CN108390382A - 一种电能质量扰动的抑制方法和统一电能质量调节器 - Google Patents

一种电能质量扰动的抑制方法和统一电能质量调节器 Download PDF

Info

Publication number
CN108390382A
CN108390382A CN201810161683.7A CN201810161683A CN108390382A CN 108390382 A CN108390382 A CN 108390382A CN 201810161683 A CN201810161683 A CN 201810161683A CN 108390382 A CN108390382 A CN 108390382A
Authority
CN
China
Prior art keywords
instantaneous
voltage
power
phase
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810161683.7A
Other languages
English (en)
Inventor
高俊青
沈凯
李中华
李题印
屠永伟
姚海燕
缪宇峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Power Equipment Manufacturing Co Ltd
Hangzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
Hangzhou Power Equipment Manufacturing Co Ltd
Hangzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Power Equipment Manufacturing Co Ltd, Hangzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd filed Critical Hangzhou Power Equipment Manufacturing Co Ltd
Priority to CN201810161683.7A priority Critical patent/CN108390382A/zh
Publication of CN108390382A publication Critical patent/CN108390382A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种电能质量扰动的抑制方法,在获取到配电网中负荷侧瞬时三相电压之后,可以基于park变换理论提取瞬时三相电压的基波正序电压,并计算出补偿电压并注入输电线路,从而缓解电压骤变问题;在获取到配电网中负荷侧瞬时三相电流之后,可以利用瞬时功率理论提取瞬时三相电流的瞬时有功功率和瞬时无功功率,并计算出补偿电流并注入输电线路,达到阻断电流谐波传递以解决电流谐波问题的目的。而且,无论是park变换理论还是瞬时功率理论,其本质上都是矩阵变换,所以能够简化补偿电压和补偿电流的计算过程,缩短计算时间,进而提升本抑制方法的响应速度。此外,本发明还公开了一种统一电能质量调节器,具有如上效果。

Description

一种电能质量扰动的抑制方法和统一电能质量调节器
技术领域
本发明涉及电能质量领域,特别涉及一种电能质量扰动的抑制方 法和统一电能质量调节器。
背景技术
随着电力电子技术的发展,非线性电力电子器件和装置在现代工 业中得到了广泛应用,同时冲击性、波动性负荷,例如电弧炉、大型 轧钢机、电力机车等大量接入电网,引起电压骤变和电流谐波等电能 质量问题。但另一方面,随着现代科技的进步,各种复杂的、精密的、 对电能质量敏感的用电设备不断普及,电力用户对电网电能质量要求 不断增高,电能质量问题影响着用户的用电体验,严重情况下会导致 设备故障和经济损失。
因此,如何缓解电压骤变和电流谐波问题以达到抑制电能质量扰 动的目的是本领域技术人员目前需要解决的技术问题。
发明内容
本发明的目的是提供一种电能质量扰动的抑制方法和统一电能 质量调节器,能够缓解电压骤变和电流谐波问题以达到抑制电能质量 扰动的目的。
为了解决上述技术问题,本发明提供的一种电能质量扰动的抑制 方法,包括:
获取配电网中负荷侧瞬时三相电压和瞬时三相电流;
基于park变换理论提取所述瞬时三相电压的基波正序电压,并依 据所述基波正序电压计算补偿电压;
利用瞬时功率理论提取所述瞬时三相电流的瞬时有功功率和瞬 时无功功率,并依据所述瞬时有功功率和所述无功功率计算补偿电流;
向所述配电网的输电线路注入所述补偿电压和所述补偿电流。
优选地,所述基于park变换理论提取所述瞬时三相电压的基波正 序电压具体包括:
对所述瞬时三相电压进行傅里叶展开,获得所述瞬时三相电压的 n次正序分量、n次负序分流量和n次零序分量;
将所述n次正序分量、所述n次负序分流量和所述n次零序分量 转化为dq坐标系下n次电压的d轴分量和q轴分量;
提取所述d轴分量和所述q轴分量中的基波正序分量,并将所述 基波正序分量转化为abc坐标系下的基本正序电压;
其中,n为正整数。
优选地,所述提取所述d轴分量和所述q轴分量中的基波正序分 量具体为:
利用低通滤波器提取所述d轴分量和所述q轴分量中的所述基波 正序分量。
优选地,所述依据所述基波正序电压计算补偿电压具体包括:
将电压值为预设值,且相位与所述基波正序电压的相位相同的电 压确定为目标电压;
计算所述目标电压与所述瞬时三相电压的差值,并将所述差值作 为所述补偿电压。
优选地,所述利用瞬时功率理论提取所述瞬时三相电流的瞬时有 功功率和瞬时无功功率具体包括:
将所述瞬时三相电压和所述瞬时三相电流分别转化为αβ坐标系 下的瞬时电压和瞬时电流;
基于所述瞬时电压和所述瞬时电流计算所述瞬时有功功率和所 述瞬时无功功率。
优选地,所述依据所述瞬时有功功率和所述瞬时无功功率计算补 偿电流具体包括:
将所述瞬时有功功率分解为瞬时有功功率平均分量和瞬时有功 功率振荡分量;
根据所述瞬时有功功率振荡分量和所述瞬时无功功率计算所述 补偿电流。
优选地,所述将所述瞬时有功功率分解为瞬时有功功率平均分量 和瞬时有功功率振荡分量具体为:
利用低通滤波器将所述瞬时有功功率分解为所述瞬时有功功率 平均分量和所述瞬时有功功率振荡分量。
为了解决上述技术问题,本发明还提供的一种统一电能质量调节 器,包括串联单元和并联单元;
所述串联单元,用于获取配电网中负荷侧瞬时三相电压,基于park 变换理论提取所述瞬时三相电压的基波正序电压,并依据所述基波正 序电压计算补偿电压,向所述配电网的输电线路注入所述补偿电压;
所述并联单元,用于获取所述负荷侧瞬时三相电流,利用瞬时功 率理论提取所述瞬时三相电流的瞬时有功功率和瞬时无功功率,并依 据所述瞬时有功功率和所述无功功率计算补偿电流,向所述配电网的 输电线路注入所述补偿电流。
相对于上述现有技术而言,本发明提供电能质量扰动的抑制方 法,在获取到配电网中负荷侧瞬时三相电压之后,可以基于park变换 理论提取瞬时三相电压的基波正序电压,并依据基波正序电压计算出 补偿电压并注入输电线路,能够在电压发生骤变时及时将负荷侧电压 拉回恒定值,缓解电压骤变问题;在获取到配电网中负荷侧瞬时三相 电流之后,可以利用瞬时功率理论提取瞬时三相电流的瞬时有功功率 和瞬时无功功率,并依据瞬时有功功率和无功功率计算出补偿电流并 注入输电线路,达到阻断电流谐波传递以解决电流谐波问题的目的。 而且,无论是park变换理论还是瞬时功率理论,其本质上都是矩阵变 换,所以基于park变换理论得到补偿电压和利用瞬时功率理论得到补 偿电流的计算过程简单,能够缩短计算时间,进而提升本抑制方法的 响应速度。另外,本抑制方法在计算补偿电压和补偿电流时,均以三 相电压和三相电流为基础,属于同步检测,可以避免因检测不同步造 成的信号互相干扰和系统不稳定的问题。此外,本发明还提供的一种 统一电能质量调节器,具有如上效果。
附图说明
为了更清楚地说明本发明实施例,下面将对实施例中所需要使用 的附图做简单的介绍,显而易见地,下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动 的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的一种电能质量扰动的抑制方法的流程 图;
图2为本发明实施例提供的一种统一电能质量调节器的组成示意 图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部 分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通 技术人员在没有付出创造性劳动的前提下,所获得的所有其他实施例, 都属于本发明保护范围。
本发明的目的是提供一种电能质量扰动的抑制方法和统一电能 质量调节器,能够缓解电压骤变和电流谐波问题以达到抑制电能质量 扰动的目的。
为了使本领域的技术人员更好的理解本发明技术方案,下面结合 附图和具体实施方式对本发明作进一步的详细说明。
图1为本发明实施例提供的一种电能质量扰动的抑制方法的流程 图。如图1所示,本实施例提供的电能质量扰动的抑制方法包括:
S10:获取配电网中负荷侧瞬时三相电压和瞬时三相电流。
在步骤S10中,配电网中负荷侧瞬时三相电压为abc坐标系下的 瞬时三相电压,是计算补偿电压的基础;配电网中负荷侧瞬时三相电 流为abc坐标系下的瞬时三相电流,是计算补偿电流的基础。而且, 在步骤S10中,获取的电压和电流分别以三相电压和三相电流为基础, 属于同步检测,可以避免因检测不同步造成的信号互相干扰和系统不 稳定的问题。
S11:基于park变换理论提取瞬时三相电压的基波正序电压,并 依据基波正序电压计算补偿电压。
park变换理论的实质是矩阵变换,所以,基于park变换理论提取 瞬时三相电压的基波正序电压,能够简化计算瞬时三相电压的基波正 序电压的过程,缩短计算时间,进而提升整个抑制方法的响应速度。
S12:利用瞬时功率理论提取瞬时三相电流的瞬时有功功率和瞬 时无功功率,并依据瞬时有功功率和无功功率计算补偿电流。
瞬时功率理论本质也是矩阵变换,所以,利用瞬时功率理论提取 瞬时三相电流的瞬时有功功率和瞬时无功功率,能够简化计算瞬时三 相电流的瞬时有功功率和瞬时无功功率的过程,缩短计算时间,进而 提升整个抑制方法的响应速度。
S13:向配电网的输电线路注入补偿电压和补偿电流。
在计算出补偿电压之后,向输电线路注入补偿电压,可以缓解电 压骤变问题,从而能够达到抑制电能质量扰动的目的;在计算出补偿 电流之后,向输电线路注入补偿电流,可以缓解电流谐波问题,从而 能够达到抑制电能质量扰动的目的。
例如,假设负载端的目标电压为VLoad,在发生电压骤变时,公共 耦合点的电压突变为VPCC,则可以向输电线路注入一个补偿电压VUPQC, 使得VPCC与VUPQC之和正好为VLoad,即VLoad=VPCC+VUPQC,将负载端电压拉回 到了VLoad,确保了负载端的输入电压恒定。
假设负荷的目标电流ILoad,在发生电压骤变时,输电线路中存在 电流谐波,使得公共耦合点的电流突变为IPCC,则可以向输电线路注 入一个补偿电流IUPQC,令IPCC与IUPQC之和正好为ILoad,即ILoad=IPCC+IUPQC, 将负荷的电流拉回到了ILoad,确保了负荷的电流恒定。
本发明实施例提供电能质量扰动的抑制方法,在获取到配电网中 负荷侧瞬时三相电压之后,可以基于park变换理论提取瞬时三相电压 的基波正序电压,并依据基波正序电压计算出补偿电压并注入输电线 路,能够在电压发生骤变时及时将负荷侧电压拉回恒定值,缓解电压 骤变问题;在获取到配电网中负荷侧瞬时三相电流之后,可以利用瞬 时功率理论提取瞬时三相电流的瞬时有功功率和瞬时无功功率,并依 据瞬时有功功率和无功功率计算出补偿电流并注入输电线路,达到阻 断电流谐波传递以解决电流谐波问题的目的。而且,无论是park变换 理论还是瞬时功率理论,其本质上都是矩阵变换,所以基于park变换 理论得到补偿电压和利用瞬时功率理论得到补偿电流的计算过程简 单,能够缩短计算时间,进而提升本抑制方法的响应速度。另外,本 抑制方法在计算补偿电压和补偿电流时,均以三相电压和三相电流为 基础,属于同步检测,可以避免因检测不同步造成的信号互相干扰和 系统不稳定的问题。
基于上述实施例,作为一种优选的实施方式,基于park变换理论 提取瞬时三相电压的基波正序电压具体包括:
对瞬时三相电压进行傅里叶展开,获得瞬时三相电压的n次正序 分量、n次负序分流量和n次零序分量;
将n次正序分量、n次负序分流量和n次零序分量转化为dq坐标 系下n次电压的d轴分量和q轴分量;
提取d轴分量和q轴分量中的基波正序分量,并将基波正序分量 转化为abc坐标系下的基本正序电压;
其中,n为正整数。
例如,瞬时三相电压分别为va、vb和vc,则可以通过式(1)对瞬 时三相电压进行傅里叶展开:
其中,分别为a相电压的n次正序分量、n次负序分 量和n次零序分量,分别为b相电压的n次正序分量、n 次负序分量和n次零序分量,分别为c相电压的n次正 序分量、n次负序分量和n次零序分量。
可以通过式(3)将瞬时三相电压转化为dq坐标系下n次电压的 d轴分量和q轴分量:
其中,vnd为dq坐标系下n次电压的d轴分量,vnq为dq坐标系下 n次电压的q轴分量。
在vnd和vnq中只有基波正序分量为直流量,其它分量均为交流量, 因此,通过提取直流量将基波正序分量提取出来。优选地,可以提取 d轴分量和q轴分量中的基波正序分量具体为:利用低通滤波器提取d 轴分量和q轴分量中的基波正序分量。
以dq坐标系下1次电压中的基波正序分量转化为abc坐标系下的 基本正序电压为例,则可以通过式(3)将dq坐标系1次电压中的基 波正序分量转化为abc坐标系下的基本正序电压:
其中,v1d为dq坐标系下1次电压的d轴分量中的基波正序分量, v1q为dq坐标系下1次电压的q轴分量中的基波正序分量,v1a为dq坐 标系下1次a相电压中的基波正序分量,v1b为dq坐标系下1次b相电 压中的基波正序分量,v1c为dq坐标系下1次c相电压中的基波正序分 量。
基于上述实施例,作为一种优选的实施方式,依据基波正序电压 计算补偿电压具体包括:
将电压值为预设值,且相位与基波正序电压的相位相同的电压确 定为目标电压;
计算目标电压与瞬时三相电压的差值,并将差值作为补偿电压。
例如,预设值为v0,则可以通过式(4)计算补偿电压:
其中,为a相补偿电压,为b相补偿电压,为c相补偿电 压。
基于上述实施例,作为一种优选的实施方式,利用瞬时功率理论 提取瞬时三相电流的瞬时有功功率和瞬时无功功率具体包括:
将瞬时三相电压和瞬时三相电流分别转化为αβ坐标系下的瞬时 电压和瞬时电流;
基于瞬时电压和瞬时电流计算瞬时有功功率和瞬时无功功率。
例如,瞬时三相电压分别为va、vb和vc,瞬时三相电流为ia、ib和ic, 则可以通过式(5)将瞬时三相电压转化为αβ坐标系下的瞬时电压, 通过式(6)将瞬时三相电流转化为αβ坐标系下的瞬时电流:
其中,为αβ坐标系下的瞬时电压。
其中,为αβ坐标系下的瞬时电流。
并且,在得到αβ坐标系下的瞬时电压和瞬时电流后,可以通过式(7)计算瞬时有功功率p和瞬时无功功率q。
基于上述实施例,作为一种优选的实施方式,依据瞬时有功功率 和瞬时无功功率计算补偿电流具体包括:
将瞬时有功功率分解为瞬时有功功率平均分量和瞬时有功功率 振荡分量;
根据瞬时有功功率振荡分量和瞬时无功功率计算补偿电流。
例如,假设瞬时有功功率中的瞬时有功功率振荡分量为则可 以通过式(8)计算αβ坐标系下的补偿电流和通过式9计算abc坐标 系下的补偿电流:
其中,为αβ坐标系下的补偿电流。
其中,为abc坐标系下的补偿电流。
基于上述实施例,作为一种优选的实施方式,将瞬时有功功率分 解为瞬时有功功率平均分量和瞬时有功功率振荡分量具体为:
利用低通滤波器将瞬时有功功率分解为瞬时有功功率平均分量 和瞬时有功功率振荡分量。
当然,可以理解的是,利用低通滤波器分解瞬时有功功率仅为一 种优选的实施方式,而并非唯一的实施方式,根据实际应用场景的不 同,还可以选用其它方式分解瞬时有功功率,本发明对此不做限定。
上文对本发明提供的电能质量扰动的抑制方法进行了详细描述, 本发明还提供了一种与电能质量扰动的抑制方法对应的统一电能质量 调节器,由于统一电能质量调节器部分的实施例与抑制方法部分的实 施例相互照应,因此统一电能质量调节器部分的实施例请参见抑制方 法部分的实施例的描述,对于相同的部分,本文不再赘述。
图2为本发明实施例提供的一种统一电能质量调节器的组成示意 图。如图2所示,本实施提供的统一电能质量调节器包括串联单元20 和并联单元21;
串联单元20,用于获取配电网中负荷侧瞬时三相电压,基于park 变换理论提取瞬时三相电压的基波正序电压,并依据基波正序电压计 算补偿电压,向配电网的输电线路注入补偿电压。
并联单元21,用于获取负荷侧瞬时三相电流,利用瞬时功率理论 提取瞬时三相电流的瞬时有功功率和瞬时无功功率,并依据瞬时有功 功率和无功功率计算补偿电流,向配电网的输电线路注入补偿电流。
需要说明的是,串联单元20为同一电能质量调节器中与负荷串 联的电压补偿装置,由串联变压器、三相LC滤波器,电压源型逆变 器和DC-link电容器组成。并联单元21为同一电能质量调节器中与 负荷并联的电流补偿装置,由耦合电感器,电压源型逆变器和DC-link 电容器组成。
而且,作为一种优选的实施方式,串联单元20在获取到瞬时三 相电压之后,可以通过下述步骤计算基本正序电压:
步骤一:对瞬时三相电压进行傅里叶展开,获得瞬时三相电压的 n次正序分量、n次负序分流量和n次零序分量;
步骤二:将n次正序分量、n次负序分流量和n次零序分量转化 为dq坐标系下n次电压的d轴分量和q轴分量;
步骤三:提取d轴分量和q轴分量中的基波正序分量,并将基波 正序分量转化为abc坐标系下的基本正序电压;其中,n为正整数。
作为一种优选的实施方式,并联单元21在提取到瞬时有功功率 和瞬时无功功率之后,可以通过下述步骤计算补偿电流:
步骤一:将瞬时有功功率分解为瞬时有功功率平均分量和瞬时有 功功率振荡分量;
步骤二:根据瞬时有功功率振荡分量和瞬时无功功率计算补偿电 流。
综上所述,本发明实施例提供统一电能质量调节器,包括串联单 元和并联单元,串联单元在获取到配电网中负荷侧瞬时三相电压之后, 可以基于park变换理论提取瞬时三相电压的基波正序电压,并依据基 波正序电压计算出补偿电压并注入输电线路,能够在电压发生骤变时 及时将负荷侧电压拉回恒定值,缓解电压骤变问题;并联单元在获取 到配电网中负荷侧瞬时三相电流之后,可以利用瞬时功率理论提取瞬 时三相电流的瞬时有功功率和瞬时无功功率,并依据瞬时有功功率和 无功功率计算出补偿电流并注入输电线路,达到阻断电流谐波传递以 解决电流谐波问题的目的。而且,无论是park变换理论还是瞬时功率 理论,其本质上都是矩阵变换,所以基于park变换理论得到补偿电压 和利用瞬时功率理论得到补偿电流的计算过程简单,能够缩短计算时 间,进而提升本抑制方法的响应速度。另外,本统一电能质量调节器 在计算补偿电压和补偿电流时,均以三相电压和三相电流为基础,属 于同步检测,可以避免因检测不同步造成的信号互相干扰和系统不稳定的问题。
以上对本发明所提供的一种电能质量扰动的抑制方法和统一电 能质量调节器进行了详细介绍。说明书中各个实施例采用递进的方式 描述,每个实施例重点说明都是与其它实施例的不同之处,各个实施 例之间相同相似部分互相参见即可。
应当指出,对于本技术领域的普通技术人员来说,在不脱离本发 明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和 修饰也落入本发明权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二之类的关系术 语仅仅用来将一个实体或者操作与另一个实体或者操作区分开来,而 不一定要求或者暗示这些实体或者操作之间存在任何这种实际的关系 或者顺序。而且,术语“包括”、“包含”或者其任何变体意在涵盖非 排他性的包含,从而使得包括一系列的要素的过程、方法、物品或者 设备不仅包括那些要素,而且还包括没有明确列出的其它要素,或者 还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多 限制的情况下,由语句“包括一个……”限定的要素,并不排除在包 括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (8)

1.一种电能质量扰动的抑制方法,其特征在于,包括:
获取配电网中负荷侧瞬时三相电压和瞬时三相电流;
基于park变换理论提取所述瞬时三相电压的基波正序电压,并依据所述基波正序电压计算补偿电压;
利用瞬时功率理论提取所述瞬时三相电流的瞬时有功功率和瞬时无功功率,并依据所述瞬时有功功率和所述无功功率计算补偿电流;
向所述配电网的输电线路注入所述补偿电压和所述补偿电流。
2.根据权利要求1所述的电能质量扰动的抑制方法,其特征在于,所述基于park变换理论提取所述瞬时三相电压的基波正序电压具体包括:
对所述瞬时三相电压进行傅里叶展开,获得所述瞬时三相电压的n次正序分量、n次负序分流量和n次零序分量;
将所述n次正序分量、所述n次负序分流量和所述n次零序分量转化为dq坐标系下n次电压的d轴分量和q轴分量;
提取所述d轴分量和所述q轴分量中的基波正序分量,并将所述基波正序分量转化为abc坐标系下的基本正序电压;
其中,n为正整数。
3.根据权利要求2所述的电能质量扰动的抑制方法,其特征在于,所述提取所述d轴分量和所述q轴分量中的基波正序分量具体为:
利用低通滤波器提取所述d轴分量和所述q轴分量中的所述基波正序分量。
4.根据权利要求3所述的电能质量扰动的抑制方法,其特征在于,所述依据所述基波正序电压计算补偿电压具体包括:
将电压值为预设值,且相位与所述基波正序电压的相位相同的电压确定为目标电压;
计算所述目标电压与所述瞬时三相电压的差值,并将所述差值作为所述补偿电压。
5.根据权利要求1-4任一项所述的电能质量扰动的抑制方法,其特征在于,所述利用瞬时功率理论提取所述瞬时三相电流的瞬时有功功率和瞬时无功功率具体包括:
将所述瞬时三相电压和所述瞬时三相电流分别转化为αβ坐标系下的瞬时电压和瞬时电流;
基于所述瞬时电压和所述瞬时电流计算所述瞬时有功功率和所述瞬时无功功率。
6.根据权利要求5所述的电能质量扰动的抑制方法,其特征在于,所述依据所述瞬时有功功率和所述瞬时无功功率计算补偿电流具体包括:
将所述瞬时有功功率分解为瞬时有功功率平均分量和瞬时有功功率振荡分量;
根据所述瞬时有功功率振荡分量和所述瞬时无功功率计算所述补偿电流。
7.根据权利要求6所述的电能质量扰动的抑制方法,其特征在于,所述将所述瞬时有功功率分解为瞬时有功功率平均分量和瞬时有功功率振荡分量具体为:
利用低通滤波器将所述瞬时有功功率分解为所述瞬时有功功率平均分量和所述瞬时有功功率振荡分量。
8.一种统一电能质量调节器,其特征在于,包括串联单元和并联单元;
所述串联单元,用于获取配电网中负荷侧瞬时三相电压,基于park变换理论提取所述瞬时三相电压的基波正序电压,并依据所述基波正序电压计算补偿电压,向所述配电网的输电线路注入所述补偿电压;
所述并联单元,用于获取所述负荷侧瞬时三相电流,利用瞬时功率理论提取所述瞬时三相电流的瞬时有功功率和瞬时无功功率,并依据所述瞬时有功功率和所述无功功率计算补偿电流,向所述配电网的输电线路注入所述补偿电流。
CN201810161683.7A 2018-02-27 2018-02-27 一种电能质量扰动的抑制方法和统一电能质量调节器 Pending CN108390382A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810161683.7A CN108390382A (zh) 2018-02-27 2018-02-27 一种电能质量扰动的抑制方法和统一电能质量调节器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810161683.7A CN108390382A (zh) 2018-02-27 2018-02-27 一种电能质量扰动的抑制方法和统一电能质量调节器

Publications (1)

Publication Number Publication Date
CN108390382A true CN108390382A (zh) 2018-08-10

Family

ID=63068758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810161683.7A Pending CN108390382A (zh) 2018-02-27 2018-02-27 一种电能质量扰动的抑制方法和统一电能质量调节器

Country Status (1)

Country Link
CN (1) CN108390382A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119997A (zh) * 2018-10-15 2019-01-01 杭州电力设备制造有限公司 一种电能质量补偿设备
CN109361324A (zh) * 2018-12-24 2019-02-19 中国船舶重工集团公司第七〇九研究所 一种基于零序分量的三相逆变电源并联功率均衡方法
CN109359693A (zh) * 2018-10-24 2019-02-19 国网上海市电力公司 一种电能质量扰动分类方法
CN110011316A (zh) * 2019-03-15 2019-07-12 南京工程学院 基于瞬时空间矢量和双p-q理论的能量控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335252A (ja) * 1993-05-19 1994-12-02 Hitachi Ltd 電力用自励式変換器の制御方法及びその装置
CN102394500A (zh) * 2011-12-14 2012-03-28 重庆市江津区供电有限责任公司 一种提高动态电压恢复器谐波抑制能力的控制方法
CN103199539A (zh) * 2013-03-08 2013-07-10 华北电力大学 一种零有功注入的统一电能质量调节器电压暂降补偿方法
CN104466963A (zh) * 2014-12-11 2015-03-25 湖南大学 一种电力感应调控滤波装置及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335252A (ja) * 1993-05-19 1994-12-02 Hitachi Ltd 電力用自励式変換器の制御方法及びその装置
CN102394500A (zh) * 2011-12-14 2012-03-28 重庆市江津区供电有限责任公司 一种提高动态电压恢复器谐波抑制能力的控制方法
CN103199539A (zh) * 2013-03-08 2013-07-10 华北电力大学 一种零有功注入的统一电能质量调节器电压暂降补偿方法
CN104466963A (zh) * 2014-12-11 2015-03-25 湖南大学 一种电力感应调控滤波装置及其控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张勇: ""主动配网中多换流器式统一电能质量控制器的应用研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
王超: ""统一电能质量调节器的补偿控制策略研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
许睿颖: ""左串右并型三相三线制UPQC控制方法研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119997A (zh) * 2018-10-15 2019-01-01 杭州电力设备制造有限公司 一种电能质量补偿设备
CN109119997B (zh) * 2018-10-15 2024-05-24 杭州电力设备制造有限公司 一种电能质量补偿设备
CN109359693A (zh) * 2018-10-24 2019-02-19 国网上海市电力公司 一种电能质量扰动分类方法
CN109361324A (zh) * 2018-12-24 2019-02-19 中国船舶重工集团公司第七〇九研究所 一种基于零序分量的三相逆变电源并联功率均衡方法
CN109361324B (zh) * 2018-12-24 2020-10-13 中国船舶重工集团公司第七一九研究所 一种基于零序分量的三相逆变电源并联功率均衡方法
CN110011316A (zh) * 2019-03-15 2019-07-12 南京工程学院 基于瞬时空间矢量和双p-q理论的能量控制方法
CN110011316B (zh) * 2019-03-15 2022-12-16 南京工程学院 基于瞬时空间矢量和双p-q理论的能量控制方法

Similar Documents

Publication Publication Date Title
CN108390382A (zh) 一种电能质量扰动的抑制方法和统一电能质量调节器
CN102355151B (zh) 一种具有复合功能的并网逆变器及并网逆变控制方法
CN104953606B (zh) 一种孤岛微网公共耦合点电压不平衡网络化分层补偿方法
CN103545825B (zh) 一种电气化铁路电能质量电磁混合补偿系统
CN106505595A (zh) 基于mmc‑upfc的输电线路三相不平衡治理系统及方法
CN106532749B (zh) 一种微电网不平衡功率和谐波电压补偿系统及其应用
CN104993484A (zh) 一种有源电力滤波器
CN105140927B (zh) 含谐波的配电网无功补偿电容器容量的计算方法
CN103795061B (zh) 一种高压直流输电系统二次谐波滤波器及其参数设计方法
CN105429168A (zh) 一种基于交直流混合供电网的电能质量治理方法
CN105470963A (zh) 一种有源电力滤波器及其控制方法
CN110137976A (zh) 电压源型换流站接入多馈入系统的稳定性判断方法及装置
CN104410073B (zh) 同相供电系统电能质量混合补偿系统及方法
CN109599885A (zh) 一种特高压直流闭锁换流母线暂态过电压计算方法
Wang et al. A novel directional element for transmission line connecting inverter-interfaced renewable energy power plant
Bhonsle et al. Harmonic pollution survey and simulation of passive filter using MATLAB
CN105490274B (zh) 地铁供电系统电能质量控制系统及方法
CN105281336B (zh) 一种电气化铁路电能质量治理系统及方法
Hannan et al. Modern power systems transients studies using dynamic phasor models
CN204103487U (zh) 电力电子变压器的控制电路
CN107749626A (zh) 一种能排除背景谐波电压影响检测真实滤波效果的检测方法
CN102945312B (zh) 电力系统中无功补偿设备数学模型简化方法
Sanjenbam et al. Power quality enhancement of standalone hydropower generation system through modified integrator based observer controlled UPQC
CN107611987A (zh) 基于gmn算法的静止同步补偿器的控制方法
Hooshmand et al. Optimal design of TCR/FC in electric arc furnaces for power quality improvement in power systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180810