CN108358229B - 一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法 - Google Patents

一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法 Download PDF

Info

Publication number
CN108358229B
CN108358229B CN201810198859.6A CN201810198859A CN108358229B CN 108358229 B CN108358229 B CN 108358229B CN 201810198859 A CN201810198859 A CN 201810198859A CN 108358229 B CN108358229 B CN 108358229B
Authority
CN
China
Prior art keywords
recombinant collagen
caco
microporous
preparing
collagen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810198859.6A
Other languages
English (en)
Other versions
CN108358229A (zh
Inventor
肖建喜
何会霞
付彩虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Biological Technology Development Co.,Ltd.
Original Assignee
Lanzhou Biological Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Biological Technology Development Co ltd filed Critical Lanzhou Biological Technology Development Co ltd
Priority to CN201810198859.6A priority Critical patent/CN108358229B/zh
Publication of CN108358229A publication Critical patent/CN108358229A/zh
Application granted granted Critical
Publication of CN108358229B publication Critical patent/CN108358229B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Abstract

本发明公开了一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法,具体包括如下步骤:(1)利用生物基因工程技术制备重组胶原蛋白:①确定重组胶原蛋白的序列;②合成编码重组胶原蛋白的核酸;③重组胶原蛋白的制备与纯化;(2)微孔CaCO3纳米材料的制备:①重组胶原蛋白与碳酸钠和氯化钙均匀混合溶液的配制;②将混合溶液放在25℃恒温箱中制备微孔CaCO3纳米粒子;③纯化并干燥保存制备的纳米材料。本发明采用重组胶原蛋白作为生物模板,碳酸钠和氯化钙作为原料,在室温下制备了大小和形貌可控的微孔CaCO3纳米材料。本发明简单方便,易于操作,制备的微孔CaCO3有较高的负载效率和可持续的药物释放性能,有希望作为安全递送药物的载体。

Description

一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子 的方法
技术领域
本发明属于生物无机材料制备技术领域,具体涉及一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法。
背景技术
碳酸钙是自然界中发现的最丰富的无机材料之一。由于纳米级碳酸钙材料具有生物相容性,生物降解性和无毒性等巨大性能,因此已经在工业和生物技术领域中被合成用于各种应用。例如,基因和药物输送,骨修复和组织工程。碳酸钙纳米粒子的高孔隙率,表面积和低质量传输限制使其对于设计许多可靠且成本低廉的生物传感器具有吸引力。
生物矿化,是生物在特定的部位和一定的物理化学条件下,在生物有机物质的调控下,将溶液中的离子转变为固相矿物的过程。不同于一般的矿化作用,生物矿化通过生物大分子从分子水平上控制无机矿物相的结晶、生长,从而使生物矿物具有特殊的分级结构和组装方式。近年来研究表明,生物体对生物矿化过程的控制是一个复杂的多层次过程,受到生物有机质、晶体自身生长机制、以及外界环境等各方面的综合调控作用。胶原蛋白具有良好的生物相容性、生物降解性、吸收性以及促进细胞形成等诸多功能,因此在生物医用材料、组织工程、化妆品、食品等领域广泛应用。以胶原蛋白为生物模板合成的骨骼、牙齿代表了自然界一种最经典的生物矿化现象。
发明内容
本发明的目的是针对现有技术中的不足,提供一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法,采用重组胶原蛋白作为生物模板,碳酸钠、氯化钙作为原料,在温和条件下制备大小和形貌可控的微孔CaCO3纳米材料。
为实现上述目的,本发明公开了如下技术方案:
一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法,包括如下步骤:
(1)利用生物基因工程技术制备重组胶原蛋白
①确定重组胶原蛋白的序列:
重组胶原蛋白的序列为:
GSPGLPGPRGEQGPTGPTGPAGPRGLQGLQGLQGERGEQGPTGPAGPRGLQGERGEQGPTGLAGKAGEAGAKGETG PAGPQGPRGEQGPQGLPGKDGEAGAQGRPGKRGKQGQKGEKGEPGTQGAKGDRGETGPVGPRGERGEAGPAGKDGERGFP GERGVEGQNGQDGLPGKDGKDGQNGKDGLPGKDGKDGQNGKDGLPGKDGKDGQDGKDGLPGKDGKDGLPGKDGKDGQPGK PGKYGPPGPPGPPGPPGPPGPPGPPGPPGPPGPP,该重组胶原蛋白具备良好的三重螺旋结构,热变温度接近37℃;
②合成编码重组胶原蛋白的核酸:合成编码步骤①重组胶原蛋白的核酸,构建导入上述核酸的质粒,并将质粒转化大肠杆菌BL21-DE3菌株;
③重组胶原蛋白的制备与纯化。
(2)微孔CaCO3纳米材料的制备
①重组胶原蛋白与碳酸钠和氯化钙均匀混合溶液的配制:在NaCO3的水溶液中加入 0-120mg重组胶原蛋白粉末,混合均匀,再向该溶液中缓慢滴加氯化钙溶液溶液;剧烈搅拌 5-120min后,得到白色的絮状物;
②温和的生物矿化条件下制备纳米级微孔CaCO3:将所得絮状混合物放在20-37℃的恒温箱中,放置1-10天,得到白色沉淀;
③纯化并干燥保存制备的纳米材料:将产物通过离心分离,离心条件为12000rpm,弃去上清液,留下固体;并用去离子水分散固体,再离心纯化3-5次,在20-37℃恒温干燥箱中干燥即得。
作为本发明的一种优选技术方案,步骤(2)中所述的胶原蛋白粉末加入量为0.1-120mg,胶原蛋白质量分数为0.01-6wt%。
作为本发明的一种优选技术方案,步骤(2)中所述的碳酸钠固体加入量为10-80mM,。
作为本发明的一种优选技术方案,步骤(2)中第②步中所述的絮状混合物在25℃的恒温箱中放置2天。
本发明的有益效果在于:
①本研究采用重组胶原蛋白作为生物模板,氯化钙作为原料,在温和条件下制备大小和形貌可控的微孔CaCO3纳米材料。
②本发明在整个合成过程中无需进行后处理,简单方便,易于操作,具有很大的应用前景,可为规模化生产微孔CaCO3纳米材料提供基础。
③由重组胶原蛋白作为生物模板调控CaCO3纳米晶型,得到特定形貌的CaCO3纳米粒子,有较高的负载效率和可持续的药物释放性能。
附图说明
图1为实施例1制备的微孔CaCO3纳米材料的粉末X射线多晶衍射(XRD)图(a)和X射线光电子能谱(XPS)图(b);
图2为实施例1制备的微孔CaCO3纳米材料的热重分析(TGA)图;
图3为实施例1制备的微孔CaCO3纳米材料的红外分析(FT-IR)图;
图4为实施例1制备的微孔CaCO3纳米材料的分析图;
图5为不同放置时间的实施例1制备的CaCO3纳米颗粒形貌透射电子显微镜图(TEM)和扫描电子显微镜图(SEM);
具体实施方式
下面将结合说明书附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分,而不是发明的全部。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1一种以重组胶原蛋白为生物矿化模板制备得到微孔CaCO3纳米粒子及其表征
一种以胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法,包括如下步骤:
(1)利用生物基因工程技术制备重组胶原蛋白
①确定重组胶原蛋白的序列:
重组胶原蛋白的序列为:
GSPGLPGPRGEQGPTGPTGPAGPRGLQGLQGLQGERGEQGPTGPAGPRGLQGERGEQGPTGLAGKAGEAGAKGETG PAGPQGPRGEQGPQGLPGKDGEAGAQGRPGKRGKQGQKGEKGEPGTQGAKGDRGETGPVGPRGERGEAGPAGKDGERGFP GERGVEGQNGQDGLPGKDGKDGQNGKDGLPGKDGKDGQNGKDGLPGKDGKDGQDGKDGLPGKDGKDGLPGKDGKDGQPGK PGKYGPPGPPGPPGPPGPPGPPGPPGPPGPPGPP,该重组胶原蛋白具备良好的三重螺旋结构,热变温度接近37℃;
②合成编码重组胶原蛋白的核酸:
合成编码步骤①重组胶原蛋白的核酸,构建导入上述核酸的质粒,并将质粒转化大肠杆菌BL21-DE3菌株;
③重组胶原蛋白的制备与纯化:
取50μL菌液加到100mL含抗生素的LB液体培养基中,恒温摇床过夜进行增菌培养后,转移到1L含抗生素的LB培养基中,在37℃恒温摇床中继续扩增培养;待OD600值达到0.8-1 范围,将摇床温度调为25℃,加入1mM IPTG诱导表达,恒温过夜培养;将菌液在低温离心机中离心,收集菌体;将菌体用A缓冲液溶解,A缓冲液为20mM咪唑,20mM磷酸钠,0.5 M氯化钠,pH为7.4;利用超声波细胞破碎仪进行细胞破碎,超声时细菌悬浊液放于冰浴中,以防温度过高导致蛋白变性;将破碎完的悬浊液再次离心,使细胞碎片与蛋白溶液分离,离心条件:14000rpm,4℃,30-50min;收集上清液,即粗蛋白溶液,通过液相色谱进行进一步纯化;后经冻干,得到白色絮状固体;此固体放于-20℃冰箱保存,使用时通过称重法标定浓度;
(2)CaCO3纳米材料的制备
①重组胶原蛋白与碳酸钠和氯化钙均匀混合溶液的配制:
在NaCO3浓度为0.05mol/ml的水溶液中加入6mg重组胶原蛋白粉末,使得胶原蛋白的质量分数为6wt%,混合均匀,再向该溶液中缓慢滴加氯化钙溶液;快速搅拌5-120min后,得到白色的絮状物;
②温和的生物矿化条件下制备纳米级微孔CaCO3
将所得絮状混合物放在25℃的恒温箱中,放置2天(即48h),得到白色沉淀;
③纯化并干燥保存制备的纳米材料:
将产物通过离心分离,离心条件为12000rpm,弃去上清液,留下固体;并用去离子水分散固体,再离心纯化3-5次,在20-37℃恒温干燥箱中干燥即得。
如图1a制备的微孔CaCO3纳米材料的粉末X射线多晶衍射(XRD)图所示,该图谱中衍射峰与标准碳酸钙红钛矿和方解石的峰相对应,说明我们所制备的碳酸钙纳米材料是碳酸钙红钛矿和方解石的混合物。图1b为制备的CaCO3纳米材料的X射线光电子能谱(XPS)图,该图谱中衍射峰与CaCO3的衍射数据对应。
如图2制备的CaCO3纳米材料的热重分析(TGA)图所示,可以清楚的表明在200-600℃之间,胶原蛋白碳酸钠材料中质量的损失约为7.5wt%。
如图3制备的微孔CaCO3纳米材料的红外分析(FT-IR)图所示,在3416cm-1,2925cm-1 和1658cm-1出现的峰值分别归因于O-H/N-H,C-H和C=O/-NH的振动键,这证实了CL/CaCO3中胶原的存在。位于1440cm-1的振动峰归属于CO2的不对称伸缩,峰值为876cm-1和712cm-1 是方解石的特征峰,745,1088归属于辉石。FT-IR分析显示在合成材料中存在方解石和黄铁矿,这与XRD结果一致。这些数据表明,我们以胶原蛋白为模板,成功制备CaCO3纳米材料。
如图4制备的CaCO3纳米材料的扫描电镜、透射电镜、电子衍射以及能量散射X射线的分析图所示,从图中我们可以看出,碳酸钙纳米粒子形貌均一,胶原蛋白和CaCO3在微孔球内均匀分布。
图5显示了不同时间对形成CaCO3纳米颗粒形貌的影响。图a-c为放置1小时,有TEM图像可知获得实心的碳酸钙纳米球;图d-f为放置24小时,SEM图像可以看出,碳酸钙表面出现毛刺,TEM图像可以看出,不是实心;图g-i为放置72小时,从TEM和SEM图像可以明显看出表面疏松。从这些结果可知,放置时间对微孔碳酸钙纳米粒子的形成起重要的作用。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的内容和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 兰州大学
<120> 一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 282
<212> PRT
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 1
Cys Cys Ser Ile Pro Ser Leu Pro Arg Thr Ala Ser Gly Ser Pro Gly
1 5 10 15
Leu Pro Gly Pro Ala Gly Gly Gly Gly Pro Thr Gly Pro Thr Gly Pro
20 25 30
Ala Gly Pro Ala Gly Leu Gly Gly Leu Gly Gly Leu Gly Gly Gly Ala
35 40 45
Gly Gly Gly Gly Pro Thr Gly Pro Ala Gly Pro Ala Gly Leu Gly Gly
50 55 60
Gly Ala Gly Gly Gly Gly Pro Thr Gly Leu Ala Gly Leu Ala Gly Gly
65 70 75 80
Ala Gly Ala Leu Gly Gly Thr Gly Pro Ala Gly Pro Gly Gly Pro Ala
85 90 95
Gly Gly Gly Gly Pro Gly Gly Leu Pro Gly Leu Ala Gly Gly Ala Gly
100 105 110
Ala Gly Gly Ala Pro Gly Leu Ala Gly Leu Gly Gly Gly Leu Gly Gly
115 120 125
Leu Gly Gly Pro Gly Thr Gly Gly Ala Leu Gly Ala Ala Gly Gly Thr
130 135 140
Gly Pro Val Gly Pro Ala Gly Gly Ala Gly Gly Ala Gly Pro Ala Gly
145 150 155 160
Leu Ala Gly Gly Ala Gly Pro Pro Gly Gly Ala Gly Val Gly Gly Gly
165 170 175
Ala Gly Gly Ala Gly Leu Pro Gly Leu Ala Gly Leu Ala Gly Gly Ala
180 185 190
Gly Leu Ala Gly Leu Pro Gly Leu Ala Gly Leu Ala Gly Gly Ala Gly
195 200 205
Leu Ala Gly Leu Pro Gly Leu Ala Gly Leu Ala Gly Gly Ala Gly Leu
210 215 220
Ala Gly Leu Pro Gly Leu Ala Gly Leu Ala Gly Leu Pro Gly Leu Ala
225 230 235 240
Gly Leu Ala Gly Gly Pro Gly Leu Pro Gly Leu Thr Gly Pro Pro Gly
245 250 255
Pro Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Pro
260 265 270
Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro
275 280

Claims (3)

1.一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法,其特征在于:该方法包括如下步骤:
(1)利用生物基因工程技术制备重组胶原蛋白;
(2)微孔CaCO3纳米材料的制备:
①重组胶原蛋白与碳酸钠和氯化钙均匀混合溶液的配制:在NaCO3的水溶液中加入0.1-120mg重组胶原蛋白粉末,混合均匀,再向该溶液中缓慢滴加氯化钙溶液;快速搅拌5-120min后,得到白色的絮状物;
②温和的生物矿化条件下制备纳米级微孔CaCO3:将所得絮状物放在20-37℃的恒温箱中,放置1-10天,得到白色沉淀;
③纯化并干燥保存制备的纳米材料:将产物通过离心分离,离心条件为12000rpm,弃去上清液,留下固体;并用去离子水分散固体,再离心纯化3-5次,在20-37℃恒温干燥箱中干燥即得;
所述的步骤(1)中重组胶原蛋白由以下步骤制备:
①确定重组胶原蛋白的序列:
重组胶原蛋白的序列为:
GSPGLPGPRGEQGPTGPTGPAGPRGLQGLQGLQGERGEQGPTGPAGPRGLQGERGEQGPTGLAGKAGEAGAKGETGPAGPQGPRGEQGPQGLPGKDGEAGAQGRPGKRGKQGQKGEKGEPGTQGAKGDRGETGPVGPRGERGEAGPAGKDGERGFPGERGVEGQNGQDGLPGKDGKDGQNGKDGLPGKDGKDGQNGKDGLPGKDGKDGQDGKDGLPGKDGKDGLPGKDGKDGQPGKPGKYGPPGPPGPPGPPGPPGPPGPPGPPGPPGPP;
②合成编码重组胶原蛋白的核酸:合成编码步骤①所述重组胶原蛋白的核酸,构建导入上述核酸的质粒,并将质粒转化大肠杆菌BL21-DE3菌株;
③重组胶原蛋白的制备与纯化。
2.根据权利要求1所述的一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法,其特征在于:步骤(2)中所述胶原蛋白质量分数为0.01-6wt%。
3.根据权利要求1所述的一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法,其特征在于:步骤(2)中第②步中所述的絮状物在25℃的恒温箱中放置2天。
CN201810198859.6A 2018-03-12 2018-03-12 一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法 Active CN108358229B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810198859.6A CN108358229B (zh) 2018-03-12 2018-03-12 一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810198859.6A CN108358229B (zh) 2018-03-12 2018-03-12 一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法

Publications (2)

Publication Number Publication Date
CN108358229A CN108358229A (zh) 2018-08-03
CN108358229B true CN108358229B (zh) 2021-09-10

Family

ID=63003934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810198859.6A Active CN108358229B (zh) 2018-03-12 2018-03-12 一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法

Country Status (1)

Country Link
CN (1) CN108358229B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163019A (ja) * 1991-12-17 1993-06-29 Shokuhin Sangyo Chokoatsu Riyou Gijutsu Kenkyu Kumiai 炭酸カルシウム加工品
CN100513686C (zh) * 2007-05-17 2009-07-15 山东轻工业学院 一种两性碳酸钙填料及其制备方法
CA2703111C (en) * 2007-10-22 2016-11-29 Amorphical Ltd. Stable amorphous calcium carbonate comprising phosphorylated amino acids, synthetic phosphorylated peptides, and gastrolith proteins
CN104692439A (zh) * 2015-03-16 2015-06-10 浙江理工大学 球霰石碳酸钙微球及其制备方法
CN106115792B (zh) * 2016-06-23 2018-08-17 兰州大学 一种以胶原蛋白为生物矿化模板制备Fe2O3纳米粒子的方法
CN106587126B (zh) * 2016-12-09 2018-05-15 宁波芸生纺织品科技有限公司 一种碳酸钙纳米线及其制备方法
CN107473254A (zh) * 2017-10-12 2017-12-15 广西碳酸钙产业化工程院有限公司 一种球形碳酸钙的制备方法

Also Published As

Publication number Publication date
CN108358229A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
Li et al. An overview of graphene-based hydroxyapatite composites for orthopedic applications
CN106115792B (zh) 一种以胶原蛋白为生物矿化模板制备Fe2O3纳米粒子的方法
Lock et al. Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7
Boudemagh et al. Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status
Suchanek et al. Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution
Zhang et al. Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors
Sonoda et al. Influence of emulsion on crystal growth of hydroxyapatite
Zhang et al. A novel composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan: preparation and application in drug delivery
Padmanabhan et al. New core-shell hydroxyapatite/Gum-Acacia nanocomposites for drug delivery and tissue engineering applications
Balu et al. Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study
Fitriyana et al. Hydroxyapatite synthesis from clam shell using hydrothermal method: A review
Wei et al. Synthesis and characterization of calcium carbonate on three kinds of microbial cells templates
Amna Valorization of bone waste of Saudi Arabia by synthesizing hydroxyapatite
Chen et al. Crystallization of calcium carbonate mineral with hierarchical structures regulated by silk fibroin in microbial mineralization system
Azarian et al. Biogenic calcium carbonate derived from waste shells for advanced material applications: A review
Ma et al. Silk protein-mediated biomineralization: from bioinspired strategies and advanced functions to biomedical applications
CN108383147B (zh) 一种以重组胶原蛋白为生物矿化模板制备CuO纳米粒子的方法
CN108358229B (zh) 一种以重组胶原蛋白为生物矿化模板制备微孔CaCO3纳米粒子的方法
Czechowska et al. Silver decorated βTCP-poly (3hydroxybutyrate) scaffolds for bone tissue engineering
He et al. Tuning the hierarchical nanostructure of hematite mesocrystals via collagen-templated biomineralization
CN104692439A (zh) 球霰石碳酸钙微球及其制备方法
CN106046399A (zh) 一种壳聚糖微球表面矿化的制备方法
Rajkumar et al. In-situ preparation of hydroxyapatite nanorod embedded poly (vinyl alcohol) composite and its characterization
CN108439360A (zh) 一种球形多孔纳米羟基磷灰石的制备方法
Munyemana et al. Recombinant Collagen-Templated Biomineralized Synthesis of Biocompatible pH-Responsive Porous Calcium Carbonate Nanospheres

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20201117

Address after: 730030 No.888 Yanchang Road Street, Chengguan District, Lanzhou City, Gansu Province

Applicant after: Lanzhou Biological Technology Development Co.,Ltd.

Address before: 730000 Gansu Province Chengguan District of Lanzhou city of Tianshui Road No. 222

Applicant before: LANZHOU University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant