进行溅射60分钟,使得In2O3纳米纤维网络沉积Au、Ti或Al金属薄膜,即制得In2O3/ZrO2纳米纤维场效应晶体管。
将本实施例制成的In2O3/ZrO2纳米纤维场效应晶体管行测试,输出特性曲线测试如图3,转移特性曲线测试如图4。
本实施例制得In2O3/ZrO2纳米纤维场效应晶体管的结构包括P型低阻硅衬底、ZrO2层、In2O3纳米纤维层、电极S和电极D;P型低阻硅衬底、ZrO2层和In2O3纳米纤维层由下向上依次制备,电极S和电极D分别固定设置在In2O3纳米纤维层的两端。
本发明的优点还在于毛细焊接改善了纳米纤维间不良电子接触,减少了纤维间的接触电阻,有利于载流子传输,并且提高了器件的整体性能;其制备低成本,工艺简单,原理可靠,产品性能好,器件稳定性好,应用前景广阔,为大面积制备高性能的纳米纤维电子器件提供了可行性方案。
以上所述仅是对本发明的较佳实施方式而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (8)

1.一种基于毛细凝聚现象的纳米纤维焊接方法,其特征在于按照以下步骤进行:
步骤1:制备ZrO2高k介质薄膜;
先将硝酸锆加入乙二醇甲醚中,配制ZrO2介电层前驱体溶液,在磁力搅拌器中旋转,得到纯净透明的介电层前驱体溶液;采用单面抛光P型低阻硅作为衬底,用氢氟酸、丙酮和酒精依次对低阻硅衬底超声波清洗,再用去离子水冲洗后用高纯氮气吹干备用;使用匀胶机在P型低阻硅衬底上旋涂ZrO2介电层前驱体溶液,放置于烤胶台上烘烤,再进行高温退火,得到ZrO2高k介质薄膜;
步骤2:制备纳米纤维;
将氯化铟、聚乙烯吡咯烷酮加入到N,N二甲基甲酰胺中,用磁力搅拌器旋转,得到透明的粘性的前驱体溶液备用;将ZrO2高k介质薄膜放置在静电纺丝装置接收端,静电纺丝装置针头处连接直流高压电源,在电场力、库仑力、表面张力作用下,前驱体溶液喷出并剧烈抖动,纳米纤维直径显著下降,最后被接收端接受,得到均匀分布的In2O3复合纳米纤维;
步骤3:毛细焊接处理;
将In2O3复合纳米纤维放置于溶剂蒸汽中处理,处理后得到具有良好纳米纤维间接触的In2O3复合纳米纤维;
步骤4:高温煅烧;
对In2O3复合纳米纤维进行高温煅烧,分解其中的有机物,形成得到氧化物纳米纤维网络;
步骤5:离子束沉积源漏电极;
将氧化物纳米纤维网络放入离子束腔室,将离子束的灯丝预热;待灯丝预热完成后对Au、Ti或Al靶材预溅射,预溅射的作用是去除Au、Ti或Al靶材表面的污染物;再将遮蔽的定型In2O3纳米纤维网络暴露并移至相应的Au、Ti或Al靶位,再次对靶材进行溅射,使得In2O3纳米纤维网络沉积Au、Ti或Al金属薄膜,即制得In2O3/ZrO2纳米纤维场效应晶体管。
2.按照权利要求1所述一种基于毛细凝聚现象的纳米纤维焊接方法,其特征在于:所述步骤1中将硝酸锆加入乙二醇甲醚中,配制浓度为0.2摩尔/升的ZrO2介电层前驱体溶液;
所述步骤1中匀胶机先设置500转/分匀胶旋涂5秒,然后设置5000转/分匀胶旋涂30秒后放置于150℃的烤胶台上烘烤10分钟,再对其进行高温600℃退火,退火时间为2小时。
3.按照权利要求1所述一种基于毛细凝聚现象的纳米纤维焊接方法,其特征在于:所述步骤2中将0.2克氯化铟、0.8克聚乙烯吡咯烷酮,聚乙烯吡咯烷酮为130万分子量,加入到5ml N,N二甲基甲酰胺中。
4.按照权利要求1所述一种基于毛细凝聚现象的纳米纤维焊接方法,其特征在于:所述步骤2中静电纺丝装置针头处连接直流高压电源,接收端距离针头为15cm。
5.按照权利要求1所述一种基于毛细凝聚现象的纳米纤维焊接方法,其特征在于:所述步骤3中溶剂为N,N二甲基甲酰胺、酒精、水、双氧水。
6.按照权利要求1所述一种基于毛细凝聚现象的纳米纤维焊接方法,其特征在于:所述步骤4中对In2O3复合纳米纤维进行500℃高温煅烧90分钟。
7.按照权利要求1所述一种基于毛细凝聚现象的纳米纤维焊接方法,其特征在于:所述步骤5中真空度为3×10-4Pa,氩气流量为4SCCM,将离子束的灯丝电流加至4A后预热5分钟。
8.按照权利要求1所述一种基于毛细凝聚现象的纳米纤维焊接方法,其特征在于:所述步骤5中待灯丝预热完成后设置加速电流为10mA、放电电压70V和工作气压4×10-2Pa;对Au、Ti或Al靶材预溅射10分钟。
CN201810158136.3A 2018-02-25 2018-02-25 一种基于毛细凝聚现象的纳米纤维焊接方法 Expired - Fee Related CN108417640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810158136.3A CN108417640B (zh) 2018-02-25 2018-02-25 一种基于毛细凝聚现象的纳米纤维焊接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810158136.3A CN108417640B (zh) 2018-02-25 2018-02-25 一种基于毛细凝聚现象的纳米纤维焊接方法

Publications (2)

Publication Number Publication Date
CN108417640A CN108417640A (zh) 2018-08-17
CN108417640B true CN108417640B (zh) 2021-05-11

Family

ID=63128962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810158136.3A Expired - Fee Related CN108417640B (zh) 2018-02-25 2018-02-25 一种基于毛细凝聚现象的纳米纤维焊接方法

Country Status (1)

Country Link
CN (1) CN108417640B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905234A (zh) * 2005-07-30 2007-01-31 三星电子株式会社 制备显示器件的方法以及由此制备的显示器件和薄膜晶体管衬底
CN106601803A (zh) * 2016-12-13 2017-04-26 青岛大学 一种uv光前处理制备氧化铟/氧化铝纳米纤维场效应晶体管的方法
US20170137943A1 (en) * 2015-11-16 2017-05-18 Lam Research Corporation Apparatus for uv flowable dielectric
CN107017307A (zh) * 2017-03-28 2017-08-04 青岛大学 一种低压p型氧化物纳米纤维场效应晶体管的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905234A (zh) * 2005-07-30 2007-01-31 三星电子株式会社 制备显示器件的方法以及由此制备的显示器件和薄膜晶体管衬底
US20170137943A1 (en) * 2015-11-16 2017-05-18 Lam Research Corporation Apparatus for uv flowable dielectric
CN106601803A (zh) * 2016-12-13 2017-04-26 青岛大学 一种uv光前处理制备氧化铟/氧化铝纳米纤维场效应晶体管的方法
CN107017307A (zh) * 2017-03-28 2017-08-04 青岛大学 一种低压p型氧化物纳米纤维场效应晶体管的制备方法

Also Published As

Publication number Publication date
CN108417640A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
CN102279210B (zh) 纳米纤维和粒子粘附层的双敏感层气体传感器及制备方法
KR101331521B1 (ko) 그래핀 박막의 제조 방법
CN106486541B (zh) 一种氧化铟纳米纤维场效应晶体管电学性能的调控方法
Wang et al. Au‐Doped Polyacrylonitrile–Polyaniline Core–Shell Electrospun Nanofibers Having High Field‐Effect Mobilities
CN108365102A (zh) 一种稳定高效二维层状钙钛矿太阳能电池及其制备方法
CN107195781B (zh) 一种基于pmma掺杂小分子的高迁移率晶体管及其制备方法
CN101894913B (zh) 一种超高电荷迁移率的高分子场效应晶体管的制备方法
CN108091414B (zh) 一种银纳米线复合透明导电薄膜及其制备
CN107663717B (zh) 聚偏二氟乙烯纳米纤维膜及其制备方法
CN101009228A (zh) 高度取向的氧化锌纳米柱阵列的超声辅助水溶液制备方法
CN108855775A (zh) 一种钙钛矿太阳能电池中钙钛矿吸光层的涂布工艺及装置
US9437823B2 (en) Production device for a graphene thin film
CN108417640B (zh) 一种基于毛细凝聚现象的纳米纤维焊接方法
CN108914253B (zh) 一种基于静电纺丝和高温碳化制备碳纳米纤维及其修饰电极的方法
CN108832007A (zh) 一种钙钛矿和半导体型硅混合太阳能电池的制备方法
CN108754525A (zh) 一种锆钛酸铅铁电薄膜光电极及其制备方法
CN112881477A (zh) 基于场效应晶体管的气体传感器及其制备方法
CN109541001B (zh) 一种基于聚合物载体的有机纳米纤维气敏膜no2气体传感器制备方法
CN107974730A (zh) 氧化锌纳米纤维的制备方法
CN105002597B (zh) ZnO介孔纳米纤维
CN108417494B (zh) 一种基于ZnSnO纳米纤维的场效应晶体管制备方法
CN115386973A (zh) 一种单源双场静电纺丝制备并排异质结纳米纤维的方法
CN109103112A (zh) 一种低温环保纳米纤维场效应晶体管的制备方法
CN112553895A (zh) 一种基于聚合物纳米纤维与有机酞菁铜溶液的no2气体传感器的制备方法
CN114507942A (zh) 一种混合相变二氧化钛调控聚偏氟乙烯纳米纤维膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210511

CF01 Termination of patent right due to non-payment of annual fee