CN108367278A - 用于化学工艺强化的方法和设备 - Google Patents

用于化学工艺强化的方法和设备 Download PDF

Info

Publication number
CN108367278A
CN108367278A CN201680054156.5A CN201680054156A CN108367278A CN 108367278 A CN108367278 A CN 108367278A CN 201680054156 A CN201680054156 A CN 201680054156A CN 108367278 A CN108367278 A CN 108367278A
Authority
CN
China
Prior art keywords
lanthanide series
nanocatalyst
oxygen
catalytic membrane
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680054156.5A
Other languages
English (en)
Other versions
CN108367278B (zh
Inventor
李冬梅
谭帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Wyoming
Original Assignee
University of Wyoming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Wyoming filed Critical University of Wyoming
Publication of CN108367278A publication Critical patent/CN108367278A/zh
Application granted granted Critical
Publication of CN108367278B publication Critical patent/CN108367278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/282Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/288Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/288Sulfides
    • C01F17/294Oxysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本文公开的实施方案大体涉及用于同时产生和分离过程的方法和设备。所述设备提供了包括基板、催化层和膜层的膜组件。所述催化层包括纳米尺寸的耐硫催化剂和/或颗粒。因此,所述设备可在无硫和含硫(酸性气体)环境中操作以进行水煤气变换(WGS)反应,同时维持高反应转化。本文还公开用于形成催化膜的方法。在一个实施方案中,提供了形成含镧系元素的含氧硫酸盐纳米催化剂的方法。

Description

用于化学工艺强化的方法和设备
技术领域
本文描述的实施方案大体涉及用于同时产生和分离过程的方法和设备。更具体地,实施方案包括用于在用于气体到气体或气体到液体同时产生和分离过程的设备中使用的膜反应器。本文还描述了描述用于形成纳米催化剂的方法的实施方案,所述纳米催化剂可用于同时产生和分离过程。
背景技术
预计煤炭和天然气资源将在未来二十多年内提供大于40%的全球能源需求。为了通过减少发电厂、工业、交通等的温室气体排放来减轻全球变暖,正在开发先进技术来实现这些能源的清洁、有效和环保的使用。作为先进转化技术之一,煤气化提供了有效且灵活的方法来利用丰富的能源资源,而使对环境的污染最小化。在煤气化过程中,煤被加热并暴露于氧气和蒸汽中,并且氧气和水分子使煤氧化并产生二氧化碳、一氧化碳、水蒸气和氢气的气体混合物。气体混合物然后经历水煤气变换(WGS)反应以产生氢气。各种膜反应器用于同时产生和分离氢气。
膜反应器的一个实例为紧凑型催化膜反应器(CCMR)。CCMR通常包括具有催化膜的膜组件。催化膜包括具有在其中沉积的纳米尺寸催化剂的多孔层。当反应气体穿过催化膜时,氢气产生。催化膜还与氢气可渗透的膜层整合。当氢气透过膜层时,反应的热力学向氢气生产变换。氢气在CCMR中同时产生和分离。然而,同时氢气产生和分离的膜或膜组件的持续存在问题包括硫中毒和低氢通量。
通常,WGS反应涉及高温变换(HTS),随后为低温变换(LTS)。商业HTS催化剂包括铁(Fe)氧化物材料和铬(Cr)氧化物材料的组合。然而,在硫进料气体环境中,HTS催化剂的催化活性可能显著降低。商业LTS催化剂,诸如铜-锌(Cu-Zn)材料,对低于0.1ppm的硫非常敏感,导致几乎100%活性损失。
诸如钴-钼-硫化物(CoMoS)材料和钴铬氧化物-硫化物(CoCr2O4S)材料的预硫化催化剂在含硫条件下具有极少或无明显活性损失。然而,常见的预硫化催化剂在WGS反应期间表现出低活性和硫损失,并且在无硫条件下表现出甲烷副产物形成。不需要对WGS的合成气中的硫进行预处理,操作和资本成本可显著减轻或降低。
因此,需要用于同时产生和分离过程的改进方法和设备。
发明内容
在一个实施方案中,描述了用于形成纳米催化剂的方法。所述方法包括将至少一种有机溶剂与至少一种表面活性剂混合以形成组合物、将所述组合物与含镧系元素的材料混合以形成含镧系元素的硫化物纳米催化剂,以及将含镧系元素的硫化物纳米催化剂暴露于氧气并且加热以形成含镧系元素的含氧硫酸盐纳米催化剂。
在另一个实施方案中,描述了用于形成催化膜的方法。所述方法包括将至少一种有机溶剂与至少一种表面活性剂混合以形成组合物、将所述组合物与含镧系元素的材料混合以形成含镧系元素的硫化物纳米催化剂,以及将含镧系元素的硫化物纳米催化剂暴露于氧气并且加热以形成含镧系元素的含氧硫酸盐纳米催化剂。催化膜组件的多孔氧化物层可用含镧系元素的含氧硫酸盐纳米催化剂来浸渍以形成催化膜,并且催化膜可被设置在膜层与多孔支撑层之间。
在另一个实施方案中,描述了用于形成催化膜的方法。所述方法包括将至少一种有机溶剂与至少一种表面活性剂混合以形成组合物、将所述组合物与含镧系元素的材料混合以形成含镧系元素的硫化物纳米催化剂,以及将含镧系元素的硫化物纳米催化剂暴露于氧气并且加热以形成含镧系元素的含氧硫酸盐纳米催化剂。催化膜组件的多孔氧化物层可用含镧系元素的含氧硫酸盐纳米催化剂来浸渍以形成催化膜,并且催化膜组件可包括设置在催化膜与膜层之间的多孔支撑层。
附图说明
因此,使本公开的上述特征可得到详细理解的方式,即对以上简要概述的本公开的更具体描述,可参照实施方案来获得,所述实施方案中的一些在附图中示出。然而,应指出的是,附图仅示出本公开的典型实施方案,且因此不视为对本公开范围的限制,因为本公开可承认涉及磁传感器的任何领域中的其他平等有效实施方案。
图1示意性地示出了根据本文描述的实施方案的膜组件。
图2示意性地示出了根据本文描述的实施方案的用于在用于同时产生和分离过程的设备中使用的膜组件。
图3为根据本文描述的实施方案的用于在用于同时产生和分离过程的设备中使用的膜组件的示意性横截面图。
图4示意性地示出了根据本文描述的实施方案的包括图3中所示的膜组件的设备。
图5示意性地示出了根据本文描述的实施方案的用于在用于同时产生和分离过程的设备中使用的膜组件。
图6示意性地示出了根据本文描述的实施方案的用于在用于同时产生和分离过程的设备中使用的膜组件。
图7为根据本文描述的实施方案的用于在用于同时产生和分离过程的设备中使用的膜组件的示意性横截面图。
图8为示出根据本文描述的一个实施方案的图7中所示的膜组件的耐硫测试的图表。
为便于理解,已尽可能使用相同的参考数字来指代附图中通用的相同元件。预期一个实施方案中公开的元件可在无需特别指明的情况下有利地在另一个实施方案中使用。
具体实施方式
本文公开的实施方案大体涉及用于同时产生和分离过程的方法和设备。所述设备提供了包括基板、催化膜和膜层的膜组件。催化膜包括纳米尺寸的颗粒,其使设备能够在无硫和含硫的进料气体环境中操作以进行WGS反应,同时维持高反应转化。本文描述的实施方案还包括用于形成适用于气体到气体或气体到液体同时产生和分离过程的耐硫纳米催化剂的方法。
如本文所用的术语“钯(Pd)层”通常是指并且可包括含有钯、含钯颗粒或钯合金层和/或颗粒的层。例如,钯层可为钯过渡金属合金。用于形成钯合金的过渡金属可包括金、银、铝、铜、钌及其组合和混合物。
如本文所用的术语“纳米催化剂”通常是指用作催化剂的纳米级材料、分子和/或部分。本文所述的纳米催化剂可包括各种形态和特征,其通常被配置来促进催化操作,并且更具体地促进与气体到气体或气体到液体同时产生和分离过程相关的催化功能。
图1示意性地示出了根据本文描述的实施方案的膜组件100。膜组件100可用于任何合适的膜反应器,诸如微膜反应器(MMR)。膜组件100包括用于支撑催化层104和钯层106的基板102。膜组件100可用于任何气体到气体或气体到液体同时产生和分离过程。在一个实施方案中,膜组件100用于同时氢气产生和分离。基板102可为诸如多孔不锈钢(SS)、多孔陶瓷或氧化物层的多孔材料。在一个实施方案中,基板102为多孔ZrO2基板。催化层104可涂覆在基板102上。催化层104可包括耐硫纳米催化剂。纳米催化剂具有纳米范围内的粒度。在一个实例中,纳米催化剂包含长度尺寸在约4nm与约10nm之间(诸如约7nm)并且宽度尺寸在约1nm与约3nm之间(诸如约2nm)的纳米棒结构。
在一个实施方案中,纳米催化剂包括含镧系元素的材料。镧系元素配位络合物由于其在镧系元素中的轨道电子组织引起的磁性、催化和光学特性而在商业过程中具有应用。预期镧系元素硫氧化物/含氧硫酸盐过渡体系在硫氧化物与含氧硫酸盐之间展现出氧转移能力,所述氧转移能力比常规氧化铈转变系统的氧转移能力高约八倍。镧系元素配位络合物的硫氧化还原容量有助于它们在脱氢过程(例如WGS反应)中的催化特性。含镧系元素的材料中的镧系元素可包括来自镧系元素系元素的任何元素。例如,镧系元素可为镧、铈、镨、钕、钷、钐或铕。在一个实施方案中,纳米催化剂包括硫氧化镧、硫氧化铕、硫氧化镨或硫氧化铈。在另一个实施方案中,纳米催化剂包括含氧硫酸镧、含氧硫酸铕、含氧硫酸镨或含氧硫酸铈。
与传统的微米尺寸的催化剂相比,纳米催化剂具有大得多的Brunauer-Emmett-Teller(BET)表面积。不同催化剂的BET表面积比较示于下表中。如表中所示,含镧系元素的纳米催化剂与其微米尺寸的催化相对物相比具有更高的BET表面积。具有含镧系元素的纳米催化剂的催化层104被认为在富硫和无硫的气流中稳定且有效,并且由于在含镧系元素的纳米催化剂的大表面上的硫解吸附而导致极少或无永久硫中毒。基板102中的孔充当物理屏障,允许最大化催化剂表面积/催化剂质量以及减少或消除的焦化。
样品 BET表面积(m2/g)
纳米-La2O2SO4 82.6
纳米-Pr2O2SO4 74.3
纳米-Eu2O2S 135.4
La2O2SO4 46
Pr2O2SO4 27
催化层可包括使用薄膜沉积工艺诸如原子层沉积(ALD)来沉积在其上的Pd颗粒。作为使用ALD在催化层中形成Pd颗粒的结果,硫可强烈溶解在Pd的表面上,但主要不是溶解在含镧系元素的纳米催化剂上。因此,可实现更有效的催化活化。另外,在Pd颗粒沉积之后,含镧系元素的纳米催化剂被ALD Pd颗粒部分包围,所述ALD Pd颗粒可部分或完全阻止硫进入Pd层106中,以保持Pd层106的选择性稳定。Pd层106可使用ALD来形成,因此Pd层106具有高纯度,这可导致氢选择性增加。由于具有高度有序的结晶结构的高纯度层,使用ALD来形成Pd层106还使金属前体使用最小化,实现较高程度的沉积共形性,并且降低沉积Pd层106的机械应力。
如本文所述的纳米催化剂合成方法可用于制造可有利地与膜组件100一起使用的纳米催化剂材料。在一个实施方案中,用于形成纳米催化剂的方法包括将溶剂与表面活性剂混合以形成组合物。合适溶剂的实例包括有机溶剂,诸如甲苯、己烷、乙醇或其组合和混合物,然而,预期可使用任何合适的有机溶剂。合适的表面活性剂的实例包括油胺、油酸、十八烯或其组合和混合物。溶剂/表面活性剂组合物与含镧系元素的材料混合以形成含镧系元素的硫化物纳米催化剂。表面活性剂和溶剂均可用于操纵含镧系元素的硫化物纳米催化剂的形态。例如,含镧系元素的硫化物纳米催化剂可为通过利用适当反应条件形成的垂直直立的结晶纳米板,例如六方晶系或立方晶系结晶纳米板。
在一个实施方案中,含镧系元素的材料为Eu(ddtc)3phen(phen=l,10-菲咯啉;ddtc=二乙基二硫代氨基甲酸酯)。在另一个实施方案中,含镧系元素的硫化物纳米催化剂包括硫氧化镧、硫氧化铕、硫氧化镨、硫氧化铈、硫氧化钐或硫氧化钕。在另一个实施方案中,含镧系元素的硫化物纳米催化剂包括镧系元素硫化物或硫化镨。
含镧系元素的硫化物纳米催化剂,其可包括硫氧化物纳米催化剂,以约10摄氏度/分钟与约50摄氏度/分钟的速率加热至约200摄氏度与约800摄氏度之间的温度以形成含镧系元素的含氧硫酸盐纳米催化剂。在一个实施方案中,含镧系元素的硫化物纳米催化剂被加热至约400摄氏度至约600摄氏度之间的温度,例如约500摄氏度。在另一个实施方案中,含镧系元素的硫化物纳米催化剂以约10摄氏度/分钟与约30摄氏度/分钟之间的速率(例如约10摄氏度/分钟)加热。此外,含镧系元素的硫化物纳米催化剂可加热约1小时与约7小时之间的时间量,例如约2小时。含镧系元素的硫化物纳米催化剂可在含氧环境诸如环境空气环境中加热。预期可使用任何合适的加热源,诸如烤箱或熔炉。
据信将硫化物和硫氧化物纳米催化剂暴露于含氧环境中的热有助于纳米催化剂的氧化。所得含镧系元素的含硫酸盐纳米催化剂包括含氧硫酸镧、含氧硫酸铕、含氧硫酸镨、含氧硫酸铈、含氧硫酸钐或含氧硫酸钕。预期,当形成如本文所述的纳米催化剂时,可使用具有明显硫氧化还原容量的任何镧系元素系。图2示出了根据本文描述的实施方案的用于在用于同时产生和分离过程的设备中使用的催化膜组件200。催化膜组件200可被放置在用于气体到气体或气体到液体产生和纯化(诸如氢气产生和纯化)的任何合适膜反应器中。催化膜组件200包括催化层104、Pd层106和设置在催化层104与Pd层106之间的基板102。如图2所示,层102、104、106基本上是平坦的。例如,基板102、催化层104和Pd层106可以平面取向排列。
图3为根据本文描述的实施方案的用于在用于同时产生和分离过程的设备中使用的催化膜组件300的示意性横截面图。催化膜组件300可被放置在用于气体到气体或气体到液体产生和纯化的任何合适膜反应器(诸如氢气产生和分离反应器)中。如图3所示,催化膜组件300为具有三个管状层302、304、306的管。然而,预期催化膜组件300可以各种其他几何形状有利地实施。在一个实施方案中,三个层302、304、306可具有多边形横截面,例如三角形、四边形、五边形、六边形、七边形、八边形、九边形或十边形横截面。在另一个实施方案中,三个层302、304、306可具有圆形或长方形横截面。内层306可包括与Pd层106相同的材料,中间层302可包括与基板102相同的材料,并且外层304可包括与催化层104相同的材料。
在一个实施方案中,中间层302为ZrO2管。在形成催化膜组件300的过程中,ZrO2管的表面可用氧等离子体处理约20分钟与约60分钟之间,功率在约10W与约100W之间,诸如约20W与约30W之间,例如约26.9W。氧等离子体工艺可在大约100毫托与约1托之间的压力下进行。在一个实施方案中,ZrO2管可在约200毫托与600毫托之间的压力(例如,约505毫托)下用氧等离子体处理约20至40分钟之间,例如约20分钟。据信氧等离子体处理改善纳米催化剂与ZrO2管外表面之间的粘附性。例如,氧等离子体处理在ZrO2管上产生主要地羟基终止的表面以增强陶瓷管的亲水性。
ZrO2管可暴露于分散在溶剂中的含镧系元素的纳米催化剂(诸如硫氧化铕、含氧硫酸镧或含氧硫酸镨)持续约24小时,同时溶剂维持在约130摄氏度。溶剂均可用于操纵含镧系元素的纳米催化剂的形态。在一个实施方案中,溶剂为有机溶剂。例如,溶剂可为甲苯、己烷、乙醇或其组合和混合物。溶剂混合物通过加热ZrO2管或溶剂来蒸发,以在ZrO2管(即基板102或中间层302)上形成含有含镧系元素的纳米催化剂的外层304。在一个实施方案中,ZrO2管在约100摄氏度与约500摄氏度之间(诸如约200摄氏度与约300摄氏度之间,例如约250摄氏度)的温度下在烘箱中加热。ZrO2管可加热约2小时与约12小时之间。在一个实施方案中,本文所述的操作可重复一次或多次以将纳米催化剂均匀加载在ZrO2管上。例如,上述操作可重复3次。
据信用纳米催化剂浸渍ZrO2管降低了高温过程(例如WGS反应期间经历的温度)期间的烧结效应。预期ZrO2管通过将纳米催化剂锚定在ZrO2管的纳米孔中来使纳米催化剂聚集最小化。还预期,氧化锆与纳米催化剂(例如含镧系元素的纳米催化剂)之间的相互作用增强了储氧能力,从而有助于较高的CO转化。下表示出外层304表面处不同元素的百分比。如所示出的,高氧含量存在于外层304的表面处。
图4示意性地示出了根据本文描述的实施方案的包括图3中所示的膜组件300的设备400。设备400可为具有外壁402和膜组件300的MMR。在操作期间,进料气体流过外壁402与结构300之间的空间。气体与外层304中纳米催化剂的纳米尺寸颗粒反应形成氢气,所述氢气然后渗透通过中间层302和内层306。由于外层304中的含镧系元素的纳米催化剂和内层306的ALD Pd层的大表面积,产生氢的WGS反应在无硫和含硫环境中均更加有效且稳定。此外,反应热力学向着具有最大化氢气渗透性的氢气生产变换。
图5示意性地示出了根据本文描述的另一个实施方案的用于在用于同时产生和分离过程的设备中使用的膜组件500。膜组件500可被放置在用于气体到气体或气体到液体产生和纯化的任何合适膜反应器(诸如氢气产生和分离反应器)中。膜反应器的实例为紧凑型催化膜反应器(CCMR)。膜组件500包括多孔支撑层502、膜层506和设置在多孔支撑层502与膜层506之间的催化膜504。在一个实施方案中,催化膜504、膜层506和多孔支撑层502是管状的。在一个实施方案中,催化膜504、膜层506和多孔支撑层502是多边形的,例如三角形、四边形、五边形、六边形、七边形、八边形、九边形或十边形。在另一个实施方案中,催化膜504、膜层506和多孔支撑层502是长方形的。在另一个实施方案中,催化膜504、膜层506和多孔支撑层502是圆形的。在又一个实施方案中,催化膜504、膜层506和多孔支撑层502是圆柱形的。在另一个实施方案中,催化膜504、膜层506和多孔支撑层502是平面的。多孔支撑层502可包括与图1中描述的基板102相同的材料,并且膜层506可包括与图1中描述的Pd层106相同的材料。
催化膜504可包括浸渍有纳米尺寸颗粒的层,诸如多孔氧化物层。在一个实施方案中,多孔氧化物层包含孔径为约100nm的ZrO2,并且纳米催化剂包含设置在多孔氧化物层的孔中的含镧系元素的纳米尺寸颗粒材料。在一个实施方案中,含镧系元素的材料包括含镧系元素的硫化物,诸如硫氧化镧、硫氧化铕、硫氧化镨、硫氧化铈、硫氧化钐或硫氧化钕。在另一个实施方案中,含镧系元素的材料包含硫化镧或硫化镨。在又一个实施方案中,含镧系元素的材料包括含镧系元素的含氧硫酸盐,诸如含氧硫酸镧、含氧硫酸铕、含氧硫酸镨、含氧硫酸铈、含氧硫酸钐或含氧硫酸钕。纳米催化剂可通过任何合适的浸渍方法例如溶胶-凝胶工艺或超声波喷涂来浸渍在层中。
膜层506可设置在催化膜504上,所述催化膜504可设置在多孔支撑层502上。在一个实施方案中,膜层506通过ALD沉积在催化膜504上。ALD Pd膜层506具有提供改善的渗透性而不损害选择性的合适厚度。
图6示意性地示出了根据本文描述的另一个实施方案的用于在用于同时产生和分离过程的设备中使用的催化膜组件600。催化膜组件600可被放置在用于气体到气体或气体到液体产生和纯化(诸如氢气产生和纯化)的任何合适膜反应器中。膜反应器的一个实例是CCMR。催化膜组件600包括催化膜604、膜层606和设置在催化膜604和膜层606之间的多孔支撑层602。多孔支撑层602可包括与图5中描述的多孔支撑层502相同的材料,膜层606可包括与图5中描述的膜层506相同的材料,并且催化膜604可包括与图5中描述的催化膜504相同的材料。与图5所示的结构500不同,膜层606设置在多孔支撑层602上。
在一个实施方案中,多孔支撑层602可包含多孔不锈钢,并且膜层606通过ALD使用Pd(hfac)2和福尔马林作为前体来沉积在多孔支撑层602上。种子层(未示出)可设置在多孔支撑层602与膜层606之间以改善粘附性。在一个实施方案中,种子层可包含氧化铝。图6所示的催化膜组件600的配置可通过收缩在纳米催化剂颗粒上具有沉积的纳米催化剂和硫吸附的催化膜604的孔径来防止Pd膜层606硫中毒。催化膜组件600不限于气体分离,并且可应用于用不均匀催化剂进行液-碱反应/分离和气-液-固过程(诸如液体燃料的Fisher-Tropsch合成)。
图7为根据本文描述的另一个实施方案的用于在用于同时产生和分离过程的设备中使用的催化膜组件700的示意性横截面图。催化膜组件700可被放置在用于气体到气体或气体到液体产生和纯化的任何合适膜反应器(诸如氢气产生和分离反应器)中。催化膜组件700为具有三个层702、704、706的管。内层706可包括与膜层606相同的材料,中间层702可包括与多孔支撑层602相同的材料,并且外层704可包括与催化膜604相同的材料。在一个实施方案中,中间层702包括多孔不锈钢,其由于高操作压力和温度下的机械稳定性而加以选择。催化层704被设置在中间层702的外表面上。催化膜704可包括用纳米尺寸颗粒(诸如含镧系元素的纳米催化剂)浸渍的层,诸如ZrO2层。在一个实施方案中,催化膜的厚度为约20微米至约200微米,所述厚度可通过用短得多的传输路径来规避质量传递而大大增强氢气生产效率。另外,还可在进料和渗透侧的气体流速显著增加的情况下解决放热反应的热管理挑战。多孔ZrO2层还提供较高的表面积/体积以增加反应物的催化接触面积,从而导致较高的转化和生产收率。
在WGS反应中测试膜组件700之前,渗透性测试在1SLPM的总流速、50psi系统压力和室温下,用N2中平衡的15%H2来进行。最近报道了通过涂覆具有微米尺寸的CuO/Al2O3的多孔不锈钢进行的类似CCMR配置,并且所述类似CCMR配置在与如以上所论述的相同的测试条件下进行测试。以下示出的表格概述具有纳米尺寸硫氧化铕的CCMR与具有微米尺寸的CuO/Al2O3的CCMR之间的比较。具有浸渍的纳米硫氧化铕的催化膜704为约30微米厚,比500微米CuO/Al2O3催化膜薄得多。因此,通过催化层704的H2渗透率与通过CuO/Al2O3层的H2渗透率相比为约15倍高。因此,纳米尺寸的催化剂有助于利用展现高H2渗透性的薄催化膜。
*使用不含镧系元素的微米尺寸的颗粒的比较样品
图8为示出根据一个实施方案的膜组件700的耐硫测试的图表。纳米尺寸的Eu2O2S催化剂的耐硫性测试指示,硫化氢(H2S)阻碍CO转化率,导致在0.345SLPM的CO流量中添加121ppm H2S后,CO转化下降约10%。然而,在从进料流中去除H2S之后,WGS反应的CO转化率基本上恢复到一小时后在无硫环境中的CO转化率。
以下示出的表比较有或无硫的WGS反应活性的纳米催化剂与微米尺寸的镧系元素硫氧化物催化剂和常规Fe-Cr催化剂的活性。比较显示,虽然CO的进料浓度不同(微米尺寸的催化剂在2%CO-10%H2O-N2进料中测试),但是纳米催化剂具有更好的或可比较的CO转化性能和骄人的硫抗性。与微米尺寸的镧系元素硫氧化物催化剂相比,纳米尺度的Eu2O2S在较低反应温度下表现出较高的CO转化。在550℃下,常规Fe-Cr催化剂实现90%Co转化率,其中微米尺寸的镧系元素硫氧化物催化剂仅实现<50%CO转化率。另外,微米尺寸的催化剂需要650℃或更高的温度以获得增强的转化。相反,纳米-Eu2O2S催化剂可在550℃下实现92%CO转化,其与传统的铁催化剂相比为2%高,而增强的CO转化在反应温度100℃下获得,所述反应温度100℃低于微米尺寸的催化剂的情况下的温度。在进料中添加121ppm硫后,相对于无硫环境中的CO转化,铁催化剂活性降低50%。然而,相对于无硫环境中的CO转化,Eu2O2S纳米催化剂活性下降约10%与约20%之间。在相似的条件下,Eu2O2S纳米催化剂显著优于传统的铁催化剂。值得注意的是,97%Eu2O2S纳米催化剂活性在关闭进料中的121ppm H2S半小时之后回收。与微米尺寸的镧系元素硫氧化物催化剂相比,用于硫吸附的纳米级Eu2O2S的较高活性表面积可能略微损害纳米级Eu2O2S的耐硫性。
类似地,与填充床反应器中的微米级镧系元素含氧硫酸盐催化剂相比,镧系元素含氧硫酸盐催化剂实现约70%CO转化,所述微米级镧系元素含氧硫酸盐催化剂在相似的CO和H2O进料浓度下实现约20%CO转化。预期纳米催化剂的独特形态和表面结构、纳米催化剂的粒度减小以及本公开实施方案的配置有助于增强反应速率。与微米尺寸的催化剂相比,可在每克催化剂的纳米催化剂表面上暴露更多S-2原子,这加速了还原(La2O2SO4到La2O2S)和氧化过程(La2O2S到La2O2SO4)。
预期本文描述的实施方案可用于商业或工业规模的应用,并且/或者可被修改以适应商业或工业规模的应用。还预期本公开的纳米催化剂增加Ln2O2SO4/Ln2O2S催化剂的活性并且可在用于进行WGS反应和类似的同时产生和分离过程的煤气化过程中有利地采用。
虽然前述内容是针对实施方案,但是在不偏离本发明的基本范围的情况下可以设计本公开的其他和另外实施方案,并且本发明的范围是由以上权利要求书决定。

Claims (20)

1.一种用于形成纳米催化剂的方法,其包括:
将至少一种有机溶剂与至少一种表面活性剂混合以形成组合物;
将所述组合物与含镧系元素的材料混合以形成含镧系元素的硫化物纳米催化剂;以及
将含镧系元素的硫化物纳米催化剂暴露于氧气,并且加热以形成含镧系元素的含氧硫酸盐纳米催化剂。
2.如权利要求1所述的方法,其中所述有机溶剂包括甲苯、己烷或其组合和混合物。
3.如权利要求1所述的方法,其中所述至少一种表面活性剂选自由以下组成的组:油胺、油酸和十八碳烯。
4.如权利要求1所述的方法,其中所述含镧系元素的硫化物纳米催化剂包括硫氧化铕、硫化镧或硫化镨。
5.如权利要求1所述的方法,其中所述含镧系元素的含氧硫酸盐纳米催化剂包括含氧硫酸镧或含氧硫酸镨。
6.如权利要求1所述的方法,其中所述含镧系元素的含氧硫酸盐纳米催化剂包括含钯催化膜。
7.一种用于形成催化膜的方法,其包括:
将至少一种有机溶剂与至少一种表面活性剂混合以形成组合物;
将所述组合物与含镧系元素的材料混合以形成含镧系元素的硫化物纳米催化剂;
将含镧系元素的硫化物纳米催化剂暴露于氧气,并且加热以形成含镧系元素的含氧硫酸盐纳米催化剂;
将催化膜组件的多孔氧化物层暴露于含镧系元素的含氧硫酸盐纳米催化剂,以用含镧系元素的含氧硫酸盐纳米催化剂浸渍多孔氧化物层以形成催化膜,其中所述催化膜组件包含设置在膜层与基板之间的催化膜。
8.如权利要求7所述的方法,其中所述催化膜、所述膜层和所述基板以管状几何形状或平面几何形状形成。
9.如权利要求7所述的方法,其中所述基板包括多孔不锈钢或陶瓷材料。
10.如权利要求7所述的方法,其中所述含镧系元素的含氧硫酸盐纳米催化剂包括含氧硫酸镧或含氧硫酸镨。
11.如权利要求7所述的方法,其中所述多孔氧化物层包含氧化锆。
12.如权利要求7所述的方法,其中所述催化膜组件被配置成用于紧凑型催化膜反应器中。
13.如权利要求7所述的方法,其中所述膜层包含钯或钯合金。
14.一种用于形成催化膜的方法,其包括:
将至少一种有机溶剂与至少一种表面活性剂混合以形成组合物;
将所述组合物与含镧系元素的材料混合以形成含镧系元素的硫化物纳米催化剂;
将含镧系元素的硫化物纳米催化剂暴露于氧气,并且加热以形成含镧系元素的含氧硫酸盐纳米催化剂;
将催化膜组件的多孔氧化物层暴露于含镧系元素的含氧硫酸盐纳米催化剂,以用含镧系元素的含氧硫酸盐纳米催化剂浸渍多孔氧化物层以形成催化膜,其中所述催化膜组件包含设置在催化膜与膜层之间的基板。
15.如权利要求14所述的方法,其中所述催化膜、所述膜层和所述基板以管状几何形状或平面几何形状形成。
16.如权利要求14所述的方法,其中所述基板包括多孔不锈钢或陶瓷材料。
17.如权利要求14所述的方法,其中所述含镧系元素的含氧硫酸盐纳米催化剂包括含氧硫酸镧或含氧硫酸镨。
18.如权利要求14所述的方法,其中所述多孔氧化物层包含氧化锆。
19.如权利要求14所述的方法,其中所述催化膜组件被配置成用于紧凑型催化膜反应器中。
20.如权利要求14所述的方法,其中所述膜层包含钯或钯合金。
CN201680054156.5A 2015-09-17 2016-09-13 用于化学工艺强化的方法和设备 Active CN108367278B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/857,468 US9486787B1 (en) 2015-09-17 2015-09-17 Method and apparatus for chemical process intensification
US14/857,468 2015-09-17
PCT/US2016/051475 WO2017048693A1 (en) 2015-09-17 2016-09-13 Method and apparatus for chemical process intensification

Publications (2)

Publication Number Publication Date
CN108367278A true CN108367278A (zh) 2018-08-03
CN108367278B CN108367278B (zh) 2019-06-28

Family

ID=57210943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680054156.5A Active CN108367278B (zh) 2015-09-17 2016-09-13 用于化学工艺强化的方法和设备

Country Status (5)

Country Link
US (1) US9486787B1 (zh)
EP (1) EP3349895A4 (zh)
JP (1) JP6487114B2 (zh)
CN (1) CN108367278B (zh)
WO (1) WO2017048693A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116062785A (zh) * 2023-03-10 2023-05-05 福州大学 一种钌掺杂硫化镧催化剂及其制备与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108217711B (zh) * 2018-01-31 2019-07-30 渤海大学 含氧硫酸镧薄膜及其纳米片层层自组装制备方法
CN108300982B (zh) * 2018-01-31 2019-08-20 渤海大学 层层自组装制备La2O2S薄膜的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296824B1 (en) * 1999-03-25 2001-10-02 Siemens Aktiengesellschaft Method for producing rare earth oxysulfide powder
CN102574057A (zh) * 2009-10-29 2012-07-11 丰田自动车株式会社 基于镧系元素含氧硫酸盐的氧吸附剂、其制造方法和包含其的废气净化催化剂

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2462547A (en) * 1945-08-08 1949-02-22 Polytechnic Inst Brooklyn Doubly activated infrared phosphors and methods of preparing same
US3705858A (en) * 1971-01-12 1972-12-12 Eastman Kodak Co Preparation of rare-earth-activated oxysulfide phosphors
US5804153A (en) * 1994-12-16 1998-09-08 The Hong Kong University Of Science & Technology Catalytic removal of sulfur dioxide form flue gas
US5853684A (en) * 1995-11-14 1998-12-29 The Hong Kong University Of Science & Technology Catalytic removal of sulfur dioxide from flue gas
US6777370B2 (en) * 2001-04-13 2004-08-17 Engelhard Corporation SOx tolerant NOx trap catalysts and methods of making and using the same
US7226543B2 (en) * 2001-06-18 2007-06-05 Konoshima Chemical Co., Ltd. Rare earth metal oxysulfide regenerative material and regenerator
US20030186805A1 (en) * 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
JP5118886B2 (ja) * 2007-05-21 2013-01-16 国立大学法人 熊本大学 酸素吸放出材及びそれを含む排ガス浄化用触媒
JP5118885B2 (ja) * 2007-05-21 2013-01-16 国立大学法人 熊本大学 酸素吸放出材及びそれを含む排ガス浄化用触媒
JP5330777B2 (ja) * 2008-09-08 2013-10-30 トヨタ自動車株式会社 酸素吸放出材及びそれを含む排ガス浄化用触媒
US8628744B2 (en) * 2009-11-09 2014-01-14 Tufts University Sulfur-tolerant water-gas shift catalysts
US9138718B2 (en) * 2013-06-10 2015-09-22 University Of Wyoming Compact catalytic membrane reactor for chemical process intensification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296824B1 (en) * 1999-03-25 2001-10-02 Siemens Aktiengesellschaft Method for producing rare earth oxysulfide powder
CN102574057A (zh) * 2009-10-29 2012-07-11 丰田自动车株式会社 基于镧系元素含氧硫酸盐的氧吸附剂、其制造方法和包含其的废气净化催化剂

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116062785A (zh) * 2023-03-10 2023-05-05 福州大学 一种钌掺杂硫化镧催化剂及其制备与应用

Also Published As

Publication number Publication date
US9486787B1 (en) 2016-11-08
EP3349895A4 (en) 2019-05-22
WO2017048693A1 (en) 2017-03-23
EP3349895A1 (en) 2018-07-25
JP2018528857A (ja) 2018-10-04
JP6487114B2 (ja) 2019-03-20
CN108367278B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
Wei et al. Boosting the removal of diesel soot particles by the optimal exposed crystal facet of CeO2 in Au/CeO2 catalysts
Pei et al. Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion
Mo et al. Gaseous CO and toluene co-oxidation over monolithic core–shell Co 3 O 4-based hetero-structured catalysts
Pan et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne
Sharifianjazi et al. A review on recent advances in dry reforming of methane over Ni-and Co-based nanocatalysts
Wang et al. Highly active ruthenium catalyst supported on barium hexaaluminate for ammonia decomposition to CO x-free hydrogen
Putla et al. MnO x nanoparticle-dispersed CeO2 nanocubes: a remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance
Jing et al. Recent advances in synergistic effect promoted catalysts for preferential oxidation of carbon monoxide
Liu et al. Progresses in the preparation of coke resistant Ni‐based catalyst for steam and CO2 reforming of methane
EP2539069B1 (en) Nanosized gold catalysts for co oxidation and water gas shift reactions
Saka Surface modification with oxygen doping of g-C3N4 nanoparticles by carbon vacancy for efficient dehydrogenation of sodium borohydride in methanol
US20110121238A1 (en) Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
Liao et al. One-step growth of CuO/ZnO/CeO2/ZrO2 nanoflowers catalyst by hydrothermal method on Al2O3 support for methanol steam reforming in a microreactor
JP2006346598A (ja) 水蒸気改質触媒
JP2013520317A5 (zh)
CN108367278B (zh) 用于化学工艺强化的方法和设备
Li et al. Production of hydrogen by ammonia decomposition over supported Co3O4 catalysts
Jiang et al. Design of hybrid La1-xCexCoO3-δ catalysts for lean methane combustion via creating active Co and Ce species
Wang et al. Cooperative effect between copper species and oxygen vacancy in Ce 0.7− x Zr x Cu 0.3 O 2 catalysts for carbon monoxide oxidation
Li et al. Enhanced oxygen activation on an atomically dispersed Au catalyst with dual active sites for room-temperature formaldehyde oxidation
Chen et al. Unraveling the change in multiple Cu species present in CuO/CeO2 over the preferential CO oxidation reaction
US20090220413A1 (en) Catalyst For Methane Steam Reformation, Method Of Producing The Same, And Method Of Producing Hydrogen Using The Same
Zhao et al. In situ growth route to fabricate ternary Co–Ni–Al mixed-metal oxide film as a promising structured catalyst for the oxidation of benzyl alcohol
Tri et al. High activity and stability of nano‐nickel catalyst based on LaNiO3 perovskite for methane bireforming
Hu et al. Effects of Organic Compounds on Ni/AlLaCe Catalysts for Ammonia Decomposition to Hydrogen

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant