CN108390387A - 一种动态自律分散协调的源荷调峰控制方法 - Google Patents

一种动态自律分散协调的源荷调峰控制方法 Download PDF

Info

Publication number
CN108390387A
CN108390387A CN201810040214.XA CN201810040214A CN108390387A CN 108390387 A CN108390387 A CN 108390387A CN 201810040214 A CN201810040214 A CN 201810040214A CN 108390387 A CN108390387 A CN 108390387A
Authority
CN
China
Prior art keywords
group
peak regulation
power
load
discipline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810040214.XA
Other languages
English (en)
Other versions
CN108390387B (zh
Inventor
蔡万通
刘文颖
汪宁渤
夏鹏
周强
朱丹丹
陈钊
王方雨
吕良
马明
荣俊杰
丁坤
张雨薇
赵龙
王贤
郭虎
王明松
姚春晓
张健美
曾文伟
王定美
张尧翔
许春蕾
李宛齐
聂雅楠
冉忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
North China Electric Power University
State Grid Gansu Electric Power Co Ltd
Wind Power Technology Center of Gansu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
North China Electric Power University
State Grid Gansu Electric Power Co Ltd
Wind Power Technology Center of Gansu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, North China Electric Power University, State Grid Gansu Electric Power Co Ltd, Wind Power Technology Center of Gansu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201810040214.XA priority Critical patent/CN108390387B/zh
Publication of CN108390387A publication Critical patent/CN108390387A/zh
Application granted granted Critical
Publication of CN108390387B publication Critical patent/CN108390387B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

本发明公开了电力系统调峰领域的一种动态自律分散协调的源荷调峰控制方法。包括:获取电网参数,对电网中的各类型电源、负荷进行动态分群;建立自律分散协调调峰模式;建立动态自律分散协调的源荷调峰控制模型;求解源荷调峰控制模型,输出控制策略。本发明提供的一种动态自律分散协调的源荷调峰控制方法,能够对电网中水电、火电、可调节负荷等多类型调峰资源进行动态分群,群内实现源荷自治调峰,不同群间的调峰资源相互协调分散调峰,从而实现动态自律分散协调的源荷调峰,提高电网的调峰能力,降低电网的调峰备用需求。

Description

一种动态自律分散协调的源荷调峰控制方法
技术领域
本发明属于电力系统调峰领域,尤其涉及一种动态自律分散协调的源荷调峰控制方法。
背景技术
风速以及太阳能本身的间歇性和随机性会导致整个风电场、光伏电站出力变化具有不确定性,进一步地,风光电出力的不确定性会加大电力系统的等效负荷差,易导致电网调峰能力不足、调节速度也难以适应风光电出力的大幅度变化等问题。随着新能源装机比例的逐年增高,电网的调峰问题逐年加剧,急需在现有的调峰资源下,研究新的电力系统调峰控制方法。
自律分散系统(Autonomous Decentralized System,ADS)是由具有自律性的子系统单元所构成的,系统中所有单元都是独立平等的,之间不存在任何隶属关系,各个单元都能独立完成各自的任务而不受其他单元的影响,同时各个单元之间能够协调工作,实现整个系统的协调运行。如果能对电网中水电、火电、可调节负荷等多类型调峰资源进行动态分群,群内实现源荷自治调峰,其调峰周期可根据群内调峰资源特性进行自律调节;同时不同群间的调峰资源,可根据其不同的调峰周期实现相互协调,进行分散调节,从而实现动态自律分散协调的源荷调峰,就能提高电网的调峰能力,降低电网的调峰备用需求,具有十分重要的意义。
目前的调峰控制方法很多,但都是属于集中调度控制模式,即在相同的控制周期内,对不同的调峰资源实行统一调度控制,没有充分发挥不同调峰资源的调峰时间特性,迫切需要新思路、新方法提高电网的调峰能力。
发明内容
本发明的目的在于,提供一种动态自律分散协调的源荷调峰控制方法,用于解决现有方法存在的上述问题。
为实现上述目的,本发明提供的技术方案是,一种动态自律分散协调的源荷调峰控制方法,所述调峰控制方法包括以下步骤:
S1:获取电网参数,对电网中的各类型电源、负荷进行动态分群。
S2:建立自律分散协调调峰模式。
S3:建立动态自律分散协调的源荷调峰控制模型。
S4:求解源荷调峰控制模型,输出控制策略。
所述S1包括以下步骤:
S101:获取电网参数,计算电网内各类型电源、可调负荷的电气距离;
S102:预确定分群聚类中心;
S103:计算各类型电源、可调负荷距聚类中心的电气距离,对电网中的各类型电源、可调负荷进行分群,分群过程中不断更新分群聚类中心。
所述S2包括以下步骤:
S201:确定每个群内的自律可控周期和群间的自律协调周期;
S202:建立自律分散协调调峰模式。
所述S3包括以下步骤:
S301:建立源荷调峰控制模型目标函数;
S302:建立发电-负荷功率平衡的等式约束条件;
S303:建立风电机组出力波动、系统旋转备用容量、水火电机组调峰、可调负荷调峰、系统功率外送、群间线路功率交换约束的不等式约束条件。
所述S4包括以下步骤:
S401:求解源荷调峰控制模型;
S402:输出动态自律分散协调的源荷调峰控制策略。
附图说明
图1是本发明提供的动态自律分散协调的源荷调峰控制方法流程图;
图2是本发明提供的二端网络的电气距离计算示意图;
图3是本发明提供的调峰资源分群示意图;
图4是本发明提供的自律分散协调调峰模式示意图;
图5是本发明提供的某区域电网的网络拓扑图;
图6是本发明提供的日前风电预测曲线;
图7是本发明提供的调峰资源出力大小曲线。
具体实施方式
为了清楚了解本发明的技术方案,将在下面的描述中提出其详细的结构。显然,本发明实施例的具体施行并不局限于本领域的技术人员所熟习的特殊细节。本发明的优选实施例详细描述如下,除详细描述的这些实施例外,还可以具有其他实施方式。
下面结合附图和实施例对本发明做进一步详细说明。
实施例1
图1是本发明提供的动态自律分散协调的源荷调峰控制方法流程图。图1中,本发明提供的动态自律分散协调的源荷调峰控制方法包括:
S1:获取电网参数,对电网中的各类型电源、负荷进行动态分群。
S2:建立自律分散协调调峰模式。
S3:建立动态自律分散协调的源荷调峰控制模型。
S4:求解源荷调峰控制模型,输出控制策略。
所述S1包括以下步骤:
S101:获取电网参数,计算电网内各类型电源、负荷的电气距离。
如图2所示,以二端网络的输入阻抗作为度量节点间电气距离的参数。根据电路等值原理,二端网络的输入阻抗表示了网络中任意2个非接地节点组成的端口向网络内看进去的等值阻抗。
向节点对(p,q)组成的端口注入单位电流时,该两点间的电位差即等于该二端网络的输入阻抗,用Zpq,in表示,且有
Zpq,in=Zpp+Zqq-2Zpq (1)
式中,Zpp、Zqq为节点阻抗矩阵中节点p、q各自的自阻抗;Zpq为节点的互阻抗。从式(1)可知二端网络输入阻抗的求解与节点阻抗矩阵中的元素密切相关,而节点阻抗矩阵由网络结构和网络元件的参数决定,包含了全网的信息,所以二端网络的输入阻抗也体现了全网的拓扑信息。二端网络输入阻抗表示了节点对间的等值阻抗,其值越小表明该节点对在整个网络中的电气距离越小,因此二端网络的输入阻抗可作为两点间电气距离的度量参数。
S102:预确定分群聚类中心。
在区域电网中,由于最高电压等级的变电站在输电中起着枢纽的作用,在调峰任务中也发挥着较为重要的作用,因此,可以预先选取几个最高电压等级的变电站,作为分群聚类中心。
S103:计算各类型电源、可调负荷距聚类中心的电气距离,对电网中的各类型电源、可调负荷进行分群,分群过程中不断更新分群聚类中心。
计算各类型电源、可调节负荷与上述分群聚类中心的电气距离,选取电气距离最小的一个聚类中心,把电源或者负荷归于此聚类中心所属的群。
在分群过程中不断更新分群聚类中心。若某些电源、可调节负荷与所有的分群聚类中心的电气距离都过大,则考虑选取新的变电站作为新的聚合中心,直至每个群内部的电源和可调负荷分布合理,不至于出现群内电源和可调负荷之间电气联系过弱的情况。
所述S2包括以下步骤:
S201:确定每个群内的自律可控周期和群间的自律协调周期。
如图3所示,每个群内都含有水电、火电、可调负荷等其中一种或者几种调峰资源以及风电。对比各个群之间,调峰资源的可调容量和调峰响应特性不一致,同时,风电的波动大小和出力大小也不尽相同。
根据第k个群内的调峰资源特性和风电特性,确定群内的调峰周期,即自律可控周期TSk;根据不同群间的调峰资源特性和风电特性,确定第k个群和第m个群之间的群间调峰周期,即自律协调周期TCmk(m,k=1,2,…,N),N为总的分群数。
从数学上来说,满足TSk≤TCmk&TSm≤TCmk
S202:建立自律分散协调调峰模式。
图3为传统集中调度调峰模式,图4为自律分散协调调峰模式。传统的集中调度控制模式,是在相同的集中控制周期TU内,对不同的调峰资源实行统一调度控制。在自律分散协调调峰模式中,各群除了接收周期为TU的集中调度控制指令,在群内部调峰资源之间,每隔一个自律可控周期交换一次调峰信息;在群与群之间,每隔一个自律协调周期交换一次调峰信息。各群的自律可控周期TS1,TS2,...,TSN可能不相同,但总是满足自律可控周期≤自律协调周期≤集中控制周期,即TS1,TS2,...,TSN≤TU&TCmk≤TU(m,k=1,2,…,N)。由于调峰周期缩短,系统功率差额变小,调峰控制误差减小。
所述S3包括以下步骤:
S301:建立源荷调峰控制模型目标函数。
将风电作为负的负荷叠加到原始负荷曲线上,形成等效负荷曲线。调峰的目标是使得等效负荷曲线的波动尽可能小,也就是等效负荷曲线越平滑越好。因此源荷调峰控制模型的目标函数为:
其中,PLE(t)为t时刻系统的等效负荷,τ为从第1时刻到t时刻的累计时间。
系统的等效负荷与风电机组出力满足
其中,PL(t)为t时刻系统的总负荷,PWijmax(t)为t时刻第i个群内第j台风电机组的最大可能出力,NiW为第i个群的风电机组总数。
S302:建立发电-负荷功率平衡的等式约束条件。
系统每一时刻都必须保证功率的平衡,所有机组出力以及通过线路送出的功率要等于当前时刻系统内的总负荷。
其中,PGij(t)为t时刻第i个群内第j台机组的有功出力,Ni为第i个群的机组总数,PAk(t)为t时刻本地电力系统通过第k条输电线路向外输送的有功功率,A为本地电力系统与外部电力系统存在功率交换的输电线路总条数。
S303:建立风电机组出力波动、系统旋转备用容量、水火电机组调峰、可调负荷调峰、系统功率外送、群间线路功率交换约束的不等式约束条件。
风电机组出力波动约束:
0≤PWij(t)≤PWijmax(t) (5)
风电机组出力在t时刻出力不能大于最大可能出力。其中,PWij(t)为t时刻第i个群内第j台风电机组的有功出力,。
系统旋转备用容量约束:
其中,PMijmax和PMijmin分别为第i个群内第j台常规机组的出力上限和出力下限,PMij(t)为第i个群内第j台常规机组的出力,PRZ、PRF分别为系统预留的正旋转备用容量和负旋转备用容量,NiM为第i个群内的常规机组总数。
水火电机组调峰约束:
其中,UMi为第i个群内第j台常规机组的最大爬坡率;sgn为符号函数;PHij(τ)为第i个群内第j台火电机组在τ时刻的出力;teij为第i个群内第j台火电机组的调节间隔时间,要求火电机组在每teij时段内,最多调节1次,这是因为火电机组的锅炉进行开停机状态的转变时,需要较长的时间来改变设备温度。
可调负荷调峰约束:
其中,PLij(t)为t时刻第i个群内第j个可调负荷出力,PLijmax和PLijmax分别为上下限;ULij为i个群内第j个可调负荷的最大爬坡率;tLij为t时刻第i个群内第j个可调负荷的调节间隔时间,要求可调负荷在每tLij时段内,最多调节1次,这是由可调负荷的特性决定的。
系统功率外送约束:
Pli(t)≤Plimax,i=1,2,...,L (9)
其中,Pli(t)为t时刻系统内第i条线路上的传输功率,Plimax为系统内第i条线路的传输功率极限,L为系统内输电线路总数。
群间线路功率交换约束:
对于第i个群,其发电机组和可调负荷的调节周期为TSi;若第k个群和第m个群之间存在功率交换,其可调周期为TCmk,且功率交换不能超过群间线路功率上限:
其中,PGkj(t)为第k个群t时刻发电机组j出力,PLkj(t)为第k个群t时刻负荷j大小,PGmj(t)为第m个群t时刻发电机组j出力,PLmj(t)为第m个群t时刻负荷j大小,Pkmi为群k和m之间第i条线路传输功率极限,Nk为第k个群发电机组总数,NLk为第k个群负荷总数,Nm为m个群发电机组总数,NLm为第m个群负荷总数,Nkm为群k和m之间线路总数。
所述S4包括以下步骤:
S401:计算确定各群风电机组出力、水火电机组出力、可调负荷大小。
根据式(1)~式(10),计算确定在t时刻各群风电机组出力、水火电机组出力、可调负荷大小。
S402:输出控制策略。
根据S401的结果,滚动输出每个时刻的风电机组出力、水火电机组出力、可调负荷大小曲线。
实施例2
下面以某区域电网为例,本发明提供的动态自律分散协调的源荷调峰控制方法包括:
S1:某区域电网的网络拓扑图如图5所示。2017年该地区总装机容量为4490MW,其中火电装机容量2325MW,水电装机容量为365MW,带基荷出力270MW,风电装机容量为1800MW。某天该地区最大负荷为1920MW,最小负荷为1325MW,峰谷差为595MW。
该地区火电/水电机组、可调负荷名称和出力可调配置如表1所示。
表1火电/水电机组、可调负荷出力可调配置
获取电网参数,计算电网内各类型电源、可调负荷的电气距离。并预确定分群聚类中心,计算各类型电源、可调负荷距聚类中心的电气距离,对电网中的各类型电源、负荷进行分群,分群过程中不断更新分群聚类中心。最后确定的分群聚类中心及所属电源、可调负荷如表2所示。
表2分群聚类中心及所属电源、可调负荷
S2:根据第每个分群内的调峰资源特性和风电特性,确定每个分群内的自律可控周期和分群间的自律协调周期,如表3所示。表3中,分群1的自律可控周期为5min,分群1和分群2之间的自律协调周期为15min,以此类推。
表3群内的自律可控周期和群间的自律协调周期
群号 1 2 3
1 5min 15min 5min
2 15min 10min 10min
3 5min 10min 2min
同时,集中调度控制中心下达指令的周期为15min。建立自律分散协调调峰模式。
S3:某天日前风电预测曲线(15分钟一个数据,全天共96个数据,以分群1-玉门地区的风电为例)如图6所示。建立源荷调峰控制模型目标函数;建立发电-负荷功率平衡的等式约束条件;建立风电机组出力波动、系统旋转备用容量、水火电机组调峰、可调负荷调峰、系统功率外送、群间线路功率交换约束的不等式约束条件。
S4:计算确定各群风电机组出力、水火电机组出力、可调负荷大小。以分群1为例,输出每个时刻的风电机组(以甘八零三G1为例)出力、水火电机组(以青羊沟11为例)出力、可调负荷(以宏电铁合金为例)大小曲线,如图7(5分钟一个数据,全天共384个数据。)
图中可看出,相比于传统集中调度调峰模式15min控制周期(即调度指令下发的最短间隔为15min),在自律分散协调调峰模式下,分群1的自律可控周期为5min,与分群2和分群3的群间自律协调周期分别为15min和5min,因此,其调峰指令更加精细化,调峰间隔周期缩短。当风电快速波动时,其响应时间短,等效负荷曲线更加平滑,系统等效负荷波动减小。
传统集中调度调峰模式和自律分散协调调峰模式下,一天24h弃风电量对比如表4所示。
表4传统集中调度调峰模式和自律分散协调调峰模式下的一天24h弃风电量对比
调峰模式 弃风电量(MWh)
传统集中调度调峰模式 275.3
自律分散协调调峰模式 251.4
从表4可见,相比传统集中调度调峰模式,自律分散协调调峰模式下的弃风电量减少,说明了本发明提供的源荷调峰控制方法的有效性。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的权利要求保护范围之内。

Claims (8)

1.一种动态自律分散协调的源荷调峰控制方法,其特征在于,所述调峰控制方法包括以下步骤:
S1:获取电网参数,对电网中的各类型电源、负荷进行动态分群;
S2:建立自律分散协调调峰模式;
S3:建立动态自律分散协调的源荷调峰控制模型;
S4:求解源荷调峰控制模型,输出控制策略。
2.根据权利要求1所述的一种动态自律分散协调的源荷调峰控制方法,其特征在于,所述S1包括以下步骤:
S101:获取电网参数,计算电网内各类型电源、负荷的电气距离;
S102:预确定分群聚类中心;
S103:计算各类型电源、负荷距聚类中心的电气距离,对电网中的各类型电源、负荷进行分群,分群过程中不断更新分群聚类中心。
3.根据权利要求1所述的一种动态自律分散协调的源荷调峰控制方法,其特征在于,所述S2包括以下步骤:
S201:确定每个群内的自律可控周期和群间的自律协调周期;
S202:建立自律分散协调调峰模式。
4.根据权利要求1所述的一种动态自律分散协调的源荷调峰控制方法,其特征在于,所述S3包括以下步骤:
S301:建立源荷调峰控制模型目标函数;
S302:建立发电-负荷功率平衡的等式约束条件;
S303:建立风电机组出力波动、系统旋转备用容量、水火电机组调峰、可调负荷调峰、系统功率外送、群间线路功率交换约束的不等式约束条件。
5.根据权利要求1所述的一种动态自律分散协调的源荷调峰控制方法,其特征在于,所述S4包括以下步骤:
S401:求解源荷调峰控制模型;
S402:输出动态自律分散协调的源荷调峰控制策略。
6.根据权利要求2所述的一种动态自律分散协调的源荷调峰控制方法,其特征在于,所述S1包括以下步骤:
S101:获取电网参数,计算电网内各类型电源、负荷的电气距离;以二端网络的输入阻抗作为度量节点间电气距离的参数;根据电路等值原理,二端网络的输入阻抗表示了网络中任意2个非接地节点组成的端口向网络内看进去的等值阻抗;
向节点对(p,q)组成的端口注入单位电流时,该两点间的电位差即等于该二端网络的输入阻抗,用Zpq,in表示,且有
Zpq,in=Zpp+Zqq-2Zpq (1)
式中,Zpp、Zqq为节点阻抗矩阵中节点p、q各自的自阻抗;Zpq为节点的互阻抗;从式(1)可知二端网络输入阻抗的求解与节点阻抗矩阵中的元素密切相关,而节点阻抗矩阵由网络结构和网络元件的参数决定,包含了全网的信息,所以二端网络的输入阻抗也体现了全网的拓扑信息;二端网络输入阻抗表示了节点对间的等值阻抗,其值越小表明该节点对在整个网络中的电气距离越小,因此二端网络的输入阻抗可作为两点间电气距离的度量参数;
S102:预确定分群聚类中心;
在区域电网中,由于最高电压等级的变电站在输电中起着枢纽的作用,在调峰任务中也发挥着较为重要的作用,因此,可以预先选取几个最高电压等级的变电站,作为分群聚类中心;
S103:计算各类型电源、可调负荷距聚类中心的电气距离,对电网中的各类型电源、可调负荷进行分群,分群过程中不断更新分群聚类中心;
计算各类型电源、可调节负荷与上述分群聚类中心的电气距离,选取电气距离最小的一个聚类中心,把电源或者负荷归于此聚类中心所属的群;
在分群过程中不断更新分群聚类中心;若某些电源、可调节负荷与所有的分群聚类中心的电气距离都过大,则考虑选取新的变电站作为新的聚合中心,直至每个群内部的电源和可调负荷分布合理,不至于出现群内电源和可调负荷之间电气联系过弱的情况。
7.根据权利要求3所述的一种动态自律分散协调的源荷调峰控制方法,其特征在于,所述S2包括以下步骤:
S201:确定每个群内的自律可控周期和群间的自律协调周期;
每个群内都含有水电、火电、可调负荷等其中一种或者几种调峰资源以及风电;对比各个群之间,调峰资源的可调容量和调峰响应特性不一致,同时,风电的波动大小和出力大小也不尽相同;
根据第k个群内的调峰资源特性和风电特性,确定群内的调峰周期,即自律可控周期TSk;根据不同群间的调峰资源特性和风电特性,确定第k个群和第m个群之间的群间调峰周期,即自律协调周期TCmk(m,k=1,2,…,N),N为总的分群数;
从数学上来说,满足TSk≤TCmk&TSm≤TCmk
S202:建立自律分散协调调峰模式;
各群除了接收周期为TU的集中调度控制指令,在群内部调峰资源之间,每隔一个自律可控周期交换一次调峰信息;在群与群之间,每隔一个自律协调周期交换一次调峰信息;各群的自律可控周期TS1,TS2,...,TSN可能不相同,但总是满足自律可控周期≤自律协调周期≤集中控制周期,即TS1,TS2,...,TSN≤TU&TCmk≤TU,其中m和k为大于等于1的自然数。
8.根据权利要求4所述的一种动态自律分散协调的源荷调峰控制方法,其特征在于,所述S3包括以下步骤:
S301:建立源荷调峰控制模型目标函数;
将风电作为负的负荷叠加到原始负荷曲线上,形成等效负荷曲线;源荷调峰控制模型的目标函数为:
其中,PLE(t)为t时刻系统的等效负荷,τ为从第1时刻到t时刻的累计时间;
系统的等效负荷与风电机组出力满足
其中,PL(t)为t时刻系统的总负荷,PWijmax(t)为t时刻第i个群内第j台风电机组的最大可能出力,NiW为第i个群的风电机组总数;
S302:建立发电-负荷功率平衡的等式约束条件;
系统每一时刻都必须保证功率的平衡,所有机组出力以及通过线路送出的功率要等于当前时刻系统内的总负荷;
其中,PGij(t)为t时刻第i个群内第j台机组的有功出力,Ni为第i个群的机组总数,PAk(t)为t时刻本地电力系统通过第k条输电线路向外输送的有功功率,A为本地电力系统与外部电力系统存在功率交换的输电线路总条数;
S303:建立风电机组出力波动、系统旋转备用容量、水火电机组调峰、可调负荷调峰、系统功率外送、群间线路功率交换约束的不等式约束条件;
风电机组出力波动约束:
0≤PWij(t)≤PWijmax(t) (5)
风电机组出力在t时刻出力不能大于最大可能出力;其中,PWij(t)为t时刻第i个群内第j台风电机组的有功出力,;
系统旋转备用容量约束:
其中,PMijmax和PMijmin分别为第i个群内第j台常规机组的出力上限和出力下限,PMij(t)为第i个群内第j台常规机组的出力,PRZ、PRF分别为系统预留的正旋转备用容量和负旋转备用容量,NiM为第i个群内的常规机组总数;
水火电机组调峰约束:
其中,UMi为第i个群内第j台常规机组的最大爬坡率;sgn为符号函数;PHij(τ)为第i个群内第j台火电机组在τ时刻的出力;teij为第i个群内第j台火电机组的调节间隔时间,要求火电机组在每teij时段内,最多调节1次;
可调负荷调峰约束:
其中,PLij(t)为t时刻第i个群内第j个可调负荷出力,PLijmax和PLijmax分别为上下限;ULij为i个群内第j个可调负荷的最大爬坡率;tLij为t时刻第i个群内第j个可调负荷的调节间隔时间,要求可调负荷在每tLij时段内,最多调节1次,这是由可调负荷的特性决定的;
系统功率外送约束:
Pli(t)≤Plimax,i=1,2,...,L (9)
其中,Pli(t)为t时刻系统内第i条线路上的传输功率,Plimax为系统内第i条线路的传输功率极限,L为系统内输电线路总数;
群间线路功率交换约束:
对于第i个群,其发电机组和可调负荷的调节周期为TSi;若第k个群和第m个群之间存在功率交换,其可调周期为TCmk,且功率交换不能超过群间线路功率上限:
其中,PGkj(t)为第k个群t时刻发电机组j出力,PLkj(t)为第k个群t时刻负荷j大小,PGmj(t)为第m个群t时刻发电机组j出力,PLmj(t)为第m个群t时刻负荷j大小,Pkmi为群k和m之间第i条线路传输功率极限,Nk为第k个群发电机组总数,NLk为第k个群负荷总数,Nm为m个群发电机组总数,NLm为第m个群负荷总数,Nkm为群k和m之间线路总数。
CN201810040214.XA 2018-01-16 2018-01-16 一种动态自律分散协调的源荷调峰控制方法 Active CN108390387B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810040214.XA CN108390387B (zh) 2018-01-16 2018-01-16 一种动态自律分散协调的源荷调峰控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810040214.XA CN108390387B (zh) 2018-01-16 2018-01-16 一种动态自律分散协调的源荷调峰控制方法

Publications (2)

Publication Number Publication Date
CN108390387A true CN108390387A (zh) 2018-08-10
CN108390387B CN108390387B (zh) 2023-03-17

Family

ID=63076972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810040214.XA Active CN108390387B (zh) 2018-01-16 2018-01-16 一种动态自律分散协调的源荷调峰控制方法

Country Status (1)

Country Link
CN (1) CN108390387B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474348A (zh) * 2019-08-20 2019-11-19 南方电网科学研究院有限责任公司 一种配电网的调峰方法及装置
CN111934363A (zh) * 2020-07-29 2020-11-13 国网甘肃省电力公司电力科学研究院 各类型电源空间分布和调节能力约束的多源协调调峰方法
CN112215492A (zh) * 2020-10-12 2021-01-12 国网甘肃省电力公司电力科学研究院 一种基于电源空间分布及调节特性的聚合分群方法
CN112688368A (zh) * 2021-01-05 2021-04-20 国网甘肃省电力公司电力科学研究院 一种送端电网源网协调调峰方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138256A (zh) * 2011-11-30 2013-06-05 国网能源研究院 一种新能源电力消纳全景分析系统及方法
CN104485690A (zh) * 2014-12-18 2015-04-01 国家电网公司 一种基于多阶段动态规划的电网多源调峰方法
US20150280436A1 (en) * 2012-10-12 2015-10-01 Vito Nv Method and system for distributing and/or controlling an energy flow taking into account constraints relating to the electricity network
CN105160603A (zh) * 2015-09-29 2015-12-16 国网甘肃省电力公司 基于网架结构分群的大型风力发电集群弃风电量评估方法
CN105703355A (zh) * 2015-12-10 2016-06-22 中国电力科学研究院 一种多样性负荷分级自律协同需求响应方法
US20160233682A1 (en) * 2013-09-30 2016-08-11 Jackseario Antonio Dionisio DO ROSARIO Power Quality of Service Optimization for Microgrids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138256A (zh) * 2011-11-30 2013-06-05 国网能源研究院 一种新能源电力消纳全景分析系统及方法
US20150280436A1 (en) * 2012-10-12 2015-10-01 Vito Nv Method and system for distributing and/or controlling an energy flow taking into account constraints relating to the electricity network
US20160233682A1 (en) * 2013-09-30 2016-08-11 Jackseario Antonio Dionisio DO ROSARIO Power Quality of Service Optimization for Microgrids
CN104485690A (zh) * 2014-12-18 2015-04-01 国家电网公司 一种基于多阶段动态规划的电网多源调峰方法
CN105160603A (zh) * 2015-09-29 2015-12-16 国网甘肃省电力公司 基于网架结构分群的大型风力发电集群弃风电量评估方法
CN105703355A (zh) * 2015-12-10 2016-06-22 中国电力科学研究院 一种多样性负荷分级自律协同需求响应方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
顾煜炯等: "燃煤发电机组调峰能力模糊综合评估方法", 《热力发电》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474348A (zh) * 2019-08-20 2019-11-19 南方电网科学研究院有限责任公司 一种配电网的调峰方法及装置
CN111934363A (zh) * 2020-07-29 2020-11-13 国网甘肃省电力公司电力科学研究院 各类型电源空间分布和调节能力约束的多源协调调峰方法
CN111934363B (zh) * 2020-07-29 2022-09-09 国网甘肃省电力公司电力科学研究院 各类型电源空间分布和调节能力约束的多源协调调峰方法
CN112215492A (zh) * 2020-10-12 2021-01-12 国网甘肃省电力公司电力科学研究院 一种基于电源空间分布及调节特性的聚合分群方法
CN112688368A (zh) * 2021-01-05 2021-04-20 国网甘肃省电力公司电力科学研究院 一种送端电网源网协调调峰方法
CN112688368B (zh) * 2021-01-05 2022-09-16 国网甘肃省电力公司电力科学研究院 一种送端电网源网协调调峰方法

Also Published As

Publication number Publication date
CN108390387B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CN108470239B (zh) 计及需求侧管理和储能的主动配电网多目标分层规划方法
Liu et al. Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints
Tan et al. A game-theoretic framework for vehicle-to-grid frequency regulation considering smart charging mechanism
CN112467722B (zh) 一种考虑电动汽车充电站的主动配电网源-网-荷-储协调规划方法
CN110826880B (zh) 一种大规模电动汽车接入的主动配电网优化调度方法
CN111882111B (zh) 一种源网荷储协同互动的电力现货市场出清方法
CN108390387A (zh) 一种动态自律分散协调的源荷调峰控制方法
CN104362648A (zh) 一种光伏电站无功调相方法
CN109904877B (zh) 基于变功率因数的分散式风电场优化运行方法
CN104158198A (zh) 配电网优化潮流控制装置和方法
CN107359616A (zh) 一种解决大规模电网方式调整后潮流计算不收敛的方法
CN106374498A (zh) 一种考虑二次电压频率控制的微电网潮流计算方法
CN106099987A (zh) 一种分散式风电机组无功优化策略
CN111769543A (zh) 一种含多微网的区域配电网自律协同运行优化方法
CN112561273A (zh) 一种基于改进pso的主动配电网可再生dg规划方法
CN115912466A (zh) 基于信息间隙决策理论的有源配电网孤岛划分方法及系统
CN106712032B (zh) 一种考虑风电机组有功电压调节能力的最优潮流模型构建方法
CN111277004A (zh) 一种配电网“源-网-荷”两阶段多目标控制方法及系统
Liu et al. Fully distributed control to coordinate charging efficiencies for energy storage systems
Aydin et al. Comparative analysis of multi-criteria decision making methods for the assessment of optimal SVC location
CN116404671B (zh) 基于分层协同控制的直流微电网多储能荷电状态均衡策略
CN107609690A (zh) 一种负荷主动管理决策优化的方法
Abedini et al. Adaptive energy consumption scheduling of multi-microgrid using whale optimization algorithm
CN115833105A (zh) 一种基于集群划分的配电网规划方法
CN115659098A (zh) 一种分布式新能源消纳能力计算方法、装置、设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant