CN108395579A - 一种新型高强度复合纤维材料的制备方法 - Google Patents

一种新型高强度复合纤维材料的制备方法 Download PDF

Info

Publication number
CN108395579A
CN108395579A CN201810334491.1A CN201810334491A CN108395579A CN 108395579 A CN108395579 A CN 108395579A CN 201810334491 A CN201810334491 A CN 201810334491A CN 108395579 A CN108395579 A CN 108395579A
Authority
CN
China
Prior art keywords
weight
parts
whisker
fiber material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810334491.1A
Other languages
English (en)
Inventor
王迅
王强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pizhou Yisa New Materials Co Ltd
Original Assignee
Pizhou Yisa New Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pizhou Yisa New Materials Co Ltd filed Critical Pizhou Yisa New Materials Co Ltd
Priority to CN201810334491.1A priority Critical patent/CN108395579A/zh
Publication of CN108395579A publication Critical patent/CN108395579A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/02Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin
    • D06M14/04Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种新型高强度复合纤维材料的制备方法,以亚麻纤维,马来酸酐,γ‑氨基丙基三乙氧基硅烷,乙酰化甲壳素晶须为原料,通过熔融共混法进行复合制备出一种新型高强度复合纤维材料,其合成原料用量为:20~60重量份改性亚麻纤维,10~50重量份乙酰化甲壳素晶须。本发明制备的复合纤维材料,工艺流程简单,操作方便,强度高,可应用于生物医疗、食品包装和农用地膜等多种领域。

Description

一种新型高强度复合纤维材料的制备方法
技术领域
本发明涉及新材料领域,具体涉及一种可生物降解复合纤维材料,可应用于生物医疗、食品包装和农用地膜等多种领域。
背景技术
石油资源日益枯竭,生态环境逐渐恶化,对于可再生资源且废弃后可降解的新型材料的需求更加迫切,因此纤维材料被广泛应用到工业、农业、交通、建筑以及国防工业等领域中。天然纤维包括麻纤维、木纤维等,主要成分为纤维素、半纤维素、木质素等物质。其中麻纤维主要有亚麻、剑麻、洋麻、大麻、黄麻等不同种类,亚麻纤维是亚麻属植物的韧皮纤维,来源丰富,价格低廉,传统上用于纺织行业。亚麻复合材料是目前最常见的天然纤维复合材料,广泛应用在汽车工业、建材、装饰材料等领域。天然纤维具有吸湿性,使复合材料在吸水后发生膨胀,同时减弱纤维与基体的界面结合力,降低复合材料的力学性能,限制了天然纤维复合材料在汽车、建材等方面的应用。此外,与PE等传统塑料相比,纤维材料还存在着力学性能低和耐热性较差等缺点,限制了纤维类材料的进一步广泛应用。甲壳素是自然界中仅次于纤维素的第二大可再生资源,同时也是除蛋白质外含氮量最高的天然高分子材料,高度结晶的甲壳素晶须具有无毒、生物降解性和优异的机械强度等特点,成为增强各类聚合物的焦点之一。本发明以亚麻纤维,马来酸酐,γ-氨基丙基三乙氧基硅烷,乙酰化甲壳素晶须为原料,通过熔融共混法进行复合制备出一种新型高强度复合纤维材料,工艺流程简单,操作方便,强度高。
发明内容
本发明的目的在于提供一种新型高强度复合纤维材料的制备方法,其制备工艺流程简单,强度高,可应用于生物医疗、食品包装和农用地膜等多种领域。
一种新型高强度复合纤维材料的制备方法,其特征在于该方法包括以下步骤:
1)配置1000重量份质量分数为5%NaOH水溶液,将200重量份亚麻纤维浸泡其中7h后洗涤至中性,再用蒸馏水清洗,室温风干备用;称取120重量份马来酸酐溶于600重量份二甲苯,在60℃下磁力搅拌2h使马来酸酐均匀分散在二甲苯中,然后将上述处理过的亚麻纤维浸泡其中,升温到100℃维持1h后取出用自来水、蒸馏水和乙醇清洗,风干备用;称取400重量份甲醇于烧杯中,加入100重量份去离子水和20重量份γ-氨基丙基三乙氧基硅烷磁力搅拌30min,将上述处理过的亚麻纤维室温下浸泡在上述溶液中1h后取出,50℃下鼓风干燥备用;
2)称取20~60重量份上述表面改性的亚麻纤维,10~50重量份乙酰化甲壳素晶须,在ML-E密炼机中110℃共混10min,随后,将共混物在SK-160开放式混炼机上116℃混炼压延10min得到亚麻纤维/乙酰化甲壳素晶须复合材料。
有益效果:本发明提供一种新型高强度复合纤维材料的制备方法,乙酰化甲壳素晶须的引入有效改善了乙酰化甲壳素晶须与亚麻纤维的相容性,纤维表面羟基可与亚麻纤维形成氢键从而促进了复合材料热稳定性和力学性能的改善,甲壳素的酰基化改性有利于晶须与纤维界面相互作用,纤维将应力通过界面层传递给晶须,晶须承担部分作用力,纤维所受作用力分散,断裂得以延缓,从而实现晶须对纤维材料的增强增韧作用。
具体实施方式
实施例1
1)配置1000重量份质量分数为5%NaOH水溶液,将200重量份亚麻纤维浸泡其中7h后洗涤至中性,再用蒸馏水清洗,室温风干备用;称取120重量份马来酸酐溶于600重量份二甲苯,在60℃下磁力搅拌2h使马来酸酐均匀分散在二甲苯中,然后将上述处理过的亚麻纤维浸泡其中,升温到100℃维持1h后取出用自来水、蒸馏水和乙醇清洗,风干备用;称取400重量份甲醇于烧杯中,加入100重量份去离子水和20重量份γ-氨基丙基三乙氧基硅烷磁力搅拌30min,将上述处理过的亚麻纤维室温下浸泡在上述溶液中1h后取出,50℃下鼓风干燥备用;
2)称取50重量份上述表面改性的亚麻纤维,20重量份乙酰化甲壳素晶须,在ML-E密炼机中110℃共混10min,随后,将共混物在SK-160开放式混炼机上116℃混炼压延10min得到亚麻纤维/乙酰化甲壳素晶须复合材料。
上述乙酰化甲壳素晶须制备方法如下:
称取5g甲壳素与150ml浓度为3mol/L的盐酸加入三口烧瓶中,于104℃搅拌回流5h,浊液倒入去离子水中停止反应,离心水洗3次,所得产物于透析袋中进行透析,直至透析液 pH=6,随后将透析液超声分散、冷冻干燥,得到白色蓬松物即为甲壳素晶须;称量3重量份甲壳素晶须与40重量份三乙胺置于三口瓶中,超声分散1h至甲壳素晶须完全分散,在氮气保护下,往分散液中缓慢滴加酰化试剂乙酸酐15重量份,并于60℃下搅拌3h,反应结束后,用去离子水沉淀分离产物,用丙酮、水分别洗涤3~5次对反应产物进行纯化干燥后得乙酰化甲壳素晶须。
实施例2
与实施例1完全相同,不同在于:加入60重量份表面改性的亚麻纤维,10重量份乙酰化甲壳素晶须。
实施例3
与实施例1完全相同,不同在于:加入55重量份表面改性的亚麻纤维,15重量份乙酰化甲壳素晶须。
实施例4
与实施例1完全相同,不同在于:加入45重量份表面改性的亚麻纤维,25重量份乙酰化甲壳素晶须。
实施例5
与实施例1完全相同,不同在于:加入40重量份表面改性的亚麻纤维,30重量份乙酰化甲壳素晶须。
实施例6
与实施例1完全相同,不同在于:加入35重量份表面改性的亚麻纤维,35重量份乙酰化甲壳素晶须。
实施例7
与实施例1完全相同,不同在于:加入30重量份表面改性的亚麻纤维,40重量份乙酰化甲壳素晶须。
实施例8
与实施例1完全相同,不同在于:加入25重量份表面改性的亚麻纤维,45重量份乙酰化甲壳素晶须。
实施例9
与实施例1完全相同,不同在于:加入20重量份表面改性的亚麻纤维,50重量份乙酰化甲壳素晶须。
对比例1
与实施例1完全相同,不同在于:只是加入的是未经改性的甲壳素晶须。
对比例2
与实施例1完全相同,不同在于:只是制备甲壳素晶须时不加入三乙胺。
对比例3
与实施例1完全相同,不同在于:只是制备复合纤维材料时用竹原纤维代替纳米纤维。
对比例4
与实施例1完全相同,不同在于:只是制备复合纤维材料时不用NaOH处理亚麻纤维。
对比例5
与实施例1完全相同,不同在于:只是制备复合纤维材料时不对亚麻纤维进行马来酸酐接枝处理。
对比例6
与实施例1完全相同,不同在于:只是制备复合纤维材料时不对亚麻纤维γ-氨基丙基三乙氧基硅烷浸泡处理。
对比例7
与实施例1完全相同,不同在于:只是制备复合纤维材料时在密炼机100℃下共混。
对比例8
与实施例1完全相同,不同在于:只是制备复合纤维材料时不在混炼机上进行混炼压延。
按下述方法对本发明实施例1~9与对比例1~8制备的复合纤维材料进行性能测试:
力学性能测试:根据GB/T1040-2006对复合材料进行力学性能测试,500N传感器,拉伸速率10mm/min,室温测试每个样品5次取平均值。
复合纤维材料性能评价结果
由上表可知,使用实施例1条件下制备的复合纤维材料拉伸强度达34.8MPa,断裂伸长率达22.7%,说明实施例1条件下制备的复合纤维材料力学性能最好,随着乙酰化甲壳素晶须用量逐渐增大时,复合纤维材料的拉伸强度和断裂伸长率均先增高后降低,可能的原因是乙酰化甲壳素晶须的加入使得复合纤维材料的应力应变作用发生变化,当复合纤维材料受到外力作用时,亚麻纤维将应力通过界面层传递给晶须,晶须承担部分作用力,导致亚麻纤维所受作用力分散,使得断裂得以延缓,从而实现晶须对亚麻纤维的增强增韧作用。当晶须的用量达到某一定值后,晶须在基体中分散性差易产生团聚现象,形成应力集中点,使得复合材料的拉伸强度和断裂伸长率均降低。另外对比例1~2说明乙酰化甲壳素晶须制备条件对复合纤维材料力学性能影响较大,对比例3~8说明制备复合纤维材料时原料的选择及条件的选用对材料力学性能有突出影响。

Claims (4)

1.一种新型高强度复合纤维材料的制备方法,其特征在于,该方法包括以下步骤:
1)配置1000重量份质量分数为5%NaOH水溶液,将200重量份亚麻纤维浸泡其中7h后洗涤至中性,再用蒸馏水清洗,室温风干备用;称取120重量份马来酸酐溶于600重量份二甲苯,在60℃下磁力搅拌2h使马来酸酐均匀分散在二甲苯中,然后将上述处理过的亚麻纤维浸泡其中,升温到100℃维持1h后取出用自来水、蒸馏水和乙醇清洗,风干备用;称取400重量份甲醇于烧杯中,加入100重量份去离子水和20重量份γ-氨基丙基三乙氧基硅烷磁力搅拌30min,将上述处理过的亚麻纤维室温下浸泡在上述溶液中1h后取出,50℃下鼓风干燥备用;
2)称取20~60重量份上述表面改性的亚麻纤维,10~50乙酰化甲壳素晶须,在ML-E密炼机中110℃共混10min,随后,将共混物在SK-160开放式混炼机上116℃混炼压延10min得到亚麻纤维/乙酰化甲壳素晶须复合材料。
2.根据权利要求1所述一种新型高强度复合纤维材料的制备方法,其特征在于上述步骤1)中搅拌速度为200~300r/min。
3.根据权利要求1所述一种新型高强度复合纤维材料的制备方法,其特征在于上述步骤2)中亚麻纤维与乙酰化甲壳素晶须质量比为2:5~6:1。
4.根据权利要求1所述一种新型高强度复合纤维材料的制备方法,其特征在于上述步骤2)中所述乙酰化甲壳素晶须制备方法如下:
称取5g甲壳素与150ml浓度为3mol/L的盐酸加入三口烧瓶中,于104℃搅拌回流5h,浊液倒入去离子水中停止反应,离心水洗3次,所得产物于透析袋中进行透析,直至透析液 pH=6,随后将透析液超声分散、冷冻干燥,得到白色蓬松物即为甲壳素晶须;称量3重量份甲壳素晶须与40重量份三乙胺置于三口瓶中,超声分散1h至甲壳素晶须完全分散,在氮气保护下,往分散液中缓慢滴加酰化试剂乙酸酐15重量份,并于60℃下搅拌3h,反应结束后,用去离子水沉淀分离产物,用丙酮、水分别洗涤3~5次对反应产物进行纯化干燥后得乙酰化甲壳素晶须。
CN201810334491.1A 2018-04-14 2018-04-14 一种新型高强度复合纤维材料的制备方法 Pending CN108395579A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810334491.1A CN108395579A (zh) 2018-04-14 2018-04-14 一种新型高强度复合纤维材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810334491.1A CN108395579A (zh) 2018-04-14 2018-04-14 一种新型高强度复合纤维材料的制备方法

Publications (1)

Publication Number Publication Date
CN108395579A true CN108395579A (zh) 2018-08-14

Family

ID=63099986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810334491.1A Pending CN108395579A (zh) 2018-04-14 2018-04-14 一种新型高强度复合纤维材料的制备方法

Country Status (1)

Country Link
CN (1) CN108395579A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207866A (zh) * 2019-07-10 2019-09-06 合肥工业大学 一种基于改性纸基的高灵敏度柔性压力传感器及其制备方法
CN110272558A (zh) * 2019-06-28 2019-09-24 武汉龙顺达新材料有限公司 一种改性膜布及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891941A (zh) * 2010-07-23 2010-11-24 西安工程大学 一种可生物降解的复合泡沫塑料及其制备方法
CN105887235A (zh) * 2016-05-27 2016-08-24 东莞市联洲知识产权运营管理有限公司 一种高性能的纳米纤维素/甲壳素复合纤维及其制备方法
CN106957455A (zh) * 2016-01-12 2017-07-18 东北林业大学 一种快速成型用甲壳素、纤维素复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891941A (zh) * 2010-07-23 2010-11-24 西安工程大学 一种可生物降解的复合泡沫塑料及其制备方法
CN106957455A (zh) * 2016-01-12 2017-07-18 东北林业大学 一种快速成型用甲壳素、纤维素复合材料及其制备方法
CN105887235A (zh) * 2016-05-27 2016-08-24 东莞市联洲知识产权运营管理有限公司 一种高性能的纳米纤维素/甲壳素复合纤维及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XUELIAN XIA ET AL.: "Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites", 《IRANIAN POLYMER JOURNAL》 *
张敏等: "聚丁二酸丁二醇酯/甲壳素晶须复合材料的制备及性能", 《精细化工》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272558A (zh) * 2019-06-28 2019-09-24 武汉龙顺达新材料有限公司 一种改性膜布及其制备方法
CN110207866A (zh) * 2019-07-10 2019-09-06 合肥工业大学 一种基于改性纸基的高灵敏度柔性压力传感器及其制备方法

Similar Documents

Publication Publication Date Title
Jarukumjorn et al. Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites
Seki Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites
Paul et al. Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber
Takagi et al. Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites
Song et al. Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method
CN107459830A (zh) 一种基于聚多巴胺仿生界面改性剂增强竹纤维与聚丁二酸丁二醇酯界面相容性技术
Espinach et al. Flexural properties of fully biodegradable alpha-grass fibers reinforced starch-based thermoplastics
JP2007238812A (ja) ポリ乳酸−ミクロフィブリル化セルロース複合材料およびその製造方法
CN106009570B (zh) 聚乳酸竹纳米纤维素晶须超微竹炭复合材料薄膜制备方法
AU2021105044A4 (en) Cellulose/aramid nanofiber composite film and preparation method and application therof
CN113603972B (zh) 一种刚性粒子/植物纤维/聚丙烯复合材料制备方法
CN108395579A (zh) 一种新型高强度复合纤维材料的制备方法
CN109370059A (zh) 一种改性黄麻纤维增强聚丙烯及其制备方法
WO2009139508A1 (en) Composites of kenaf micro fiber with polypropylene or polylactic acid
CN106188842B (zh) 聚丙烯/竹颗粒/超微竹炭复合材料的制备方法
CN109626881B (zh) 一种微纳纤维增强混凝土及其制备方法
Hari Sankar et al. The effect of fiber length on tensile properties of polyester resin composites reinforced by the fibers of Sansevieria trifasciata
Inul Azianti et al. Effect of fiber loading and compatibilizer on rheological, mechanical and morphological behaviors
Guojun et al. Mechanical properties of wood flour reinforced high density polyethylene composites with basalt fibers
Zhang et al. Reinforcing natural rubber with cellulose nanofibrils extracted from bleached eucalyptus kraft pulp
CN104861218B (zh) 甲壳素‑钛酸钾复合晶须膜及其制备方法
Li et al. Tensile properties of hildegardia fibers reinforced polypropylene biocomposites
Hu et al. Effect of coupling treatment on mechanical properties of bacterial cellulose nanofibre-reinforced UPR ecocomposites
CN109735070B (zh) 一种聚乳酸/竹颗粒/竹炭复合材料的制备方法
Eszer et al. Effect of compatibilizer on morphological, thermal and mechanical properties of Starch-Grafted-Polypropylene/Kenaf fibers composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180814

WD01 Invention patent application deemed withdrawn after publication