CN108398510A - 一种兜唇石斛的质量检测方法 - Google Patents
一种兜唇石斛的质量检测方法 Download PDFInfo
- Publication number
- CN108398510A CN108398510A CN201710064178.6A CN201710064178A CN108398510A CN 108398510 A CN108398510 A CN 108398510A CN 201710064178 A CN201710064178 A CN 201710064178A CN 108398510 A CN108398510 A CN 108398510A
- Authority
- CN
- China
- Prior art keywords
- variable
- roxb
- fisch
- dendrobium
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
- G01N30/8675—Evaluation, i.e. decoding of the signal into analytical information
- G01N30/8686—Fingerprinting, e.g. without prior knowledge of the sample components
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Library & Information Science (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本发明公开兜唇石斛的质量检测方法,包括:1)以ITS‑26SE和ITS‑17SE为引物,进行测序,以鉴定待测石斛药材的品种;2)对样本容量为n的样本进行色谱检测,获取以化学小分子成分夏佛托苷和/或柚皮素作为参照成分的检测数据;3)对样本分别进行指纹图谱检测,获取兜唇石斛的全化学成分的指纹图谱峰面积值;4)以色谱数据中夏佛托苷和/或柚皮素的成分含量值作为响应变量,将指纹图谱中的其它成分的峰面积值作为自变量建立分析模型,通过Lasso方法筛选变量建立化学小分子成分的相关特征指纹图谱模型。通过一代测序及特征指纹图谱,精确地鉴别和控制兜唇石斛药材的质量。
Description
技术领域
本发明属于中药成份检测分析领域,具体涉及一种兜唇石斛的质量检测方法。
背景技术
兜唇石斛(学名:Dendrobium aphyllum(Roxb.)C.Fischer):又名天宫石斛。茎下垂,肉质,细圆柱形,长30cm~60cm,直径0.4cm~0.7cm,不分枝,具多节,节间长2cm~3.5cm;叶基部具鞘,叶鞘纸质,干后浅白色,鞘口呈杯状张开。总状花序几乎无花序轴,每1朵~3朵为一束,从落叶的老茎或具叶的老茎上部发出;花序柄长约0.2cm~0.5cm,基部被3枚~4枚鞘;鞘膜质,长0.2cm~0.3cm;花苞片浅白色,膜质,卵形,长约0.3cm,先端急尖;花梗和子房暗褐色带绿色,长2cm~2.5cm;花开展,下垂;萼片和花瓣白色带淡紫红色或浅紫红色的上部或有时全体紫红色;中萼片近披针形,长约2.3cm,宽0.5cm~0.6cm,先端近锐尖,具5条脉;侧萼片与中萼片相似,等大,先端急尖,基部歪斜;萼囊狭圆锥形,长约0.5cm,末端钝;花瓣椭圆形,长2.3cm,宽0.9cm~1.0cm,先端钝,全缘,具5条脉;唇瓣宽倒卵形或近圆形,长、宽各约2.5cm,两侧向上围抱蕊柱而形成喇叭状,基部两侧具紫红色条纹并且收狭成为短爪,中部以上部分为淡黄色,中部以下部分浅粉红色,边缘具部整齐的细齿,两面密布短柔毛;蕊柱白色,其前面两侧具红色条纹,长约0.3cm;药帽白色,近圆锥形,顶端稍凹缺,密布细乳突状毛,前端边缘宽凹缺。蒴果狭倒卵形,长约4cm,直径1.2cm。全草:微苦,凉。清热解毒。用于咳嗽,咽喉痛,口干舌燥,小儿惊风,食物中毒,烧、烫伤。
石斛一直被人们视为珍贵的中草药,具有十分重要的滋补功效。在临床上,石斛被用于治疗多种疾病,具有增强免疫力、抗氧化、降血糖和抑制癌症等药理功效。由于人为长期无节制采挖及不合理利用石斛,其野生资源日趋减少,市场上出现了一些以假乱真、以次充好的现象。此外,由于石斛品种较多,其品种间的杂交使得其近缘的种存在性状交叉现象,分类区别比较困难。因此,有必要建立石斛的特征指纹图谱对石斛的药材质量进行评价。
色谱指纹图谱是一种综合的、可量化的鉴别手段,作为一种全局分析的全景模式,反映的是样品的整体情况。但在色谱指纹图谱分析过程中,很多数据都是高维的,即数据包含很多属性或特征,比如有关兜唇石斛色谱指纹图谱,就能更好地对兜唇石斛进行描述,但在实际应用中对高维数据直接进行操作将会面临“维数灾难”的问题,“维数灾难”会导致建模过程所需要的样本数随着维数升高而呈指数级增长。面对高维数据,常规的最小二乘方法不再适用,为了提高模型的可解释性和预测的准确度,变量选择变得很重要。如何高效地从众多的变量中筛选出对因变量有重要作用的若干个变量,是在对指纹图谱进行分析时亟需解决的问题。
目前国家药典采用定量测定中药材中某一活性成分或有效成分即小分子成分的含量的高低来评价其质量。但研究证明,中药的疗效是来自其多种“活性成分”之间的协同作用,甚至是被普遍公认的有效的“活性成分”与“非活性成分”之间的协同作用或“生克作用”才能达到中药的疗效,而不是某一活性成分单独作用的结果。在中医理论指导下的中药,任何一种活性成分均不能全面反映中医用药所体现的整体疗效。
发明内容
本发明提供了一种兜唇石斛的质量检测方法,通过一代测序鉴定石斛药材的品种,利用Lasso方法筛选变量建立兜唇石斛中的化学小分子成分的相关特征指纹图谱模型,通过一代测序和相关特征指纹图谱模型准确评价兜唇石斛的药材的质量。
本发明的目的是通过以下技术方案实现的:
一种兜唇石斛的质量检测方法,包括:
1)以ITS-26SE:5’GAATTCCCCGGTTCGCTCGCCGTTAC 3’;
ITS-17SE:5’ACGAATTCATGGTCCGGTGAAGTGTTCG 3’为引物,进行PCR扩增测序,以鉴定待测石斛药材的品种为兜唇石斛样本;
2)对样本容量为n的兜唇石斛样本进行色谱检测,获取以化学小分子成分夏佛托苷和/或柚皮素作为参照成分的检测数据;
3)对样本分别进行指纹图谱检测,获取兜唇石斛的全化学成分的指纹图谱峰面积值;
4)以色谱数据中夏佛托苷和/或柚皮素的成分含量值作为响应变量,将指纹图谱中的其它成分的峰面积值作为自变量建立分析模型,通过Lasso(The Least AbsoluteShrinkage and Selection Operator)方法筛选变量建立化学小分子成分的相关特征指纹图谱模型,其基本模型为:
y=XTβ+ε
其中,y为响应变量,y=(y1,y2,...,yn)T;X为矩阵,X=(x1,x2,...,xn)T;E(ε)=0;Var(ε)=σ2In;ε为模型的随机误差项;σ是随机误差项的标准差;n为样本量;In是一个n×n的单位阵。
假定随机项服从古典假定,即:
(1)随机项具有零均值,E(εi|xi)=0;
(2)随机项具有同方差,Var(εi|xi)=σ2;
(3)随机项无序列相关性,Cov(εi,εj)=0,i≠j;
(4)ε服从正态分布,εi~N(0,σ2)。
随机项的方差矩阵是一个对角线为σ2,其他地方为0的方阵,如下所示:
其中,In是一个n×n的单位阵,n为数据的样本量,
进一步地,所述Lasso方法是通过式Ⅰ计算实现的:
在式Ⅰ中,n为样本量;p*为变量数;p为样本的维数;y=(y1,y2,...,yn)T∈Rn为响应变量;x=(x1,x2,...,xn)T为n×p的设计矩阵,包含对响应变量有影响的所有候选自变量;λ为调整参数;为惩罚函数;β0的含义为公式的截距项,也就是当所有自变量x为0时响应变量y的值;βj的含义是自变量xj的系数,即自变量xj对响应变量y的影响程度。
进一步地,所述λ的选择方法为K折交叉验证法:
K-fold CV:
其中,K为5或10。
进一步地,所述分析模型为取CV值最小的子模型。
进一步地,所述λ的选择遵循GCV准则,所述GCV准则定义为:
其中,SSEk是含有k个变量的CV子模型的残差平方和,df=trace{P(λ)};trace表示矩阵的迹。在线性代数中,一个n×n的矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。也就是说,df等于矩阵P(λ)中主对角线上所有元素的和。
进一步地,所述分析模型为取GCV值最小的子模型。
进一步地,当色谱数据呈现超高维情形时,首先采用以下SIS(Sure IndependenceScreening)方法筛选变量,再利用Lasso方法处理;
SIS:Mγ={1≤i≤p:|ωi|是前|γn|个比较大的}
其中,M*={1≤i≤p:βi≠0}表示真模型中非零系数的下标集;s=|M*|表示非零系数的个数;ω=(ω1,ω2,...,ωp)T=XTy;对于任意给定的γ∈(0,1),ω的p个元素按绝对值从大到小排列并且定义;此时|γn|<n,选取Mγ中下标对应的自变量,是超高维降到d(d≤n)维;其中,d=n或者d=[n/log n]。
本发明还提供了上述方法在兜唇石斛质量控制中的应用。
与现有技术相比,本发明至少具有以下优点:
(a)本发明中先以ITS-26SE和ITS-17SE为引物测定石斛药材的特征序列,以确定该石斛药材为兜唇石斛品种;其后以夏佛托苷和/或柚皮素的色谱数据作为自变量,将上述检测数据中的其它成分的色谱数据作为因变量建立小分子成分与指纹图谱线性回归模型,使石斛药材的质量评价更为精确;
(b)本发明采用Lasso方法对兜唇石斛指纹图谱进行变量选择,有效的解决了“维数灾难”的问题;
(c)本发明对原有指纹图谱进行降维,建立兜唇石斛化学小分子成分的相关特征指纹图谱,对单一化学小分子成分的含量解释针对性和适用性更强;
(d)本发明通过兜唇石斛化学小分子成分的相关特征指纹图谱,实现化学小分子成分含量的关联性分析,能有效鉴别和控制兜唇石斛药材的质量;
(e)当色谱数据呈现超高维情形时,首先采用SIS方法进行降维,再利用Lasso方法处理。
附图说明
图1为兜唇石斛全成分指纹图谱色谱图;
图2为夏佛托苷化学小分子物质标准样品的色谱图;
图3为柚皮素化学小分子物质标准样品的色谱图;
图4为兜唇石斛中夏佛托苷化学小分子的色谱图;
图5为兜唇石斛中柚皮素化学小分子的色谱图。
注:1号峰夏佛托苷;2号峰柚皮素。
具体实施方式
下面结合附图和实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
实施例1兜唇石斛的一代测序
一代测序引物序列:
ITS-26SE:5’GAATTCCCCGGTTCGCTCGCCGTTAC 3’;
ITS-17SE:5’ACGAATTCATGGTCCGGTGAAGTGTTCG 3’。
扩增测序参数为:98℃变性2min后进行PCR循环,PCR循环参数为98℃20s;52℃30s;68℃1min,38个循环,68℃7min,扩增结束后设置4℃保温,并进行一代分子测序。
通过一代测序,鉴别待测石斛药材的品种为兜唇石斛。
实施例2兜唇石斛的提取方法
取兜唇石斛干燥样品,用粉碎机粉碎,过药典筛(孔径0.335mm),精密称取石斛粉末1.000g(称量误差不能超过0.2%),置于100ml锥形瓶中,分别加入50mL 75%甲醇(V水:V甲醇=25:75),室温下超声30min后取出,过滤,滤液旋蒸浓缩至干,用75%甲醇溶剂(V水:V甲醇=25:75)溶解,最后转移至10ml容量瓶中定容,摇匀,以0.45μm微孔滤膜过滤,即得兜唇石斛样品溶液。
实施例3兜唇石斛提取物的色谱检测方法
①对照品溶液制备
分别精密称取夏佛托苷4.10mg和柚皮素4.08mg,分别置于10ml容量瓶中,加75%(V/V)甲醇溶解稀释,摇匀,作为储备液。于4℃冰箱内冷藏备用。
再分别精密吸取一定量的对照品储备溶液,利用75%甲醇稀释,准确配制夏佛托苷和柚皮素混合对照品溶液。通过不同的稀释比例,稀释制备成分7个浓度点。注入高效液相色谱仪。
②兜唇石斛的小分子成分含量测定样品提取处理方法:
取本品粉末(过三号筛)1.00g,精密称定,置100ml容量瓶中,精密加甲醇-水(75:25)50ml,超声处理(功率250W,频率40kHz)30分钟,放冷,过滤,滤液旋蒸浓缩至干,用5ml甲醇-水(75:25)溶解,上清液过0.45μm微孔滤膜,取续滤液,即得。
③兜唇石斛小分子成分含量测定色谱条件:
色谱条件:
含量测定色谱条件:GraceAllitima C18色谱柱(250mm*4.6mm,5μm);流动相采用二元梯度洗脱系统,A相:0.2%醋酸-水,B相:乙腈;梯度洗脱程序如表1;以波长290nm测定柚皮素,以波长334nm测定夏佛托苷;参比波长为500nm,柱温30℃;流速1.0mL/min,进样量20μL。
指纹图谱色谱条件:GraceAllitima C18色谱柱,优选为250mm×4.6mm,5μm规格的色谱柱;流动相:A相:0.4%乙酸+20mmol/L醋酸铵水溶液,B相:乙腈;梯度洗脱:0~12min:2%~15%B相,12~35min:15%~24%B相,35~45min:24%~36%B相,45~60min:36%~75%B相,60~80min:75%~95%B相;流速1.0mL/min;柱温30℃;进样量20μL;检测波长280nm。
表1兜唇石斛小分子成分含量测定的洗脱梯度
图1为兜唇石斛全成分指纹图谱色谱图,检测波长280nm;
图2为夏佛托苷(1号峰)标准样品的检测图谱图;
图3为柚皮素(2号峰)标准样品的检测图谱图;
图4为兜唇石斛中夏佛托苷(1号峰)的检测图谱;
图5为兜唇石斛中柚皮素(2号峰)的检测图谱。
实施例4兜唇石斛夏佛托苷的相关特征指纹图谱的建立
1.石斛样品溶液制备
取石斛干燥样品,用粉碎机粉碎,过药典筛(孔径0.335mm),精密称取石斛粉末1.000g(称量误差不能超过0.2%),置于100ml锥形瓶中,分别加入50mL75%甲醇(V水:V甲醇=25:75),室温下超声30min后取出,过滤,滤液旋蒸浓缩至干,用75%甲醇溶剂(V水:V甲醇=25:75)溶解,最后转移至10ml容量瓶中定容,摇匀,以0.45μm微孔滤膜过滤,即得。表2为得到的对照品夏佛托苷的线性关系。
表2对照品夏佛托苷线性关系表
2.兜唇石斛夏佛托苷的相关特征指纹图谱的建立方法
第一步:计算所有协变量x与y的相关系数;
第二步:将相关系数的绝对值从大到小进行排列,选出前2√n个协变量,记为x_1,x_2,…,x_p;
第三步:将y与x_1,x_2,…,x_p进行线性回归,采用Lasso方法,进行变量选择。
Lasso(LeastAbsolute Shrinkage and Selection Operator)函数的第一部分表示模型拟合的优良性,第二部分可以视为惩罚。该方法把小的系数往0压缩,一旦某个系数被压缩到0,对应的变量就被删除。就好像用“筛子”过滤,把影响小的变量一次就筛掉了。λ越小,模型中的变量越多λ越大,收缩量越大,选出的变量就越少。而Lasso方法是一种连续的、有序的过程,方差较小。当调节参数足够大时,惩罚项具有将其中某些系数的估计值强制设定为0的作用,因而Lasso方法可以进行变量选择,能够得到稀疏模型。
当自变量为p,样本量为n,当p>>n,首先采用SIS方法降维,再采用Lasso方法筛选变量。
SIS:Mγ={1≤i≤p:|ωi|是前|γn|个比较大的}
其中,M*={1≤i≤p:βi≠0}表示真模型中非零系数的下标集;s=|M*|表示非零系数的个数;ω=(ω1,ω2,...,ωp)T=XTy;对于任意给定的γ∈(0,1),ω的p个元素按绝对值从大到小排列并且定义;此时|γn|<n,选取Mγ中下标对应的自变量,使超高维降到d(d≤n)维;其中,d=n或者d=[n/logn]。
Lasso方法筛选的线性模型为:
其中,yi为第i个响应变量,y=(y1,y2,...,yn);Xi是Pn×1阶的协变量,X=(x1,x2,...,xn)';εi是均值为0,方差为σ2的i.i.d的随机误差项,E(ε)=0,Var(ε)=σ2In。
假定随机项服从古典假定,即:
(1)随机项具有零均值,E(εi|xi)=0;
(2)随机项具有同方差,Var(εi|xi)=σ2;
(3)随机项无序列相关性,Cov(εi,εj)=0,i≠j;
(4)ε服从正态分布,εi~N(0,σ2)。
随机项的方差矩阵是一个对角线为σ2,其他地方为0的方阵,如下所示:
其中,In是一个n×n的单位阵,n为数据的样本量,
为了同时进行变量选择和对参数进行估计,Lasso方法通过惩罚最小二乘目标函数式Ⅰ的最小化来实现。
其中,y=(y1,y2,...,yn)T∈Rn为响应变量向量。以石斛数据为例,每种石斛有两个响应变量序列(夏佛托苷(μg/g)、柚皮素(μg/g))。响应变量受自变量的影响,一般情况下y为连续变量。
x=(x1,x2,...,xn)T为n×p的设计矩阵,包含对响应变量有影响的所有候选自变量。
p为样本的维数,n为样本容量。在石斛数据中,维数p远大于样本容量n,因此最小二乘估计不再适用,需要采用变量选择的方法来进行模型估计。
β=(β1,β2,...,βp)T是一个p维的参数。
为惩罚函数,λ为调整参数。在变量选择方法中,模型拟合的优良程度与对于入选变量个数惩罚的力度之间的平衡通过不同的准则来体现,而这里是通过直接选取调节参数来实现的,不同的λ值对应不同的惩罚力度。λ越大,压缩的程度越强,最后估计得到的非零参数越少,选择λ最常见的方法是K折交叉验证法:
K-fold CV:
一般,K可取为5或10。
GCV准则是CV准则中的K取n时的一种近似情形,定义为:
其中,SSEk是含有k个变量的CV子模型的残差平方和,df=trace{P(λ)}。对于最终最优模型的选择,可以取CV值或GCV值最小的子模型。采用线性模型,由于初始自变量p=508个,样本量n=9个,p>>n,故变量筛选是较为重要的工作。先经SIS降维后,采用Lasso方法筛选变量。
Lasso方法筛选所得自变量有5个,R-square为0.9339。
Lasso方法筛选所得自变量及其相应系数如下表3,其中第一列为入选自变量编号,第二列为相应系数,第三列为系数方差,第四列为检验P值。
表3Lasso方法所得入选自变量及其相应系数
x_model(选择的自变量X) | β(自变量X的系数) | Varbeta(β的方差) | p-value(P值) |
常数项 | 5.488127 | 1.384431 | 7.37E-05 |
126 | 0.041953 | 0.006471 | 8.98E-11 |
220 | 0.008407 | 0.002414 | 0.000498 |
242 | -0.01364 | 0.006765 | 0.043707 |
229 | -0.0338 | 0.007601 | 8.72E-06 |
198 | -0.00111 | 0.000843 | 0.187988 |
表3的结果显示,以夏佛托苷为响应变量的筛选结果:第1列为采用Lasso方法选出的变量,即选出了变量126、220、242、229、198,其所对应的p值(列4)均小于显著性水平0.05,具有显著性差异。上述自变量的含义:兜唇石斛n批次样本(n不小于10)的指纹图谱根据保留时间对齐后的指纹图谱峰面积值。
列2为每个变量具体对应的β参数值。β值为正说明该变量对石斛夏佛托苷小分子存在正向影响;β值为负说明该变量对石斛夏佛托苷小分子存在负向影响。β值的绝对值大小显示的是该变量对石斛夏佛托苷小分子影响程度的大小。具体来说,在表3中,变量126、220对石斛夏佛托苷小分子的影响为正,其中变量126的正向影响最大;变量242、229、198对石斛夏佛托苷小分子的影响为负,其中变量229的负影响最大。
实施例5兜唇石斛柚皮素的相关特征指纹图谱的建立
1.对照品溶液制备
精密称定柚皮素4.08mg,置于10ml容量瓶,加75%甲醇溶解稀释,摇匀,作为储备液。于4℃冰箱内冷藏备用。再精密吸取一定量的对照品储备溶液,加75%甲醇稀释,准确配制柚皮素对照品溶液。通过不同的稀释比例,稀释制备成分7个浓度点,注入高效液相色谱仪。表4为得到的对照品柚皮素的线性关系。
表4对照品柚皮素线性关系表
2.柚皮素相关特征指纹图谱的建立
采用线性模型,由于初始自变量p=508个,样本量n=14个,p>>n,故变量筛选是较为重要的工作。本发明采用Lasso方法筛选变量。
Lasso方法筛选所得自变量有4个,R-square为0.7319。
Lasso方法筛选所得自变量及其相应系数如下表5,其中第一列为入选自变量编号,第二列为相应系数,第三列为系数方差,第四列为检验P值。
表5Lasso方法所得入选自变量及其相应系数
x_model(选择的自变量X) | β(自变量X的系数) | Varbeta(β的方差) | p-value(P值) |
常数项 | 23.22809 | 0.558898 | 0 |
373 | 0.009228 | 0.0008 | 9.41E-31 |
190 | -0.00651 | 0.000557 | 1.4E-31 |
371 | -0.00014 | 7.7E-05 | 0.064725 |
209 | -0.01171 | 0.001104 | 2.84E-26 |
表5的结果显示,以柚皮素为自变量结果:采用Lasso方法选出的变量即为列1所示,即筛选出了变量373、190、209,该变量的p值(列4)均小于显著性水平0.05,具有显著性差异。上述自变量的含义:兜唇石斛的n批次样本(n不小于10)的指纹图谱根据保留时间对齐后的指纹图谱峰面积值。
列2给出的是每个变量具体对应的β参数值。β值为正说明该变量对石斛柚皮素小分子存在正向影响;β值为负说明该变量对石斛柚皮素小分子存在负向影响。β值的绝对值大小显示的是该变量对石斛柚皮素小分子影响程度的大小。具体来说,在表5中,变量373对石斛柚皮素小分子的影响为正;变量190、209对石斛柚皮素小分子的影响为负,其中209对石斛柚皮素小分子的影响较大。
根据一代分子数据的结果显示该该技术可清晰区地把兜唇石斛与其他石斛区分开来,具有可鉴定种的作用,一代测序分子序列可以作为该种鉴定指标。同时,兜唇石斛的特征指纹图谱的两种化学小分子含量在种内各样品表现稳定,并能明确与其他石斛区分开来,也可以作为该种的鉴定指标之一。因此,一代数据和指纹图谱均可作为鉴定该种的指标,并且两者有以下关联关系:(1)当一代数据鉴定样品为兜唇石斛时,该样品的指纹图谱具有特定的特征,即由一代数据即可鉴定出该种,并可知该种的指纹图谱特征;(2)当指纹图谱鉴定样品为兜唇石斛时,也可以推知其一代数据。因此两者互为充分必要条件,并且由于该种的指纹图谱特征在各代表样品中表现稳定,可确定该种的药效成份含量。因此,一代测序数据及指纹图谱均可作为该种的鉴定指标,并可作为药材的评价指标。若在品种鉴定与质量评价中分别采用一代测序和指纹图谱进行测定时,可将两种方法的鉴定结果结合在一起,使得对石斛药材的鉴定结果更加的准确、可靠。
实施例7兜唇石斛的一代测序及小分子成分的相关特征指纹图谱在石斛药材质量评价中的应用
1.利用以下一代测序引物序列及扩增测序参数测定待测石斛药材的序列,将其鉴定为兜唇石斛药材。
一代测序引物序列:
ITS-26SE:5’GAATTCCCCGGTTCGCTCGCCGTTAC 3’;
ITS-17SE:5’ACGAATTCATGGTCCGGTGAAGTGTTCG 3’;
扩增测序参数为:98℃变性2min后进行PCR循环,PCR循环参数为98℃20s;52℃30s;68℃1min,38个循环,68℃7min,扩增结束后设置4℃保温。
通过以上测序,确定待测石斛药材为兜唇石斛品种。
2.供试品测定样品的制备
精密称取兜唇石斛粉末,置100ml容量瓶中,每1g样品精密加体积比为75:25的甲醇-水50ml,以250W功率、40kHz频率超声处理30分钟,冷却后过滤,将滤液旋蒸浓缩至干,每1g兜唇石斛粉末对应地用5ml体积比为75:25的甲醇-水溶解,上清液过0.45μm微孔滤膜,取续滤液,即得兜唇石斛的小分子成分含量测定样品。
3.色谱检测
色谱条件:
色谱柱:GraceAllitima C18色谱柱(250mm×4.6mm,5μm);流动相:A相:0.4%乙酸+20mmol/L醋酸铵水溶液,B相:乙腈;梯度洗脱:0~12min,2%~15%B,12~35min,15%~24%B,35~45min,24%~36%B;45~60min,36%~75%B;60~80min,75%~95%B,流速1.0mL/min;柱温30℃;进样量20μL;检测波长280nm。
样品制备方法:
取本品粉末(过三号筛)1.00g,精密称定,置100ml容量瓶中,精密加甲醇-水(75:25)50ml,超声处理(功率250W,频率40kHz)30分钟,放冷,过滤,滤液旋蒸浓缩至干,用5ml甲醇-水(75:25)溶解,上清液过0.45μm微孔滤膜,取续滤液,即得。
在检测时以波长280nm测定全成分指纹色谱图,将得到的全成分指纹图谱与图1为对照的指纹图谱进行相似度比对;相似度大于0.85为质量合格。
中药指纹图谱是分析仪器检测得到的各种反映中药材、半成品和中成药(或植物药)所含复杂化学物质成分分布的量化特征关联药效活性控制为特点,从宏观上整体反映中药材、半成品和中成药(或植物药)中所含化学物质成分的种类、数量和含量特征,并能量化揭示潜在复杂的生物活性信息特征的图谱。
本发明首先通过一代测序确定石斛的种类,再通过测定石斛小分子成分含量数据与石斛指纹图谱全部峰面积进行关联性研究,通过关联数据建模,找出石斛内在的关联性,这样即可全面评价石斛质量,且能有效精确地鉴别和控制兜唇石斛药材的质量,使得分析结果更加可靠,避免其他种类的石斛药材的干扰。
以上,仅为本发明较佳的具体实施方式,但发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。
Claims (7)
1.一种兜唇石斛的质量检测方法,其特征在于,包括:
1)以ITS-26SE:5’GAATTCCCCGGTTCGCTCGCCGTTAC 3’和
ITS-17SE:5’ACGAATTCATGGTCCGGTGAAGTGTTCG 3’为引物,进行PCR扩增测序,以鉴定待测石斛药材的品种为兜唇石斛;
2)对样本容量为n的样本进行色谱检测,获取以化学小分子成分夏佛托苷和/或柚皮素作为参照成分的检测数据;
3)对样本分别进行指纹图谱检测,获取兜唇石斛的全化学成分的指纹图谱峰面积值;
4)以色谱数据中夏佛托苷和/或柚皮素的成分含量值作为响应变量,将指纹图谱中的其它成分的峰面积值作为自变量建立分析模型,通过Lasso(The Least AbsoluteShrinkage and Selection Operator)方法筛选变量建立化学小分子成分的相关特征指纹图谱模型,其基本模型为:
y=XTβ+ε
其中,y为响应变量,y=(y1,y2,...,yn)T;X为矩阵,X=(x1,x2,...,xn)T;E(ε)=0;Var(ε)=σ2In;ε为模型的随机误差项;σ是随机误差项的标准差;n为样本量;In是一个n×n的单位阵。
2.根据权利要求1所述的方法,其特征在于,所述Lasso方法是通过式Ⅰ计算实现的:
在式Ⅰ中,n为样本量;p*为变量数;p为样本的维数;y=(y1,y2,...,yn)T∈Rn为响应变量;x=(x1,x2,...,xn)T为n×p的设计矩阵,包含对响应变量有影响的所有候选自变量;λ为调整参数;为惩罚函数;β0的含义为公式的截距项,也就是当所有自变量x为0时响应变量y的值;βj的含义是自变量xj的系数,即自变量xj对响应变量y的影响程度。
3.根据权利要求2所述的方法,其特征在于,所述λ的选择方法为K折交叉验证法:
K-fold CV:
其中,K为5或10。
4.根据权利要求3所述的方法,其特征在于,所述分析模型为取CV值最小的子模型。
5.根据权利要求2所述的方法,其特征在于,所述λ的选择遵循GCV准则,所述GCV准则定义为:
其中,SSEk是含有k个变量的CV子模型的残差平方和,df=trace{P(λ)}。
6.根据权利要求5所述的方法,其特征在于,所述分析模型为取GCV值最小的子模型。
7.根据权利要求2所述的方法,当色谱数据呈现超高维情形时,首先采用以下SIS(SureIndependence Screening)方法筛选变量,再利用Lasso方法处理;
SIS:Mγ={1≤i≤p:|ωi|是前|γn|个比较大的}
其中,M*={1≤i≤p:βi≠0}表示真模型中非零系数的下标集;s=|M*|表示非零系数的个数;ω=(ω1,ω2,...,ωp)T=XTy;对于任意给定的γ∈(0,1),ω的p个元素按绝对值从大到小排列并且定义;此时|γn|<n,选取Mγ中下标对应的自变量,使超高维降到d(d≤n)维;其中,d=n或者d=[n/log n]。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710064178.6A CN108398510B (zh) | 2017-02-04 | 2017-02-04 | 一种兜唇石斛的质量检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710064178.6A CN108398510B (zh) | 2017-02-04 | 2017-02-04 | 一种兜唇石斛的质量检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108398510A true CN108398510A (zh) | 2018-08-14 |
CN108398510B CN108398510B (zh) | 2021-03-16 |
Family
ID=63093430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710064178.6A Active CN108398510B (zh) | 2017-02-04 | 2017-02-04 | 一种兜唇石斛的质量检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108398510B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108398515A (zh) * | 2017-02-04 | 2018-08-14 | 北京蓝标成科技有限公司 | 一种鼓槌石斛的质量检测方法 |
CN108398516A (zh) * | 2017-02-04 | 2018-08-14 | 北京蓝标成科技有限公司 | 一种流苏石斛的质量检测方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101020921A (zh) * | 2006-12-22 | 2007-08-22 | 福建省农业科学院生物技术研究所 | 青枯雷尔氏菌种下分化脂肪酸型的分析方法 |
CN101726547A (zh) * | 2008-10-15 | 2010-06-09 | 中山市中智药业集团有限公司 | 石斛色谱指纹图谱测定方法 |
CN101979052A (zh) * | 2010-09-30 | 2011-02-23 | 广西壮族自治区农业科学院蔬菜研究所 | 广西铁皮石斛hplc指纹图谱的建立方法及其标准指纹图谱 |
CN102879486A (zh) * | 2012-09-05 | 2013-01-16 | 山东大学 | 一种筛选中药药效相关成分的方法及模型建立方法 |
CN105138861A (zh) * | 2015-05-31 | 2015-12-09 | 青岛市食品药品检验研究院 | 一种大黄药材真伪及基源种属类别预测模型的构建方法 |
CN105424850A (zh) * | 2015-11-05 | 2016-03-23 | 北京蓝标一成科技有限公司 | 一种石斛药材的质量评价方法 |
CN105477006A (zh) * | 2015-10-14 | 2016-04-13 | 广州白云山和记黄埔中药有限公司 | 口炎清活性成分群及其指纹特征图谱的构建和质量检测方法 |
CN105758962A (zh) * | 2016-03-03 | 2016-07-13 | 山东世博金都药业有限公司 | 一种六味五灵片的质量控制方法 |
-
2017
- 2017-02-04 CN CN201710064178.6A patent/CN108398510B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101020921A (zh) * | 2006-12-22 | 2007-08-22 | 福建省农业科学院生物技术研究所 | 青枯雷尔氏菌种下分化脂肪酸型的分析方法 |
CN101726547A (zh) * | 2008-10-15 | 2010-06-09 | 中山市中智药业集团有限公司 | 石斛色谱指纹图谱测定方法 |
CN101979052A (zh) * | 2010-09-30 | 2011-02-23 | 广西壮族自治区农业科学院蔬菜研究所 | 广西铁皮石斛hplc指纹图谱的建立方法及其标准指纹图谱 |
CN102879486A (zh) * | 2012-09-05 | 2013-01-16 | 山东大学 | 一种筛选中药药效相关成分的方法及模型建立方法 |
CN105138861A (zh) * | 2015-05-31 | 2015-12-09 | 青岛市食品药品检验研究院 | 一种大黄药材真伪及基源种属类别预测模型的构建方法 |
CN105477006A (zh) * | 2015-10-14 | 2016-04-13 | 广州白云山和记黄埔中药有限公司 | 口炎清活性成分群及其指纹特征图谱的构建和质量检测方法 |
CN105424850A (zh) * | 2015-11-05 | 2016-03-23 | 北京蓝标一成科技有限公司 | 一种石斛药材的质量评价方法 |
CN105758962A (zh) * | 2016-03-03 | 2016-07-13 | 山东世博金都药业有限公司 | 一种六味五灵片的质量控制方法 |
Non-Patent Citations (6)
Title |
---|
JIANQING FAN ET AL: "A Selective Overview of Variable Selection in High Dimensional Feature Space", 《STATISTICA SINICA》 * |
TOMOKO T AKAMIYA ET AL: "Identification of Dendrobium Species Used for Herbal Medicines Based on Ribosomal DNA Internal Transcribed Spacer Sequence", 《BIOL. PHARM. BULL.》 * |
周桂芬 等: "江省铁皮石斛黄酮类成分高效液相色谱指纹图谱的建立", 《中国药学杂志》 * |
朱尔一: "一种适合用于处理中药指纹图谱数据的偏最小二乘法", 《计算机与应用化学》 * |
滕会会 等: "基于中药指纹图谱结合模式识别的清开灵软胶囊批次间稳定性控制研究", 《环球中医药》 * |
高少龙: "几种变量选择方法的模拟研究和实证分析", 《中国优秀硕士学位论文全文数据库(基础科学辑)》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108398515A (zh) * | 2017-02-04 | 2018-08-14 | 北京蓝标成科技有限公司 | 一种鼓槌石斛的质量检测方法 |
CN108398516A (zh) * | 2017-02-04 | 2018-08-14 | 北京蓝标成科技有限公司 | 一种流苏石斛的质量检测方法 |
CN108398516B (zh) * | 2017-02-04 | 2020-12-15 | 北京蓝标一成科技有限公司 | 一种流苏石斛的质量检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108398510B (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105424850B (zh) | 一种石斛药材的检测方法 | |
CN106990214B (zh) | 一种评价中药材质量的方法 | |
Alaerts et al. | Exploration and classification of chromatographic fingerprints as additional tool for identification and quality control of several Artemisia species | |
CN105987966B (zh) | 基于谱效关系的广东紫珠质量控制方法及其模型建立方法 | |
CN102370891A (zh) | 一种用hplc指纹图谱鉴别铁皮石斛真伪的方法 | |
CN108398511A (zh) | 一种霍山石斛的质量检测方法 | |
Soares et al. | Multivariate chromatographic fingerprint preparation and authentication of plant material from the genus Bauhinia | |
CN108398510A (zh) | 一种兜唇石斛的质量检测方法 | |
CN108398513A (zh) | 一种叠鞘石斛的质量检测方法 | |
CN108398491A (zh) | 一种美花石斛的质量检测方法 | |
CN108398512A (zh) | 一种齿瓣石斛的质量检测方法 | |
CN108398492A (zh) | 一种铁皮石斛的质量检测方法 | |
CN108398490A (zh) | 一种金钗石斛的质量检测方法 | |
Li et al. | Identification of Bletilla striata and related decoction pieces: a data fusion method combining electronic nose, electronic tongue, electronic eye, and high-performance liquid chromatography data | |
Jiang et al. | In-line spectroscopy combined with multivariate analysis methods for endpoint determination in column chromatographic adsorption processes for herbal medicine | |
CN108398516A (zh) | 一种流苏石斛的质量检测方法 | |
CN108398515A (zh) | 一种鼓槌石斛的质量检测方法 | |
Patel et al. | Arbitrating Identification Issues of Picrorhiza kurroa Samples by ATR-FTIR Spectroscopy Using Multivariate Analysis | |
CN108205028A (zh) | 金钗石斛化学小分子成分的相关特征指纹图谱的建立方法 | |
CN108205025A (zh) | 齿瓣石斛化学小分子成分的相关特征指纹图谱的建立方法 | |
CN108205039A (zh) | 兜唇石斛化学小分子成分的相关特征指纹图谱的建立方法 | |
CN108205029A (zh) | 美花石斛化学小分子成分的相关特征指纹图谱的建立方法 | |
CN108205026A (zh) | 霍山石斛化学小分子成分的相关特征指纹图谱的建立方法 | |
CN108205037A (zh) | 铁皮石斛化学小分子成分的相关特征指纹图谱的建立方法 | |
CN108205038A (zh) | 鼓槌石斛化学小分子成分的相关特征指纹图谱的建立方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhao Tian Inventor before: Zhao Tian Inventor before: Shao Zixing |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |