CN108398781B - 一种模拟光纤激光自由空间相干合成能量分布的方法 - Google Patents

一种模拟光纤激光自由空间相干合成能量分布的方法 Download PDF

Info

Publication number
CN108398781B
CN108398781B CN201810198132.8A CN201810198132A CN108398781B CN 108398781 B CN108398781 B CN 108398781B CN 201810198132 A CN201810198132 A CN 201810198132A CN 108398781 B CN108398781 B CN 108398781B
Authority
CN
China
Prior art keywords
array
formula
energy distribution
hexagonal
array element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810198132.8A
Other languages
English (en)
Other versions
CN108398781A (zh
Inventor
郝群
曹杰
闫雷
张佳利
孟令通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201810198132.8A priority Critical patent/CN108398781B/zh
Publication of CN108398781A publication Critical patent/CN108398781A/zh
Application granted granted Critical
Publication of CN108398781B publication Critical patent/CN108398781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes

Abstract

本发明涉及一种模拟光纤激光自由空间相干合成能量分布的方法,特别是涉及仿真光纤激光在自由空间相干合成的影响参数的方法,属于激光技术领域。本发明对相干合成能量分布的影响参数进行模拟,得出理想的能量分布,在实际中以此为依据进行参数调节,获得近似的能量分布和主瓣百分比,有助于缩小参数的调节范围,减少时间,降低人力物力,降低实验成本。

Description

一种模拟光纤激光自由空间相干合成能量分布的方法
技术领域
本发明涉及一种模拟光纤激光自由空间相干合成能量分布的方法,特别是涉及仿真光纤激光在自由空间相干合成的影响参数的方法,属于激光技术领域。
背景技术
激光束相干合成技术首先在固体激光器和半导体激光器展开应用的,后来扩展到了光纤激光器中。同常规体积庞大的气体和固体激光器相比,光纤激光器具有显著优势:体积小,重量轻,散热性能较高,成本较低,能灵活的适应多种安装环境。当今高能激光武器和大功率防空激光对抗武器的发展,更是对光纤激光相干合成技术的发展提出极为迫切的需求,而这也是开展光纤激光相干合成技术研究的主要目的及推动力。如果实现了光纤激光器的相干合成输出,光纤激光器将成为未来激光武器最强有力的竞争者。
高功率光纤激光器近些年来发展迅速,但是在更高功率、高光束质量的军事和工业应用场合,面临着许多亟待解决的关键技术和问题,这些也是高功率光纤激光系统能否实现高能激光武器的关键。相干合成技术正是解决单根光纤功率不足的有效途径。
光纤激光自由空间相干合成的功率受能量分布和主瓣功率百分比的影响较大。目前的光纤激光器相干合成技术在测试与研究中,为取得良好的相干合成能量分布,获得较高的主瓣百分比,通常采用试错法,或者依据经验进行参数调节。这可能导致时间不可控,耗时耗力,同时会增加实验成本。
发明内容
本发明的目的是为了缩小光纤激光相干合成的参数的调整范围、节约调整时间,降低实验成本,提供一种模拟光纤激光自由空间相干合成能量分布的方法,本方法模拟了光纤激光相干合成中填充因子、相位、阵列排布、阵元数和振幅5种参数对相干合成能量分布的影响,为实际中光纤激光相干合成的实验提供了理论支持。
本发明的目的是通过下述技术方案实现的。
本发明公开的一种模拟光纤激光自由空间相干合成能量分布的方法,建立光纤激光自由空间远场干涉的模型,仿真模拟了填充因子、相位、阵列排布、阵元数和振幅5种参数对相干合成能量分布的影响。
本发明公开的一种模拟光纤激光自由空间相干合成能量分布的方法,包括如下步骤:
步骤一:建立光纤激光在自由空间内远场干涉的数学模型。
高斯光束的振幅分布公式为:
Figure BDA0001593648920000021
式(1)中,r为高斯光束每一点到中心的半径,z为高斯光束传播距离,A0为幅值,w0是高斯光束的束腰半径,w(z)为高斯光束的束宽,i2=-1,
Figure BDA0001593648920000022
是高斯光束的相位部分。
w(z)由公式(2)确定:
Figure BDA0001593648920000023
λ为高斯光束的波长。当距离z=0时,有w(z)=w0
在直角坐标系中,有r2=x2+y2,单根高斯光束近场振幅为:
Figure BDA0001593648920000024
式(3)中,x,y为直角坐标系中的横纵坐标。
由夫琅禾费衍射理论可知,远场平面的场分布等于近场孔径平面场分布的傅里叶变换,远场光强分布公式:
Figure BDA0001593648920000025
式(4)中,
Figure BDA0001593648920000031
k为波数;λ为波长,(xm,yn)是阵元坐标;经过出射面的任意一点为出射点,该出射点在观察面对应的点为观察点,θx和θy指的是出射点和观察点连线与x轴,y轴的夹角,单位为弧度。
步骤二,推导不同阵列的阵元坐标。
光纤阵列排布包括方形、圆形和六角形阵列排布。分别建立三种阵列的数学模型,计算不同阵列排布中阵元的坐标。
圆形阵列排布:圆形阵列排布中,阵元的束腰半径为w0,阵元间距为d。设m表示圆形阵列环数,对只有一个阵元的阵列,m=0;对于m≥1的阵列,n表示第m环上的第n个阵元,其中1≤n≤6m。由阵列原理可知,第m层上的第n个阵元的坐标(xmn,ymn)表示为:
Figure BDA0001593648920000032
阵元总数N表示为:
Figure BDA0001593648920000033
式(6)中,M为圆形阵列的总环数。
方形阵列排布:方阵排布的阵元宽度为奇数。单个激光的束腰半径为w0,阵元间距为d。H为方形阵列总行数,C为总列数。设[H/2]+1行[C/2]+1列的激光器光束为方阵原点,则方阵中阵元的坐标(xh,yc)为:
Figure BDA0001593648920000041
式(7)中,h,c为方阵中的行与列。
六角形阵列排布:阵元中心为一个阵元,每一层成六角形阵列排布。阵元的束腰半径为w0,阵元间距为d。六角形阵列利用旋转原理:设U为六角形外扩最大层,U≥1。u为六角形阵列的第几层,u∈(1,U);第u层上,以v个点为一组,进行旋转,v∈(1,u)。则第u层,第v个阵元坐标(xuv,yuv)为:
Figure BDA0001593648920000042
直角坐标系中的旋转变换公式为:
Figure BDA0001593648920000043
式(9)中,(x,y)为变换后的坐标,(x',y')为变换前坐标,θ为旋转角度。
因为六角形需要旋转6次,每次60度,由此得到如下公式:
Figure BDA0001593648920000044
式(10)中(Xuv,Yuv)为变换后的六角阵列阵元坐标,a为旋转次数。
步骤三:建立不同阵列排布下远场干涉模型。
依据公式(4)和公式(5)建立圆形阵列排布方式下的远场干涉仿真模型;依据公式(4)和公式(7)建立方形阵列排布下的远场干涉仿真模型;依据公式(4)和公式(10)建立六角形阵列排布下的远场干涉仿真模型。
步骤四:输入参数仿真相干合成的能量分布。
依据建立的圆形阵列、方形阵列和六角形阵列的远场干涉模型,通过改变填充因子、相位、阵列排布、阵元数和振幅5种参数,得出光纤激自由空间相干合成的能量分布。
有益效果
1、本发明公开的一种模拟光纤激光自由空间相干合成能量分布的方法,对相干合成能量分布的影响参数进行模拟,得出理想的能量分布,在实际中以此为依据进行参数调节,获得近似的能量分布和主瓣百分比,有助于缩小参数的调节范围,减少时间,降低人力物力,降低实验成本。
2、本发明公开的一种模拟光纤激光自由空间相干合成能量分布的方法,模拟了5种参数对光纤激光自由空间相干合成能量分布的影响,能实现参数优化组合,有助于降低实验成本
3、本发明公开的一种模拟光纤激光自由空间相干合成能量分布的方法,模拟了5种参数对光纤激光自由空间相干合成能量分布的影响,为实际中提高光纤激光相干合成效率提供理论支持。
附图说明
图1为一种模拟光纤激光自由空间相干合成能量分布的方法流程图;
图2为圆形阵列排布示意图;
图3为方形阵列排布示意图;
图4为六角形阵列排布示意图;
图5为圆形阵列两组参数的能量分布仿真结果;其中,a为第一组参数的能量分布仿真结果图;b为第二组参数的能量分布仿真结果图;
图6为方形阵列两组参数的能量分布仿真结果;其中,a为第一组参数的能量分布仿真结果图;b为第二组参数的能量分布仿真结果图;
图7为六角形阵列两组参数的能量分布仿真结果;其中,a为第一组参数的能量分布仿真结果图;b为第二组参数的能量分布仿真结果图。
具体实施方式
为了更好的说明本发明的目的和优点,下面结合附图和实例对发明内容做进一步说明。
实施例1
本实施例公开的一种模拟光纤激光自由空间相干合成能量分布的方法,如图1所示,包括如下步骤:
步骤一:建立光纤激光在自由空间内远场干涉的数学模型。
高斯光束的振幅公式为:
Figure BDA0001593648920000061
式(11)中,r为高斯光束每一点到中心的半径,z为高斯光束传播距离,A0为幅值,w0是高斯光束的束腰半径,w(z)为高斯光束的束宽,i2=-1,
Figure BDA0001593648920000062
是高斯光束的相位部分。
w(z)由公式(12)确定:
Figure BDA0001593648920000063
λ为高斯光束的波长。当距离z=0时,有w(z)=w0
在直角坐标系中,有r2=x2+y2,单根高斯光束近场振幅公式为:
Figure BDA0001593648920000064
式(13)中,x,y为直角坐标系中的横纵坐标。
由夫琅禾费衍射理论可知,远场平面的场分布等于近场孔径平面场分布的傅里叶变换,远场光强分布公式:
Figure BDA0001593648920000071
式(14)中,
Figure BDA0001593648920000072
k为波数;λ为波长,(xm,yn)是阵元坐标;经过出射面的任意一点为出射点,该出射点在观察面对应的点为观察点,θx和θy指的是出射点和观察点连线与x轴,y轴的夹角,单位为弧度。
步骤二,建立圆形光纤阵列排布数学模型。
圆形阵列排布:圆形阵列排布中,阵元的束腰半径为w0,阵元间距为d。设m表示圆形阵列环数,对只有一个阵元的阵列,m=0;对于m≥1的阵列,n表示第m环上的第n个阵元,其中1≤n≤6m。由阵列原理可知,第m层上的第n个阵元的坐标(xmn,ymn)表示为:
Figure BDA0001593648920000073
阵元总数N表示为:
Figure BDA0001593648920000074
式(16)中,M为圆形阵列的总环数。
步骤三:建立圆形阵列排布下远场干涉仿真模型。如图2所示,依据公式(14)和公式(15)建立圆形阵列排布方式下的远场干涉仿真模型;
步骤四:输入参数仿真相干合成的能量分布。
圆形阵列环数为2,其具体仿真参数设定如表格1。两组圆形阵列数据的仿真结果为附图5。
表格1圆形阵列仿真参数
Figure BDA0001593648920000081
实施例2:
本实施例公开的一种模拟光纤激光自由空间相干合成能量分布的方法,包括如下步骤:
步骤一:同实施例1中的步骤一。
步骤二:建立方形光纤阵列排布数学模型。如图3所示;
方形阵列排布:方阵排布的阵元宽度为奇数。单个激光的束腰半径为w0,阵元间距为d。H为方形阵列总行数,C为总列数。设[H/2]+1行[C/2]+1列的激光器光束为方阵原点,则方阵中阵元的坐标(xh,yc)为:
Figure BDA0001593648920000082
式(17)中,h,c为方阵中的行与列。
步骤三:建立方形阵列排布下远场干涉仿真模型。依据公式(14)和公式(17)建立方形阵列排布方式下的远场干涉仿真模型;
步骤四:输入参数仿真相干合成的能量分布。
对方形阵列仿真参数设定为:方形阵列为3X3的方阵,其具体仿真参数设定如表格2。两组方形阵列数据的仿真结果为附图6。
表格2方形阵列仿真参数
Figure BDA0001593648920000083
Figure BDA0001593648920000091
实施例3:
本实施例公开的一种模拟光纤激光自由空间相干合成能量分布的方法,包括如下步骤:
步骤一:同实施例1中的步骤一。
步骤二:建立六角形光纤阵列排布数学模型。如图4所示;
六角形阵列排布:阵元中心为一个阵元,每一层成六角形阵列排布。阵元的束腰半径为w0,阵元间距为d。六角形阵列利用旋转原理:设U为六角形外扩最大层,U≥1。u为六角形阵列的第几层,u∈(1,U);第u层上,以v个点为一组,进行旋转,v∈(1,u)。则第u层,第v个阵元坐标(xuv,yuv)为:
Figure BDA0001593648920000092
直角坐标系中的旋转变换公式为:
Figure BDA0001593648920000093
式(19)中,(x,y)为变换后的坐标,(x',y')为变换前坐标,θ为旋转角度。
因为六角形需要旋转6次,每次60度,由此得到如下公式:
Figure BDA0001593648920000094
式(20)中(Xuv,Yuv)为变换后的六角阵列阵元坐标,a为旋转次数。
步骤三:建立六角形阵列排布下远场干涉仿真模型。依据公式(14)和公式(20)建立六角形阵列排布方式下的远场干涉仿真模型;
步骤四:输入参数仿真相干合成的能量分布。
对六角形阵列仿真参数设定为:六角形阵列共2环,具体仿真参数见两组六角形阵列数据的仿真结果见附图7。
表格3。两组六角形阵列数据的仿真结果见附图7。
表格3六角形阵列仿真参数
Figure BDA0001593648920000101
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种模拟光纤激光自由空间相干合成能量分布的方法,其特征在于:包括如下步骤:
步骤一:建立光纤激光器在自由空间内远场干涉的数学模型;
高斯光束的振幅分布公式为:
Figure FDA0002553484810000011
式(1)中,r为高斯光束每一点到中心的半径,z为高斯光束传播距离,A0为幅值,w0是高斯光束的束腰半径,w(z)为高斯光束的束宽,i2=-1,
Figure FDA0002553484810000012
是高斯光束的相位部分;
w(z)由公式(2)确定:
Figure FDA0002553484810000013
λ为高斯光束的波长;当距离z=0时,有w(z)=w0
在直角坐标系中,有r2=x2+y2,单根高斯光束近场振幅为:
Figure FDA0002553484810000014
式(3)中,x,y为直角坐标系中的横纵坐标;
由夫琅禾费衍射理论可知,远场平面的场分布等于近场孔径平面场分布的傅里叶变换,远场光强分布公式:
Figure FDA0002553484810000015
式(4)中,
Figure FDA0002553484810000016
k为波数;λ为波长,(xm,yn)是阵元坐标;经过出射面的任意一点为出射点,该出射点在观察面对应的点为观察点,θx和θy指的是出射点和观察点连线与x轴,y轴的夹角,单位为弧度;
步骤二,推导不同阵列的阵元坐标;
光纤阵列排布包括方形、圆形和六角形阵列排布;分别建立三种阵列的数学模型,计算不同阵列排布中阵元的坐标;
圆形阵列排布:圆形阵列排布中,阵元的束腰半径为w0,阵元间距为d;设m表示圆形阵列环数,对只有一个阵元的阵列,m=0;对于m≥1的阵列,n表示第m环上的第n个阵元,其中1≤n≤6m;由阵列原理可知,第m层上的第n个阵元的坐标(xmn,ymn)表示为:
Figure FDA0002553484810000021
阵元总数N表示为:
Figure FDA0002553484810000022
式(6)中,M为圆形阵列的总环数;
方形阵列排布:方阵排布的阵元宽度为奇数;单个激光的束腰半径为w0,阵元间距为d;H为方形阵列总行数,C为总列数;设[H/2]+1行[C/2]+1列的激光器光束为方阵原点,则方阵中阵元的坐标(xh,yc)为:
Figure FDA0002553484810000023
式(7)中,h,c为方阵中的行与列;
六角形阵列排布:阵元中心为一个阵元,每一层成六角形阵列排布;阵元的束腰半径为w0,阵元间距为d;六角形阵列利用旋转原理:设U为六角形外扩最大层,U≥1;u为六角形阵列的第几层,u∈(1,U);第u层上,以v个点为一组,进行旋转,v∈(1,u);则第u层,第v个阵元坐标(xuv,yuv)为:
Figure FDA0002553484810000024
直角坐标系中的旋转变换公式为:
Figure FDA0002553484810000031
式(9)中,(x,y)为变换后的坐标,(x',y')为变换前坐标,θ为旋转角度;
因为六角形需要旋转6次,每次60度,由此得到如下公式:
Figure FDA0002553484810000032
式(10)中(Xuv,Yuv)为变换后的六角阵列阵元坐标,a为旋转次数;
步骤三:建立不同阵列排布下远场干涉模型;
依据公式(4)和公式(5)建立圆形阵列排布方式下的远场干涉仿真模型;依据公式(4)和公式(7)建立方形阵列排布下的远场干涉仿真模型;依据公式(4)和公式(10)建立六角形阵列排布下的远场干涉仿真模型;
步骤四:输入参数仿真相干合成的能量分布;
依据建立的圆形阵列、方形阵列和六角形阵列的远场干涉模型,通过改变填充因子、相位、阵列排布、阵元数和振幅5种参数,得出光纤激自由空间相干合成的能量分布;
步骤五:对步骤四得到的相干合成能量分布数据分析,得到最优阵列组合;
所述步骤四得到了针对填充因子、相位、阵列排布、阵元数和振幅5种参数的表格和对应的能量分布图;分别对各图进行控制变量法分析可得,在相同参数下,中心主瓣能量从大到小排列为六角阵列中心主瓣能量大于圆形阵列排布中心主瓣能量大于方形阵列排布中心主瓣能量;由此可得在相同参数下,六角阵列排布方式是最优阵列组合。
CN201810198132.8A 2018-03-12 2018-03-12 一种模拟光纤激光自由空间相干合成能量分布的方法 Active CN108398781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810198132.8A CN108398781B (zh) 2018-03-12 2018-03-12 一种模拟光纤激光自由空间相干合成能量分布的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810198132.8A CN108398781B (zh) 2018-03-12 2018-03-12 一种模拟光纤激光自由空间相干合成能量分布的方法

Publications (2)

Publication Number Publication Date
CN108398781A CN108398781A (zh) 2018-08-14
CN108398781B true CN108398781B (zh) 2021-05-04

Family

ID=63092706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810198132.8A Active CN108398781B (zh) 2018-03-12 2018-03-12 一种模拟光纤激光自由空间相干合成能量分布的方法

Country Status (1)

Country Link
CN (1) CN108398781B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9713422D0 (en) * 1997-06-26 1997-08-27 Secr Defence Single mode optical fibre
CN1145058C (zh) * 2001-09-07 2004-04-07 中国科学院上海光学精密机械研究所 位相六角阵列的照明方法
US7107795B2 (en) * 2003-02-11 2006-09-19 Cheo Peter K Method for forming high-density multicore phase-locked fiber laser array
EP2020611A1 (fr) * 2007-07-26 2009-02-04 Universite des Sciences et Technologies de Lille (USTL) Fibre optique microstructurée hybride permettant un guidage par bandes interdites photoniques et par reflexion totale interne et optimisée pour des applications non linéaires
US8285098B2 (en) * 2009-03-31 2012-10-09 Imra America, Inc. Wide bandwidth, low loss photonic bandgap fibers
CN103513350B (zh) * 2013-10-09 2016-01-06 中南大学 一种基于粒子群算法的阵列波导器件对准耦合方法及装置
CN104516715B (zh) * 2014-12-29 2017-11-14 太原理工大学 有可扩放性的Tbps全光并行真随机数发生器
CN205982709U (zh) * 2016-06-15 2017-02-22 鹤壁职业技术学院 一种高双折射近零色散的增益光子晶体光纤

Also Published As

Publication number Publication date
CN108398781A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
CN105842702A (zh) 多波束成像声呐的旁瓣抑制方法、阵列稀疏方法
CN105406203B (zh) 一种基于地理约束的稀疏天线阵列的优化布阵方法
CN102540474A (zh) 一种实现边缘陡峭且光强波动低的平顶光束整形控制方法及其整形装置
CN109992845B (zh) 一种基于matlab和hfss的波束控制和阵列方向图优化方法
CN107329274A (zh) 基于g‑s算法产生艾里光束的装置及其方法
CN106096218A (zh) 一种移动卫星通信稀布平面天线阵列优化方法
CN105762533A (zh) 基于模块化的8单元l形子阵的应用方法及其应用装置
CN108398781B (zh) 一种模拟光纤激光自由空间相干合成能量分布的方法
CN105024166A (zh) 基于子阵的平面阵列天线方向图综合方法
CN110082731A (zh) 一种连续相位的mimo雷达最优波形设计方法
CN104865768B (zh) 基于二维液晶光相控阵阵列的激光相干合成方法
CN109506763B (zh) 一种基于教与学优化的矢量水听器稀疏布阵方法
CN116882147A (zh) 基于混合麻雀搜索算法的阵列天线合成方法
CN112511199B (zh) 一种低复杂度3d_mimo相关信道快速生成方法
CN115146544A (zh) 一种采用知识和数据混合驱动的阵列天线设计方法
CN105572644A (zh) 一种极化敏感fda雷达及其波束形成方法和装置
Bucci et al. An effective algorithm for the synthesis of a plane wave generator for linear array testing
Cao et al. Sparse circular array pattern optimization based on MOPSO and convex optimization
Monorchio et al. An efficient interpolation scheme for the synthesis of linear arrays based on Schelkunoff polynomial method
CN106773077A (zh) 一种基于液晶相位控制法的阵列分束方法及系统
CN110717243B (zh) 一种基于线性约束的宽带方向图综合方法
CN104062757B (zh) 一种用于相控阵多光束三维扫描的相位分布设计方法
CN113691294A (zh) 一种近场稀疏阵列天线波束建立方法及装置
Zhao et al. An improved mixed-integer multi-objective particle swarm optimization and its application in antenna array design
CN110471187B (zh) 产生呈六角密排分布的三维阵列瓶状光束的装置与方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant