CN110011316B - 基于瞬时空间矢量和双p-q理论的能量控制方法 - Google Patents

基于瞬时空间矢量和双p-q理论的能量控制方法 Download PDF

Info

Publication number
CN110011316B
CN110011316B CN201910196614.4A CN201910196614A CN110011316B CN 110011316 B CN110011316 B CN 110011316B CN 201910196614 A CN201910196614 A CN 201910196614A CN 110011316 B CN110011316 B CN 110011316B
Authority
CN
China
Prior art keywords
voltage
power
load
space vector
instantaneous space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910196614.4A
Other languages
English (en)
Other versions
CN110011316A (zh
Inventor
孙玉坤
徐昊
张亮
杨婷
汤国晟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201910196614.4A priority Critical patent/CN110011316B/zh
Publication of CN110011316A publication Critical patent/CN110011316A/zh
Application granted granted Critical
Publication of CN110011316B publication Critical patent/CN110011316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了基于瞬时空间矢量和双P‑Q理论的能量控制方法,将补偿目标负载电压实际值和参考电压、电流分别经过Clarke变换并计算,通过瞬时空间矢量得到实际正负零序功率、参考正序功负零序功率,对两者差值采用双P‑Q理论进行解耦,同时依据最小能量补偿计算实际与参考负载电压的角度δ,最终得到DVR输出参考电压值后。该方法可以对负载电压进行更有效和精确的跟踪补偿,且具有广泛的适用性。

Description

基于瞬时空间矢量和双P-Q理论的能量控制方法
技术领域
本发明涉及电力电子变换器控制的技术领域,尤其涉及一种基于瞬时空间矢量和双P-Q理论的能量最优化DVR控制方法。
背景技术
社会的发展对电能质量的要求逐渐提高。电压跌落作为严重的电能质量对生产部门尤其是精密生产部门造成了很大的影响。储能型DVR是解决系统电压跌落的好方法。DVR接入电网补偿电压跌落的系统图如附图1所示。
储能型DVR系统成本与储能的配置有很大的关系。为了减小储能的配置,提升系统的经济性,如何在减少能量输出,提高能量利用效率的同时,完成对电压跌落的补偿,成为DVR控制方法研究的重中之重。
电压跌落情况多样,DVR最小能量输出的条件不同,造成控制策略的不适用,所以急需一个可以解决所有电压跌落问题的控制方法。本控制方法在保证DVR有功输出最优化的同时,既可以解决长期电压跌落问题,也可以解决短时电压闪变问题,目前本领域还没有提出一个适用所有电压跌落问题的控制策略。
发明内容
本发明的目的在于公开了一种基于瞬时空间矢量和双P-Q理论的能量最优化DVR控制方法,在保证DVR有功输出最优化的同时,既可以补偿长期电压跌落问题,也可以补偿短时电压闪变问题。
本发明的目的通过以下技术方案予以实现:
基于瞬时空间矢量和双P-Q理论的能量控制方法,包括以下步骤:
步骤1:检测补偿对象敏感负荷侧三相电压以及电流,对其分别进行Clarke变换,基于αβ0坐标系计算电压跌落前负载额定功率分别为ptαβ、qtαβ与pt0
步骤2:发生电压跌落后,基于αβ0坐标系计算出电压跌落后的负荷瞬时功率分别为plαβ、qlαβ与pl0
步骤3:将步骤1中得到的额定功率与步骤2中得到的电压跌落后的负荷瞬时功率相减,得到DVR的补偿目标功率
Figure BDA0001996038120000021
Figure BDA0001996038120000022
步骤4:运用双P-Q理论对步骤3得到的补偿目标功率进行解耦,同时依据最小能量补偿控制计算实际负载电压与参考负载电压的夹角δ,得到DVR的目标参考电压
Figure BDA0001996038120000023
Figure BDA0001996038120000024
步骤5:对步骤4得到的参考电压进行Clarke逆变换,得到abc坐标系上的参考电压
Figure BDA0001996038120000025
Figure BDA0001996038120000026
步骤6:将步骤5得到的参考电压电压闭环控制。
所述的一种基于瞬时空间矢量和双P-Q理论的能量控制方法,运用基于Clarke变换的瞬时空间矢量方法,分别计算负载电压跌落前后的电压和电流,并计算功率,在瞬时空间矢量坐标下处理对功率进行处理。其中,基于Clarke变换瞬时空间矢量计算如下:
Figure BDA0001996038120000027
Figure BDA0001996038120000031
则在瞬时空间矢量坐标下的电压和电流分别为:
Figure BDA0001996038120000032
Figure BDA0001996038120000033
所述的一种基于瞬时空间矢量和双P-Q理论的能量控制方法,运用双P-Q理论,将DVR输出参考电压从功率中解耦出来,具体计算过程如下:
Figure BDA0001996038120000034
所述的一种基于瞬时空间矢量和双P-Q理论的能量控制方法,在瞬时空间矢量坐标下,将负载实际跌落电压Vl
Figure BDA0001996038120000035
进行比较,以DVR输出最小能量补偿电压跌落为目标,计算得到实际负载电压与参考负载电压的角度δ。
有益效果:
本发明先让敏感负载电压和线路电流分别经过Clarke变换,再进行功率的计算,得到基于αβ0量的实际正序功率pαβ、负序功率 qαβ和零序功率p0,同时计算基于αβ0量敏感负荷参考功率,将两者的差进行比较,对差值采用双P-Q理论进行解耦后,得到使DVR有功输出最小的负载电压参考值。再进行Clarke逆变换,得到abc坐标系下的参考电压值后,进行电压闭环控制,达到DVR最小能量注入的目的。在保证DVR有功输出最优化的同时,既可以补偿长期电压跌落问题,也可以补偿短时电压闪变问题,具有广泛的适用性。
附图说明
图1为基于瞬时空间矢量和双P-Q理论的能量最优化DVR控制框图;
图2为DVR接入电网补偿电压跌落的系统图;
图3为参考电压信号计算图;
图4为实际负载电压与参考负载电压的夹角δ计算流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细描述。
结合图2所示,本发明以Clarke变换为基础的瞬时空间矢量可以用来完成监测电功率潮流、电网传输线路使用率等工作。根据 Clarke变换,在abc和αβ0之间的转换矩阵如下所示。
Figure BDA0001996038120000041
Figure BDA0001996038120000042
则在瞬时空间矢量坐标下的电压和电流分别为:
Figure BDA0001996038120000043
Figure BDA0001996038120000051
其中,vα、vβ和iα、iβ分别为在αβ0坐标下的三相电压和电流。
根据电流决定的功率损失,可知系统有效线路电流Ie如下所示:
Figure BDA0001996038120000052
Ie与瞬时空间矢量电流
Figure BDA00019960381200000511
的关系如下所示:
Figure BDA0001996038120000054
根据电压决定的功率缺失,可知系统有效线电压Ve如下所示:
Figure BDA0001996038120000055
Ve与瞬时空间矢量电压
Figure BDA00019960381200000512
的关系如下所示:
Figure BDA0001996038120000057
其中,
Figure BDA0001996038120000058
τ为系统基础周期。
在双P-Q理论下,三相电流和正序、负序、零序的功率均为已知的,则瞬时正序功率pαβ,负序功率qαβ,零序功率p0表达式矩阵形式如下所示:
Figure BDA0001996038120000059
由上式可得以双P-Q理论为基础的电压如下所示:
Figure BDA00019960381200000510
线路能输送的最大有功功率为:
Sl=3VlIl (11)
其中,Vl为负载电压,Il为线路电流。
负载实际有功功率Pt和负载参考功率Pl如下所示:
Pt=3VlIlcosθ (12)
Figure BDA0001996038120000067
其中,θ为实际负载电压Vl和线路电流的夹角,
Figure BDA0001996038120000061
为负载的功率因数。
为了使DVR输出的有功能量最小化,电网需要在稳态时输送负载需要的总功率。当电压出现扰动时,电网应该尽可能提供最大部分的有功功率,表达式如下所示:
minPdvr(Vl,θ)=Pl-Pt (14)
Figure BDA0001996038120000062
则有如下两种情况:
Figure BDA0001996038120000063
其中,
Figure BDA0001996038120000064
为DVR零有功补偿的临界点。
设定负载不随时间变化,则
Figure BDA0001996038120000065
为定值,θ可以通过DVR注入合适的电压来修正,则θ的表达式为:
Figure BDA0001996038120000066
引入δ作为实际负载电压与参考负载电压的夹角。具体计算流程图如附图3所示。
结合图4可知,瞬时负载零序正序功率、负序功率、零序功率计算公式如下所示:
pt0=vt0it0
ptαβ=vi+vi
qtαβ=vi-vi (18)
运用锁相环获取电网负荷的相角ωt,实际负载电压和参考负载电压夹角δ,具体控制框图见附图4,则负载期望电压表达式如下所示:
ul0=0
Figure BDA0001996038120000071
Figure BDA0001996038120000072
根据参考负载电压vlαβ0和线路电流llαβ0,计算出参考功率为:
pl0=vl0il0
plαβ=vi+vi
qlαβ=vi-vi (20)
则DVR需要补偿的功率为:
Figure BDA0001996038120000073
Figure BDA0001996038120000074
Figure BDA0001996038120000075
后经过双P-Q解耦计算得到αβ0坐标系下的DVR参考电压
Figure BDA0001996038120000076
Figure BDA0001996038120000077
过程如下:
Figure BDA0001996038120000081
再通过Clarke逆变换得到abc坐标系下的DVR参考电压值
Figure BDA0001996038120000082
即为DVR最小有功注入电压。

Claims (1)

1.基于瞬时空间矢量和双P-Q理论的能量控制方法,其特征在于,包括以下步骤:
步骤1:检测补偿对象敏感负荷侧三相电压以及电流,对其分别进行Clarke变换,得到基于αβ0坐标系计算电压跌落前负载额定功率分别为ptαβ、qtαβ与pt0
步骤2:发生电压跌落后,基于αβ0坐标系计算出电压跌落后的负荷瞬时功率分别为plαβ、qlαβ与pl0
步骤3:将步骤1中得到的电压跌落前负载额定功率与步骤2中得到的电压跌落后负荷瞬时功率相减,得到DVR的补偿目标功率
Figure FDA0003929325290000011
Figure FDA0003929325290000012
Figure FDA0003929325290000013
步骤4:运用双P-Q理论对步骤3得到的补偿目标功率进行解耦,同时依据最小能量补偿控制计算实际负载电压与参考负载电压的夹角δ,得到DVR的目标参考电压
Figure FDA0003929325290000014
Figure FDA0003929325290000015
步骤5:对步骤4得到的目标参考电压进行Clarke逆变换,得到abc坐标系上的参考电压
Figure FDA0003929325290000016
Figure FDA0003929325290000017
步骤6:将步骤5得到的参考电压用于电压闭环控制;
具体的:运用基于Clarke变换的瞬时空间矢量方法,分别计算负载电压跌落前后的电压和电流,并计算功率,在瞬时空间矢量坐标下处理对功率进行处理;其中,基于Clarke变换瞬时空间矢量计算如下:
Figure FDA0003929325290000021
Figure FDA0003929325290000022
则在瞬时空间矢量坐标下的电压和电流分别为:
Figure FDA0003929325290000023
Figure FDA0003929325290000024
其中,vα、vβ和iα、iβ分别为在αβ0坐标下的三相电压和电流;
与瞬时空间矢量电压的关系如下所示:根据电压决定的功率缺失,可知系统有效线电压Ve如下所示:
Figure FDA0003929325290000025
且Ve与瞬时空间矢量电压
Figure FDA0003929325290000026
的关系如下所示:
Figure FDA0003929325290000027
其中,
Figure FDA0003929325290000028
τ为系统基础周期;
运用双P-Q理论,将DVR输出参考电压从功率中解耦出来,具体计算过程如下:
Figure FDA0003929325290000031
线路能输送的最大有功功率为:
Sl=3VlIl
其中,Vl为负载电压,Il为线路电流;
负载实际有功功率Pt和负载参考功率Pl如下所示:
Pt=3VlIlcosθ
Figure FDA0003929325290000032
其中,θ为实际负载电压Vl和线路电流的夹角,
Figure FDA0003929325290000033
为负载的功率因数;
在瞬时空间矢量坐标下,将负载实际跌落电压Vl
Figure FDA0003929325290000034
进行比较,以DVR输出最小能量补偿电压跌落为目标,计算得到实际负载电压与参考负载电压的角度δ。
CN201910196614.4A 2019-03-15 2019-03-15 基于瞬时空间矢量和双p-q理论的能量控制方法 Active CN110011316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910196614.4A CN110011316B (zh) 2019-03-15 2019-03-15 基于瞬时空间矢量和双p-q理论的能量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910196614.4A CN110011316B (zh) 2019-03-15 2019-03-15 基于瞬时空间矢量和双p-q理论的能量控制方法

Publications (2)

Publication Number Publication Date
CN110011316A CN110011316A (zh) 2019-07-12
CN110011316B true CN110011316B (zh) 2022-12-16

Family

ID=67167068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910196614.4A Active CN110011316B (zh) 2019-03-15 2019-03-15 基于瞬时空间矢量和双p-q理论的能量控制方法

Country Status (1)

Country Link
CN (1) CN110011316B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768261A (zh) * 2019-12-02 2020-02-07 国网江苏省电力有限公司徐州供电分公司 一种基于状态空间预测的储能型dvr控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390382A (zh) * 2018-02-27 2018-08-10 杭州电力设备制造有限公司 一种电能质量扰动的抑制方法和统一电能质量调节器
CN108964066A (zh) * 2018-07-28 2018-12-07 南京理工大学 Dvr系统的电压跌落和谐波同步补偿方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390382A (zh) * 2018-02-27 2018-08-10 杭州电力设备制造有限公司 一种电能质量扰动的抑制方法和统一电能质量调节器
CN108964066A (zh) * 2018-07-28 2018-12-07 南京理工大学 Dvr系统的电压跌落和谐波同步补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种新型的NPC三电平矿用无功补偿器;张益华等;《电测与仪表》;20140210;第51卷(第3期);全文 *

Also Published As

Publication number Publication date
CN110011316A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
Jiang et al. A conservatism-free large signal stability analysis method for DC microgrid based on mixed potential theory
Wu et al. Energy management and control strategy of a grid‐connected PV/battery system
CN110289618B (zh) 一种多功能储能变流器并网电能质量补偿控制方法
Zhou et al. DC-link voltage research of photovoltaic grid-connected inverter using improved active disturbance rejection control
JP6059757B2 (ja) 系統電圧抑制制御装置及び系統電圧抑制制御方法
CN106058845A (zh) 基于混合储能的直流母线电压有限时间无源控制方法
Liao et al. Robust dichotomy solution-based model predictive control for the grid-connected inverters with disturbance observer
CN110492494B (zh) 基于内模理论的电压源变换器直接功率控制方法
Wang et al. Improved current decoupling method for robustness improvement of LCL-type STATCOM based on active disturbance rejection control
Dai et al. Transient performance improvement of deadbeat predictive current control of high-speed surface-mounted PMSM drives by online inductance identification
CN110011316B (zh) 基于瞬时空间矢量和双p-q理论的能量控制方法
Nizami et al. Time bound online uncertainty estimation based adaptive control design for DC–DC buck converters with experimental validation
US20240275301A1 (en) Power Conversion Device
Chen et al. Establishment of second-order equivalent circuit model for bidirectional voltage regulator converter: 48 V-aluminum-ion battery pack
Li et al. Incremental Model Predictive Current Control for PMSM With Online Compensation for Parameter Mismatch
Ababssi et al. Implementation Optimal Location of STATCOM on the IEEE New England Power System Grid (100 kV).
Garg et al. Voltage control and dynamic performance of power transmission system using STATCOM and its comparison with SVC
JP5580377B2 (ja) 静止型無効電力補償装置及び電圧制御方法
CN108667037B (zh) 基于p-dpc的statcom/bess微电网协同控制方法及其系统
Freitas et al. New global maximum power point tracking technique based on indirect PV array voltage control for photovoltaic string inverters with reduced number of sensors
CN112953290B (zh) 一种孤岛微网中并联逆变器系统鲁棒控制方法
Sheng et al. Adaptive fast terminal sliding mode control based on radial basis function neural network for speed tracking of switched reluctance motor
JP6387185B2 (ja) 電力変換装置
Bongiorno et al. An advanced cascade controller for series-connected VSC for voltage dip mitigation
CN109842137B (zh) 一种单三相混联微网群的协调控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant