CN108355632A - 一种氧化物纳米片及其制备方法和复合型催化剂 - Google Patents

一种氧化物纳米片及其制备方法和复合型催化剂 Download PDF

Info

Publication number
CN108355632A
CN108355632A CN201810217725.4A CN201810217725A CN108355632A CN 108355632 A CN108355632 A CN 108355632A CN 201810217725 A CN201810217725 A CN 201810217725A CN 108355632 A CN108355632 A CN 108355632A
Authority
CN
China
Prior art keywords
slice
oxide nano
obtains
oxide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810217725.4A
Other languages
English (en)
Other versions
CN108355632B (zh
Inventor
王建国
雷丽军
吴志伟
秦张峰
陈成猛
王国富
樊卫斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Institute of Coal Chemistry of CAS
Original Assignee
Shanxi Institute of Coal Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Institute of Coal Chemistry of CAS filed Critical Shanxi Institute of Coal Chemistry of CAS
Priority to CN201810217725.4A priority Critical patent/CN108355632B/zh
Publication of CN108355632A publication Critical patent/CN108355632A/zh
Application granted granted Critical
Publication of CN108355632B publication Critical patent/CN108355632B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • C01B13/185Preparing mixtures of oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/06Formation or introduction of functional groups containing oxygen of carbonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/08Formation or introduction of functional groups containing oxygen of carboxyl groups or salts, halides or anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B43/00Formation or introduction of functional groups containing nitrogen
    • C07B43/04Formation or introduction of functional groups containing nitrogen of amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化剂载体技术领域。本发明提供的氧化物纳米片,化学组成为RxOy,其中x为1~4且y为1~6,所述R为Si元素或金属元素;所述氧化物纳米片为二维层状结构;所述氧化物纳米片的厚度为2.0~15.0nm;所述氧化物纳米片横截面的长度为0.1~10μm。以本发明所述氧化物纳米片为载体制备得到的复合型催化剂,其催化活性和选择性均有明显提升。

Description

一种氧化物纳米片及其制备方法和复合型催化剂
技术领域
本发明属于催化剂载体技术领域,特别涉及一种氧化物纳米片及其制备方法和复合型催化剂。
背景技术
自从石墨烯在2004年首次被报道以来,它已经是这十几年来最受关注的明星材料[Nat.Mater.2007,6,183–191]。石墨烯的巨大成功也催生了类石墨烯二维材料的快速发展,如六方氮化硼(h-BN)、氮化碳(C3N4)、过渡金属二硫化物(MoS2,WS2)、层状金属氧化物、硅烯、锗烯和硼烯等[Nature 2005,438,197–200]。与体相材料相比,类石墨烯二维材料具有独特的电、光和机械特性,已经广泛应用于高速光电器械、能量存储和产生、杂化材料以及催化等领域[ACS Nano 2013,7,2898~2926]。
上述已报道的材料其本身具有层状结构,体相材料通过简单的热剥离或者化学剥离手段就可以得到其对应的,具有独特物理、化学性质的二维超薄结构材料;但是对于非层状结构的普通氧化物,普通的热剥离或化学剥离手段则无法得到其对应的二维超薄材料,这大大限制了二维超薄材料在催化技术领域的应用。
发明内容
本发明的目的在于提供一种氧化物纳米片及其制备方法和复合型催化剂,本发明提供的氧化物纳米片具有纳米级别的超薄厚度,作为催化剂载体使用时,能提高催化剂的催化活性。
为实现以上目的,本发明提供了一种氧化物纳米片,化学组成为RxOy,其中x为1~4且y为1~6,所述R为Si元素或金属元素;所述氧化物纳米片具有二维层状结构;所述氧化物纳米片的厚度为2.0~15.0nm;所述氧化物纳米片横截面的长度为0.1~10μm。
优选地,所述氧化物纳米片的比表面积为40~400m2/g。
优选地,所述氧化物纳米片具有孔洞,所述孔洞的平均孔径为3.0~15.0nm,所述氧化物纳米片的孔容积为0.01~0.5cm3/g。
优选地,所述金属元素包括Ce、Zr、Co、Ni、Al、W、Mo、Mg、Ti、Cu、Mn、Zn、Fe、Cr和La中的一种或几种。
本申请还提供了上述技术方案所述氧化物纳米片的制备方法,包括如下步骤:
(1)将氧化石墨烯与极性溶剂混合,得到氧化石墨烯分散液;
(2)将所述步骤(1)得到的氧化石墨烯分散液与载体源混合,得到预反应液;所述载体源包括可溶性硅化物或可溶性金属盐;
(3)将所述步骤(2)得到的预反应液依次进行溶剂挥发自组装、干燥和研磨,得到预烧结体;
(4)将所述步骤(3)得到的预烧结体在含氧气氛下烧结,得到氧化物纳米片。
优选地,所述步骤(1)中氧化石墨烯的质量与极性溶剂的体积比为1g:16~1000mL。
优选地,当所述步骤(2)中的载体源为可溶性硅化物时,载体源的浓度以硅原子计;当所述载体源为可溶性金属盐时,载体源的浓度以金属离子计,所述载体源在预反应液中的摩尔浓度为0.02~0.3mol/L。
优选地,所述步骤(3)中溶剂挥发自组装的温度为40~120℃,所述溶剂挥发自组装的时间为12~72h。
优选地,所述步骤(4)中的烧结温度为450~850℃,所述烧结的时间为4~36h。
本发明另提供了包括上述技术方案所述的氧化物纳米片或者上述技术方案所述制备方法制备得到的氧化物纳米片的复合型催化剂。
本发明提供的氧化物纳米片,化学组成为RxOy,其中x为1~4且y为1~6,所述R为Si元素或金属元素;所述氧化物纳米片为二维层状结构;所述氧化物纳米片的厚度为2.0~15.0nm;所述氧化物纳米片横截面的长度为0.1~10μm。在本发明中,所述氧化物纳米片厚度小,是典型的超薄二维层状结构材料,为负载催化剂活性组分提供了较大的比表面积;此外,由于氧化物纳米片的厚度仅为纳米级别,在典型量子尺寸效应作用下,进一步提高活性组分的催化性能。
本发明实施例结果表明,将所述氧化物纳米片负载Pd后,能够在20~120℃条件下实现醇类化合物氧化反应100%的转化率,且醇氧化生成醛、酮或酸的选择性>90%;同时也能够在-20~120℃条件下用于硝基氢化合成反应,硝基化合物的转化率达到100%,且得到胺基化合物的选择性>99%,相对于体相为颗粒氧化物载体负载Pd的催化剂而言,催化活性和选择性有了明显提升。
附图说明
图1为实施例1所得CeO2纳米片的SEM图;
图2为实施例1所得CeO2纳米片的TEM图;
图3为实施例1所得CeO2纳米片的AFM图;
图4为实施例3所得NiO纳米片的SEM图;
图5为实施例4所得Co3O4纳米片的SEM图;
图6为实施例6所得Cu-C-eZr氧化物纳米片的SEM图;
图7为实施例7所得Al2O3纳米片的SEM图;
图8为实施例10所得ZrO2纳米片的SEM图;
图9为实施例11所得TiO2纳米片的SEM图;
图10为实施例12所得CuO纳米片的SEM图;
图11为实施例13所得Cr-Zn氧化物纳米片的SEM图;
图12为实施例14所得Mn-Al氧化物纳米片的SEM图;
图13为实施例15所得Fe-Co氧化物纳米片的SEM图;
图14为实施例16所得Cu-Zr氧化物纳米片的SEM图;
图15为实施例17所得Mn-Ce-Zr氧化物纳米片的SEM图。
具体实施方式
本发明提供了一种氧化物纳米片,化学组成为RxOy,其中x为1~4且y为1~6,所述R为Si元素或金属元素;所述氧化物纳米片具有二维层状结构;所述氧化物纳米片的厚度为2.0~15.0nm;所述氧化物纳米片横截面的长度为0.1~10μm。
本发明提供的氧化物纳米片化学组成为RxOy,其中x为1~4且y为1~6。在本发明中,所述x和y的具体取值取决于R元素的化合价态,满足RxOy的正负化合价代数和为零。在本发明中,所述氧化物纳米片化学组成中R为Si元素或金属元素。在本发明中,当R元素为Si元素时,所述氧化物纳米片的组成为SiO2。在本发明中,当R为金属元素时,所述金属元素包括Ce、Zr、Co、Ni、Al、W、Mo、Mg、Ti、Cu、Mn、Zn、Fe、Cr和La中的一种或几种,进一步优选为Ce、Zr、Co、Al、Cu、Mn、Fe和Cr中的一种或几种。
在本发明中,当R为一种金属元素时,所述氧化物纳米片的化学组成优选为CeO2、NiO、Co3O4、Al2O3、ZrO2、TiO2、MgO、WO2、WO3、MoO2、MoO3、CuO或La2O5;当R为两种金属元素时,所述氧化物纳米片为二元金属氧化物,所述二元金属氧化物的化学组成优选为CeO2-ZrO2、CeO2-TiO2、CeO2-NiO、CeO2-Co3O4、CeO2-CrO3、CeO2-MnO、CeO2-MnO2、CeO2-ZnO、CeO2-CuO、CeO2-ZrO2、CrO3-ZnO、MnO2-Al2O3、MnO2-Al2O3、Fe3O4-Co3O4或CuO-ZrO2;当R为三种金属元素时,所述氧化物纳米片为三元金属氧化物,所述三元金属氧化物的化学组成优选为CuO-ZrO2-CeO2、MnO-CeO2-ZrO2、MnO2-CeO2-ZrO2、CuO-CeO2-ZrO2、NiO-CeO2-ZrO2、MnO-CeO2-ZrO2、MnO2-CeO2-ZrO2或ZnO-CeO2-TiO2
在本发明中,当所述氧化物纳米片为二元或多元金属元素时,所述氧化物纳米片的组成以金属元素代替,如CuO-ZrO2简写为Cu-Zr氧化物,MnO-CeO2-ZrO2简写为Mn-Ce-Zr氧化物。在本发明中,当所述氧化物纳米片组成为二元金属氧化物或三元金属氧化物时,本发明对所述金属氧化物的具体配比没有特殊要求。在本发明中,当所述氧化物纳米片为二元金属氧化物时,以CuO-ZrO2为例,所述氧化物纳米片的化学组成RxOy中的x取值为2,所述y的取值为3。
本发明所述氧化物纳米片为二维层状结构。在本发明中,所述氧化物纳米片的厚度为2.0~15.0nm,进一步优选为3.0~10.0nm,更优选为3.5~7.5nm。本发明所述氧化物纳米片厚度达到纳米级别,除能增加氧化物的比表面积外,还可在量子尺寸效应作用下,使负载于氧化物纳米片上的活性组分的催化活性更高。在本发明中,当所述氧化物纳米片为金属氧化物时,所述氧化物纳米片还会生成密度较高的氧空位。在本发明中,所述氧化物纳米片的氧空位以中间价态的金属阳离子的百分含量计,所述氧空位的含量为15~40%,进一步优选为20~35%。在本发明中,所述氧化物纳米片为CeO2时,Ce3+的含量优选为28~35%,进一步优选为30~32%;所述氧化物纳米片为TiO2时,Ti3+的含量优选为15~20%;所述氧化物纳米片为Co3O4时,Co2+的含量优选为35~40%,进一步优选为36~39%。
在本发明中,所述氧化物纳米片横截面的长度为0.1~10μm,进一步优选为0.2~8μm,更优选为0.3~5μm。在本发明中,所述氧化物纳米片具体为不规则二维层状结构。本发明为清楚表示氧化物纳米片横截面的尺寸,以范围值表示所述氧化物纳米片横截面的长度。例如,CeO2纳米片横截面的长度为0.4~4μm,表示所述CeO2纳米片的横截面直径最短为0.4μm,最长为4μm。
本发明所述氧化物纳米片具有孔洞,所述孔洞的平均孔径优选为3.0~15.0nm,进一步优选为3.5~12nm。在本发明中,所述氧化物纳米片的孔容积优选为0.01~0.5cm3/g,进一步优选为0.05~0.4cm3/g。在本发明中,所述氧化物纳米片的比表面积优选为40~400m2/g,进一步优选为60~300m2/g,更优选为70~260m2/g。
本发明还提供了上述技术方案所述氧化物纳米片的制备方法,包括如下步骤:
(1)将氧化石墨烯与极性溶剂混合,得到氧化石墨烯分散液;
(2)将所述步骤(1)得到的氧化石墨烯分散液与载体源混合,得到预反应液;所述载体源包括可溶性硅化物或可溶性金属盐;
(3)将所述步骤(2)得到的预反应液依次进行溶剂挥发自组装、干燥和研磨,得到预烧结体;
(4)将所述步骤(3)得到的预烧结体在含氧气氛下烧结,得到氧化物纳米片。
在本发明中,所述制备方法中各步骤用试剂除特殊说明外,均为本领域技术人员熟知的市售产品。
本发明将氧化石墨烯与极性溶剂混合,得到氧化石墨烯分散液。本发明以氧化石墨烯为模板剂,使载体源包覆在石墨烯的表面,通过烧结去除氧化石墨烯,进而得到具有二维层状结构,且具有孔洞的氧化物纳米片。在本发明中,所述氧化石墨烯的厚度优选为1.2~2.6nm,进一步优选为1.5~2.0nm;所述氧化石墨烯的片层长度优选为1~20μm,进一步优选为5~15μm;所述氧化石墨烯的比表面积优选为40~50m2/g,进一步优选为43~46m2/g。在本发明中,所述氧化石墨烯的C原子与O原子的摩尔比优选为1:0.8~1.2,进一步优选为1:1。本发明对所述氧化石墨烯的具体来源没有特殊要求,可以采用本领域技术人员熟知的市售产品或按照本领域技术人员所熟知的方法自行制备。当采用本领域技术人员所熟知的方法自行制备氧化石墨烯时,所述氧化石墨烯按照改进的Hummer法制备得到。
在本发明中,所述氧化石墨烯的质量与极性溶剂的体积比优选为1g:16~1000mL,进一步优选为1g:100-500mL。在本发明中,所述极性溶剂优选为水、甲醇、乙醇、异丙醇、正丙醇、正丁醇、丙酮、N,N-二甲基甲酰胺(DMF)、甲酰胺、四氢呋喃和二甲亚砜中的一种或几种,进一步优选为水、乙醇、丙酮或DMF。
得到氧化石墨烯分散液后,本发明将所述氧化石墨烯分散液与载体源混合,得到预反应液。在本发明中,所述载体源包括可溶性硅化物或可溶性金属盐。在本发明中,当所述载体源为可溶性硅化物时,所述可溶性硅化物优选为硅酸酯,进一步优选为正硅酸甲酯或正硅酸乙酯。在本发明中,当所述载体源为可溶性金属盐时,所述可溶性金属盐优选为硝酸盐、盐酸盐、硫酸盐,醋酸盐、丁酸盐、异丙醇盐或复式盐,进一步优选为硝酸盐、盐酸盐或醋酸盐。在本发明中,所述可溶性金属盐具体可以为六水硝酸铈、六水硝酸镍、六水硝酸钴、三水硝酸铜、二水硝酸氧锆、九水硝酸铝、硝酸铈铵、四水钼酸铵、偏钨酸铵、仲钨酸铵、钨酸钠、六水硝酸镧、六水氯化镧、五水硝酸锆、八水氧氯化锆、乙酰丙酮锆,乙酰丙酮铈,乙酰丙酮铜、醋酸铜、醋酸镍、醋酸锰、醋酸钴、醋酸铁、醋酸锌、六水硝酸锌、九水硝酸铁、九水硝酸铝、拟薄水铝石、钛酸四丁酯、钛酸异丙醇酯、七水氯化亚铈。
在本发明中,所述载体源为可溶性硅化物时,载体源的浓度以硅原子计;当所述载体源为可溶性金属盐时,载体源的浓度以金属离子计;所述载体源在预反应液中的摩尔浓度为0.02~0.3mol/L。在本发明中,当所述可溶性金属盐为多种金属离子时,所述可溶性金属盐在预反应液中的摩尔浓度为所有金属离子摩尔浓度的总和。在本发明中,忽略固体组分添加引起的体积变化,所述预反应液的体积为氧化石墨烯分散液的体积。本发明对所述氧化石墨烯分散液与载体源的混合方式没有特殊要求,以能实现所述载体源均匀分散于氧化石墨烯分散液中即可。
得到预反应液后,本发明将所述预反应液依次进行溶剂挥发自组装、干燥和研磨,得到预烧结体。在本发明中,所述溶剂挥发自组装是指极性溶剂挥发过程中,载体源沉积于氧化石墨烯表面的过程。在本发明中,所述溶剂挥发自组装后,得到固液浆料。在本发明中,所述溶剂挥发自组装的温度优选为40~120℃,进一步优选为60~100℃。在本发明中,所述溶剂挥发自组装的时间优选为12~72h,进一步优选为14~60h,更优选为16~24h。
在本发明中,所述溶剂挥发自组装的过程可在恒定温度下进行,还可在不同温度下进行。当所述溶剂挥发自组装在不同温度下进行时,所述溶剂挥发自组装包括低温阶段和高温阶段。在本发明中,所述低温阶段的温度优选为40~50℃,进一步优选为40~45℃;所述低温阶段的反应时间优选为11~12h,进一步优选为11.5~12h。在本发明中,所述高温阶段的温度优选为60~70℃,进一步优选为60~65℃;所述高温阶段的反应时间优选为9~10h,进一步优选为9.5~10h。本发明所述溶剂挥发自组装包括低温阶段和高温阶段时,所述溶剂挥发自组装的时间为低温阶段的反应时间与高温阶段的反应时间之和。本发明对所述溶剂挥发自组装的温度提供方式没有特殊要求,采用本领域技术人员熟知的方式即可。本发明利用溶剂挥发自组装,在去除溶剂的过程中,使载体源均匀沉积于氧化石墨烯的表面,为得到氧化物纳米片提供基础。
所述溶剂挥发自组装后,本发明将所述固液浆料进行干燥,得到固体混合物。在本发明中,所述干燥的温度优选为90~120℃,进一步优选为100~115℃;所述干燥的时间优选为8~12h,进一步优选为9~10h。本发明对所述干燥的具体实施方式没有特殊要求,采用本领域技术人员熟知的即可。
所述干燥后,本发明将所述得到的固体混合物进行研磨,得到预烧结体。本发明对所述研磨的具体实施方式没有特殊要求,采用本领域技术人员熟知的即可。本发明对所述预烧结体的粒径没有特殊要求,以能得到粉末状预烧结体即可。
得到预烧结体后,本发明将所述预烧结体在含氧气氛下烧结,得到氧化物纳米片。在本发明中,所述预烧结体中的载体源受热分解,在含氧气氛下,进一步生成氧化物;同时预烧结体中的氧化石墨烯也在烧结过程中去除,进而得到具有二维层状结构的氧化物纳米片。在本发明中,所述含氧气氛优选为空气或氧气。本发明对所述氧气气氛的浓度没有特殊要求,采用本领域技术人员熟知的即可。在本发明中,所述含氧气氛优选为静态气氛或流动气氛。在本发明中,所述流动气氛的流速优选为5-200mL/min,进一步优选为10-50mL/min。本发明对所述氧气的浓度没有特殊要求,才用本领域技术人员熟知的即可。本发明对所述含氧气氛的具体提供方式没有特殊要求,采用本领域技术人员熟知的方式即可。在本发明中,所述烧结的温度优选为450~850℃,进一步优选为550~650℃,更优选为500~600℃;所述烧结的时间优选为4~36h,进一步优选为4~30h,更优选为6~20h。
本发明另提供了包括上述技术方案所述的氧化物纳米片或者上述技术方案所述制备方法制备得到的氧化物纳米片的复合型催化剂。在本发明中,所述催化活性组分优选为钯、铂或铑,进一步优选为钯。在本发明中,所述复合型催化剂包括氧化物纳米片和催化活性组分。在本发明中,所述复合型催化剂的负载量为催化活性组分的质量占复合型催化剂总质量的百分比。在本发明中,所述复合型催化剂的负载量优选为0.2~4%,进一步优选为0.5~3.5%。本发明所述复合型催化剂的负载量较高,为提高复合型催化剂的催化活性提供有利条件。
本发明上述技术方案所述复合型催化剂优选按如下方法制备得到,所述方法包括如下步骤:
(1)提供包括氧化物纳米片和催化活性金属前驱体的混合水溶液;
(2)对所述步骤(1)中的混合水溶液依次进行蒸发和干燥,得到固体混合物;
(3)将所述步骤(2)得到的固体混合物进行预还原,得到复合型催化剂。
本发明优选提供包括氧化物纳米片和催化活性金属前驱体的混合水溶液。在本发明中,所述氧化物纳米片与催化活性金属前驱体的质量比优选为0.1-10wt.%,进一步优选为0.5-6wt.%。在本发明中,所述混合水溶液中,氧化物纳米片的质量与水的体积比优选为1g:25~300mL,进一步优选为1g:30~200mL。本发明对所述催化活性金属前驱体的具体来源没有特殊要求,采用本领域技术人员熟知的即可。
得到混合水溶液后,本发明优选对所述混合水溶液依次进行蒸发和干燥,得到固体混合物。本发明对所述混合水溶液进行蒸发,在去除溶剂过程中,所述混合水溶液中的催化活性组分沉积在氧化物纳米片的表面和孔洞内部。在本发明中,所述蒸发优选在加热条件下进行。在本发明中,所述加热的温度优选为60~85℃,进一步优选为70~80℃。在本发明中,所述加热优选在搅拌条件下进行。本发明对所述搅拌的具体实施方式没有特殊要求,采用本领域技术人员熟知的即可。本发明对所述加热的时间没有特殊要求,以能去除所述混合水溶液中的溶剂即可。在本发明中,所述干燥的温度优选为110~130℃,进一步优选为115~120℃;所述干燥的时间优选为10~20h,进一步优选为12~18h。
得到固体混合物后,本发明优选将所述得到的固体混合物进行预还原,得到复合型催化剂。本发明在所述预还原过程中,固体混合物中的催化活性金属前驱体还原至金属单质形式,得到复合型催化剂。在本发明中,所述预还原优选在氢气气氛下进行。在本发明中,所述预还原的温度优选为180~220℃,进一步优选为190~210℃,更优选为200~205℃;所述预还原的时间优选为1~10h,进一步优选为2~8h,更优选为4~6h。本发明对所述预还原的具体实施方式没有特殊要求,采用本领域技术人员熟知的即可。
本发明优选将上述技术方案所述复合型催化剂用于醇类氧化反应或硝基化合物氢化合成反应中。
在本发明中,所述复合型催化剂优选用于醇类化合物氧化反应。在本发明中,所述复合型催化剂在醇类化合物氧化反应中的应用方法优选包括:
将所述复合型催化剂、水和醇类化合物置于反应容器中,在氧气气氛下进行氧化反应,得到羰基或羧基化合物。
在本发明中,所述醇类化合物优选包括但不限于辛醇、苯甲醇、丁醇、环己醇、2-辛醇或糠醇。
在本发明中,所述复合型催化剂的质量与水的体积比优选为8~50mg:6~10mL,进一步优选为10~50mg:6~8mL。在本发明中,所述复合型催化剂中的催化活性组分与醇类化合物的摩尔比优选为1:200~5000,进一步优选为1:500~4000。在本发明中,所述氧气气氛的压力优选为0.1~1MPa,进一步优选为0.2~0.8MPa。在本发明中,所述氧化反应的温度优选为20~120℃,进一步优选为25~110℃;所述氧化反应的时间优选为1~24h,进一步优选为2~20h。
本发明对所述反应容器没有特殊要求,采用本领域技术人员熟知的即可。在本发明实施例中,所述反应容器优选为不锈钢反应釜,进一步优选为30mL的不锈钢反应釜。
本发明所述复合型催化剂用于醇类化合物氧化反应时,所述醇类化合物氧化反应的转化率优选为95%~100%,进一步优选为99~100%;所述醇类化合物氧化生成醛或酮的选择性优选为≥95%,进一步优选为96~98%。所述醇类化合物氧化生成羧酸的选择性优选为≥89%,进一步优选为91~99%。
在本发明中,所述复合型催化剂优选还用于硝基化合物氢化合成反应。在本发明中,所述复合型催化剂在硝基化合物氢化合成反应中的应用方法优选包括:
将所述复合型催化剂、水和硝基化合物置于反应容器中,在氢气气氛下进行氢化合成反应,得到胺基化合物。
在本发明中,所述硝基化合物优选包括但不限于硝基苯、对甲基硝基苯、对溴硝基苯、对氯硝基苯、对氨基硝基苯、邻氨基硝基苯、间氨基硝基苯、硝基萘、对二硝基苯、对硝基苯甲醇、对硝基苯酚、对硝基苯甲酸或对氰基硝基苯。
在本发明中,所述复合型催化剂的质量与水的体积比优选为8~50mg:6~10mL,进一步优选为10~50mg:6~8mL。在本发明中,所述复合型催化剂中的催化活性组分与胺基化合物的摩尔比优选为1:200~5000,进一步优选为1:500~4000。在本发明中,所述氢气气氛的压力优选为0.1~2MPa,进一步优选为0.2~1.8MPa。在本发明中,所述氢化合成反应的温度优选为-20~120℃,进一步优选为0~100℃;所述氢化合成反应的时间优选为0.15~24h,进一步优选为0.2~20h。本发明对氢化合成反应用反应容器没有特殊要求,采用本领域技术人员熟知的即可。在本发明实施例中,所述反应容器优选为不锈钢反应釜,进一步优选为30mL的不锈钢反应釜。
本发明所述复合型催化剂用于硝基化合物氢化合成反应时,所述硝基化合物氢化合成反应的转化率优选为95%~100%,进一步优选为99~100%;所述硝基化合物氢化合成反应生成胺基的选择性优选为≥95%,进一步优选为98~99%。
为了进一步说明本发明,下面结合实施例及附图对本发明提供的氧化物纳米片及其制备方法和应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1:
将10g的氧化石墨烯(采用改进的Hummer法制备,片层平均厚度为1.2~2.6nm,氧化石墨烯横截面的长度为1~20μm、比表面积43m2/g、C原子与O原子摩尔比1:1,以下实施例同)加入到200ml水中,超声分散10h,得到氧化石墨烯分散液;
将5g六水硝酸铈加入到氧化氧化石墨烯分散液中,超声2h,之后搅拌10h,得到预反应液;
将预反应液在80℃下放置12h,进行溶剂挥发自组装,然后在100℃下干燥10h,之后研磨,得到黑褐色粉末状的预烧结体;
将预烧结体在静态空气中,600℃条件下,煅烧8h,得到二维层状多孔的CeO2纳米片。利用SEM、TEM和AFM对所得CeO2纳米片的形貌结构进行表征,具体结果可见附图1~3以及表1。由图1~3可知,本实施例制备得到的CeO2纳米片为二维层状多孔结构。
将所得1g的CeO2纳米片浸渍在浓度为70.5mmol/L的2mL的氯化钯溶液中,室温条件下,浸渍24h,得到负载量为1.5wt.%的Pd/CeO2纳米片复合型催化剂。对所得复合型催化剂的元素组成进行分析,结果列于表3。
将50mgPd/CeO2纳米片复合型催化剂装入30mL不锈钢反应釜中,加入8mL去离子水,氧气压力为0.5MPa,反应温度为120℃,丁醇与Pd的摩尔比为500,反应时间为12h,反应后可实现100%丁醇转化率和96%丁酸选择性。
对比例1:
采用普通沉淀法制备的CeO2纳米颗粒,所得CeO2纳米颗粒的比表面积和平均粒径列于表2中。
利用浸渍法,将Pd负载在CeO2纳米颗粒表面,得到负载量为1.5wt.%的Pd/CeO2纳米颗粒复合型催化剂。按照实施例1的方法测试所得复合型催化剂的催化性能,结果列于表4中。
实施例2
按照实施例1的方法制备氧化石墨烯分散液,不同之处在于分散液溶剂为丙酮;
将10g六水硝酸铈加入到氧化石墨烯分散液中,超声3h,之后搅拌24h,得到预反应液;
将预反应液在40℃下放置12h,进行溶剂挥发自组装,之后在60℃下挥发10h,然后在100℃下干燥10h,之后研磨,得到黑褐色粉末状预烧结体;
将预烧结体在静态空气中600℃煅烧8h,得到二维层状多孔的CeO2纳米片。按照实施例1的方法测试所得CeO2纳米片的结构及性能,本实施例所得CeO2纳米片的结构特征为二维层状多孔结构,具体测试结果列于表1中。
将所得1g的CeO2纳米片浸渍在浓度为23.5mmol/L的,2mL的氯化钯溶液中,室温条件下,浸渍24h,得到负载量为0.5wt.%的Pd/CeO2纳米片复合型催化剂。对所得复合型催化剂的元素组成进行分析,结果列于表3。
将20mgPd/CeO2纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氢气压力为0.1MPa,反应温度为25℃,硝基苯与Pd的摩尔比为1000,反应时间为1h,反应后可实现100%硝基苯转化率和99.9%苯胺选择性。
对比例2
采用普通沉淀法制备的CeO2纳米颗粒,所得CeO2纳米颗粒的比表面积和平均粒径列于表2中。
利用浸渍法,将Pd负载在CeO2纳米颗粒表面,得到负载量为0.5wt.%的Pd/CeO2纳米颗粒复合型催化剂。按照实施例2的测试条件,测试所得复合型催化剂的催化性能,结果列于表4中。
实施例3
将5g的氧化石墨烯分散于100mL的乙醇中,超声分散10h,得到氧化石墨烯分散液;
将8g六水硝酸镍加入到氧化石墨烯分散液中,超声5h,之后搅拌12h,得到预反应液;
将预反应液在40℃下放置12h,进行溶剂挥发自组装,之后在60℃下挥发10h,然后在100℃下干燥10h,之后研磨,得到黑褐色粉末状预烧结体;
将预烧结体在静态空气中450℃煅烧8h,得到如图4所示的二维层状多孔的NiO纳米片。按照实施例1的方法测试所得NiO纳米片的结构及性能,具体测试结果列于表1中。
将所得1g的NiO纳米片浸渍在浓度为65.8mmol/L的,2mL的氯化钯溶液中,室温条件下,浸渍24h,得到负载量为1.4wt.%的Pd/NiO纳米片复合型催化剂。对所得复合型催化剂的元素组成进行分析,结果列于表3。
将10mgPd/NiO纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氢气压力为0.1MPa,反应温度为25℃,硝基苯与Pd的摩尔比为1000,反应时间为1.5h,反应后可实现100%硝基苯转化率和99.9%苯胺选择性。
对比例3
采用普通沉淀法制备的NiO纳米颗粒,所得NiO纳米颗粒的比表面积和平均粒径列于表2中。
利用浸渍法,将Pd负载在NiO纳米颗粒表面,得到负载量为1.4wt.%的Pd/NiO纳米颗粒复合型催化剂。按照实施例3的测试条件,测试所得复合型催化剂的催化性能,结果列于表4中。
实施例4
将5g的氧化石墨烯分散于100mL的DMF中,超声分散10h,得到氧化石墨烯分散液;
将5g六水硝酸钴加入到氧化石墨烯分散液中,超声5h,之后搅拌12h,得到预反应液;
将预反应液在100℃下放置12h,进行溶剂挥发自组装,然后在100℃下干燥10h,之后研磨,得到黑褐色粉末状预烧结体;
将预烧结体在流动氧气中450℃煅烧4h,得到如图5所示的二维层状多孔的Co3O4纳米片。按照实施例1的方法测试所得Co3O4纳米片的结构及性能,测试结果列于表1中。
将所得2g的Co3O4纳米片浸渍在浓度为117.5mmol/L的,4mL的氯化钯溶液中,室温条件下,浸渍24h,得到负载量为2.5wt.%的Pd/Co3O4纳米片复合型催化剂。对所得复合型催化剂的元素组成进行分析,结果列于表3。
将50mgPd/Co3O4纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为1MPa,反应温度为90℃,辛醇与Pd的摩尔比为500,反应时间为10h,反应后可实现97%辛醇转化率和90%辛酸选择性。
对比例4
采用普通沉淀法制备的Co3O4纳米颗粒,所得Co3O4纳米颗粒的比表面积和平均粒径列于表2中。
利用浸渍法,将Pd负载在Co3O4纳米颗粒表面,得到负载量为2.5wt.%的Pd/Co3O4纳米颗粒复合型催化剂。按照实施例4的测试条件,测试所得复合型催化剂的催化性能,结果列于表4中。
实施例5
将5g的氧化石墨烯分散于100mL的乙醇中,超声分散10h,得到氧化石墨烯分散液;
将5g正硅酸乙酯加入到氧化石墨烯分散液中,超声5h,之后搅拌12h,得到预反应液;
将预反应液在60℃下放置12h,进行溶剂挥发自组装,然后在100℃下干燥10h,之后研磨,得到深灰色粉末状预烧结体;
将预烧结体在流动氧气中450℃煅烧4h,得到二维层状多孔的SiO2纳米片。按照实施例1的方法测试所得SiO2纳米片的结构及性能,测试结果列于表1中。
将所得1g的SiO2纳米片浸渍在浓度为23.5mmol/L的,2mL的氯化钯溶液中,室温条件下,浸渍24h,得到负载量为0.5wt.%的Pd/SiO2纳米片复合型催化剂。对所得复合型催化剂的元素组成进行分析,结果列于表3。
将10mgPd/SiO2纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氢气压力为0.1MPa,反应温度为0℃,硝基苯与Pd的摩尔比为1000,反应时间为3h,反应后可实现97%硝基苯转化率和97.8%苯胺选择性。
对比例5
以SiO2小球为载体,载体具体粒径参数列于表2中。利用浸渍法得到负载量为0.5wt.%的复合型催化剂,按照实施例5的测试条件,测试所得复合型催化剂的催化性能,结果列于表4中。
实施例6
将5g的氧化石墨烯分散于100mL的乙醇中,超声分散10h,得到氧化石墨烯分散液;
将1.33g三水硝酸铜、1.27g二水硝酸氧锆和2.39g六水硝酸铈加入到氧化石墨烯分散液中,超声3h,之后搅拌12h,得到预反应液;
将预反应液在60℃下放置12h,进行溶剂挥发自组装,然后在100℃下干燥10h,之后研磨,得到黑褐色粉末状预烧结体;
将预烧结体在流动氧气中600℃煅烧4h,得到如图6所示的二维层状多孔的Cu-Zr-Ce氧化物纳米片。按照实施例1的方法测试所得Cu-Zr-Ce氧化物纳米片的结构及性能,测试结果列于表1中。
将所得2g的Cu-Zr-Ce氧化物纳米片浸渍在浓度为164.5mmol/L的,4mL的氯化钯溶液中,室温条件下,浸渍24h,得到负载量为3.5wt.%的Pd/Cu-Zr-Ce纳米片复合型催化剂。对所得复合型催化剂的元素组成进行分析,结果列于表3。
将50mgPd/Cu-Zr-Ce氧化物纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为1MPa,反应温度为80℃,2-辛醇与Pd的摩尔比为500,反应时间为12h,反应后可实现98.5%2-辛醇转化率和99.9%2-辛酮选择性。
对比例6
采用普通沉淀法制备的Cu-Zr-Ce氧化物纳米颗粒,所得Cu-Zr-Ce氧化物纳米颗粒的比表面积和平均粒径列于表2中。
利用浸渍法,将Pd负载在Cu-Zr-Ce氧化物纳米颗粒表面,得到负载量为3.5wt.%的Pd/Cu-Zr-Ce氧化物纳米颗粒复合型催化剂。按照实施例6的测试条件,测试所得复合型催化剂的催化性能,结果列于表4中。
实施例7
氧化石墨烯分散液配制方式同实施例6;
将5g九水硝酸铝加入到氧化石墨烯分散液中,超声5h,之后搅拌12h,得到预反应液;
将预反应液在60℃下放置12h,进行溶剂挥发自组装,然后在100℃下干燥10h,之后研磨,得到黑褐色粉末状预烧结体;
将预烧结体在流动氧气中650℃煅烧4h,得到如图7所示的二维层状多孔的Al2O3纳米片。按照实施例1的方法测试所得Al2O3纳米片的结构及性能,测试结果列于表1中。
将所得1g的Al2O3纳米片浸渍在浓度为23.5mmol/L的,2mL的氯化钯溶液中,室温条件下,浸渍24h,得到负载量为0.5wt.%的Pd/Al2O3纳米片复合型催化剂。对所得复合型催化剂的元素组成进行分析,结果列于表3。
将10mgPd/Al2O3纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氢气压力为0.1MPa,反应温度为25℃,硝基苯与Pd的摩尔比为1000,反应时间为12h,反应后可实现98.6%硝基苯转化率和99.5%苯胺选择性。
对比例7
采用普通沉淀法制备的Al2O3纳米颗粒,所得Al2O3纳米颗粒的比表面积和平均粒径列于表2中。
利用浸渍法,将Pd负载在Al2O3纳米颗粒表面,得到负载量为0.5wt.%的Pd/Al2O3纳米颗粒复合型催化剂。按照实施例7的测试条件,测试所得复合型催化剂的催化性能,结果列于表4中。
实施例8
将10g的氧化石墨烯分散于200ml丙酮中,超声分散5h,得到氧化石墨烯分散液;
将5.9g六水硝酸铈和3.1g二水硝酸氧锆加入到氧化石墨烯分散液中,超声3h,之后搅拌24h,得到预反应液;
将预反应液在40℃下放置12h,进行溶剂挥发自组装;然后在60℃挥发10h,在100℃下干燥10h,之后研磨,得到黑褐色粉末状预烧结体;
将预烧结体在静态空气中600℃煅烧8h,得到二维层状多孔的Ce-Zr氧化物纳米片。按照实施例1的方法测试所得Ce-Zr氧化物纳米片的结构及性能,测试结果列于表1中。
将所得1.5g的Ce-Zr氧化物纳米片浸渍在浓度为88.1mmol/L的,4mL的氯化钯溶液中,室温条件下,浸渍24h,得到负载量为2.5wt.%的Pd/Ce-Zr氧化物纳米片复合型催化剂。对所得复合型催化剂的元素组成进行分析,结果列于表3。
将50mgPd/Ce-Zr氧化物纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为0.5MPa,反应温度为90℃,环己醇与Pd的摩尔比为200,反应时间为16h,反应后可实现99.2%环己醇转化率和99.4%环己酮选择性。
对比例8
采用普通沉淀法制备的Ce-Zr氧化物纳米颗粒,所得Ce-Zr氧化物纳米颗粒的比表面积和平均粒径列于表2中。
利用浸渍法,将Pd负载在Ce-Zr氧化物纳米颗粒表面,得到负载量为2.5wt.%的Pd/Ce-Zr氧化物纳米颗粒复合型催化剂。按照实施例8的测试条件,测试所得复合型催化剂的催化性能,结果列于表4中。
实施例9
将8g的氧化石墨烯分散于100ml乙醇中,超声分散10h,得到氧化石墨烯分散液;
将3g六水硝酸钴和3g六水硝酸铈加入到氧化石墨烯分散液中,超声5h,之后搅拌12h,得到预反应液;
将预反应液在1000℃下放置12h,进行溶剂挥发自组装;在120℃下干燥10h,之后研磨,得到黑褐色粉末状预烧结体;
将预烧结体在流动氧气中600℃煅烧4h,得到二维层状多孔的Ce-Co氧化物纳米片。按照实施例1的方法测试所得Ce-Zr氧化物纳米片的结构及性能,测试结果列于表1中。
将所得1g的Ce-Co氧化物纳米片浸渍在浓度为42.3mmol/L的,2mL的氯化钯溶液中,室温条件下,浸渍24h,得到负载量为1.8wt.%的Pd/Ce-Co氧化物纳米片复合型催化剂。对所得复合型催化剂的元素组成进行分析,结果列于表3。
将50mgPd/Ce-Co氧化物纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为0.5MPa,反应温度为100℃,苯乙醇与Pd的摩尔比为1500,反应时间为5h,反应后可实现100%苯乙醇转化率和99%苯乙酮选择性。
对比例9
采用普通沉淀法制备的Ce-Co氧化物纳米颗粒,所得Ce-Co氧化物纳米颗粒的比表面积和平均粒径列于表2中。
利用浸渍法,将Pd负载在Ce-Co氧化物纳米颗粒表面,得到负载量为1.8wt.%的Pd/Ce-Zr氧化物纳米颗粒复合型催化剂。按照实施例9的测试条件,测试所得复合型催化剂的催化性能,结果列于表4中。
实施例10
按照实施例4的方法制备ZrO2纳米片。如图8所示,所得ZrO2纳米片为二维层状多孔结构。按照实施例4的方法制备复合型催化剂,对所得复合型催化剂的元素组成进行分析,结果列于表3。测试所得Pd/ZrO2复合型催化剂的催化性能,将50mg Pd/ZrO2纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为1MPa,反应温度为90℃,辛醇与Pd的摩尔比为500,反应时间为10h,反应后可实现98%辛醇转化率和92%辛酸选择性。
实施例11
按照实施例4的方法制备TiO2纳米片。如图9所示,所得TiO2纳米片为二维层状多孔结构。按照实施例4的方法制备复合型催化剂,对所得复合型催化剂的元素组成进行分析,结果列于表3。测试所得Pd/TiO2复合型催化剂的催化性能,将50mg Pd/TiO2纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为1MPa,反应温度为90℃,苯乙醇与Pd的摩尔比为1000,反应时间为20h,反应后可实现99%苯乙醇转化率和98%苯乙酮选择性。
实施例12
按照实施例4的方法制备CuO纳米片。如图10所示,所得CuO纳米片为二维层状多孔结构。按照实施例4的方法制备复合型催化剂,对所得复合型催化剂的元素组成进行分析,结果列于表3。测试所得Pd/CuO复合型催化剂的催化性能,将50mg Pd/CuO纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为1MPa,反应温度为100℃,苯甲醇与Pd的摩尔比为600,反应时间为8h,反应后可实现96%苯甲醇转化率和97%苯甲醛选择性。
实施例13
按照实施例4的方法制备Cr-Zn氧化物纳米片,其中九水硝酸铬2.87克g,六水硝酸锌2.13g。如图11所示,所得Cr-Zn氧化物纳米片为二维层状多孔结构。按照实施例4的方法制备复合型催化剂,对所得复合型催化剂的元素组成进行分析,结果列于表3。测试所得Pd/Cr-Zn氧化物纳米片复合型催化剂的催化性能,将50mg Pd/Cr-Zn纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氢气压力为0.1MPa,反应温度为30℃,硝基苯与Pd的摩尔比为1000,反应时间为2h,反应后可实现96%硝基苯转化率和99%苯胺选择性。
实施例14
按照实施例4的方法制备Mn-Al氧化物纳米片,其中50%硝酸锰水溶液3.23g,九水硝酸铝3.39g。如图12所示,所得Mn-Al氧化物纳米片为二维层状多孔结构。按照实施例4的方法制备复合型催化剂,对所得复合型催化剂的元素组成进行分析,结果列于表3。测试所得Pd/Mn-Al氧化物纳米片复合型催化剂的催化性能,将50mg Pd/Mn-Al纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为0.5MPa,反应温度为80℃,苯甲醇与Pd的摩尔比为500,反应时间为12h,反应后可实现92%苯甲醇转化率和98%苯甲醛选择性。
实施例15
按照实施例4的方法制备Fe-Co氧化物纳米片,其中九水硝酸铁2.91g,六水硝酸钴2.09g。如图13所示,所得Fe-Co氧化物纳米片为二维层状多孔结构。按照实施例4的方法制备复合型催化剂,对所得复合型催化剂的元素组成进行分析,结果列于表3。测试所得Pd/Fe-Co氧化物纳米片复合型催化剂的催化性能,将50mg Pd/Fe-Co纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为0.5MPa,反应温度为100℃,正己醇与Pd的摩尔比为300,反应时间为12h,反应后可实现93%正己醇转化率和91%正己酸选择性。
实施例16
按照实施例4的方法制备Cu-Zr氧化物纳米片,其中三水硝酸铜2.61g,二水硝酸氧锆2.39g。如图14所示,所得Cu-Zr氧化物纳米片为二维层状多孔结构。按照实施例4的方法制备复合型催化剂,对所得复合型催化剂的元素组成进行分析,结果列于表3。测试所得Pd/Cu-Zr氧化物纳米片复合型催化剂的催化性能,将50mg Pd/Cu-Zr纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为1.5MPa,反应温度为100℃,正戊醇与Pd的摩尔比为500,反应时间为24h,反应后可实现92%正戊醇转化率和95%正戊酸选择性。
实施例17
按照实施例4的方法制备Mn-Ce-Zr氧化物纳米片,其中50%硝酸锰水溶液1.75g,六水硝酸铈2.12g,二水硝酸氧锆1.14g。如图15所示,所得Mn-Ce-Zr氧化物纳米片为二维层状多孔结构。按照实施例4的方法制备复合型催化剂,对所得复合型催化剂的元素组成进行分析,结果列于表3。测试所得Pd/Mn-Ce-Zr氧化物纳米片复合型催化剂的催化性能,将50mgPd/Mn-Ce-Zr纳米片复合型催化剂装入30mL不锈钢反应釜中,加入6mL去离子水,氧气压力为1.5MPa,反应温度为100℃,正丙醇与Pd的摩尔比为300,反应时间为20h,反应后可实现90%正丙醇转化率和93%丙酸选择性。
对比例10
采用共沉淀法在80℃条件下制备的Mn-Al水滑石层状结构氢氧化物前驱体,在450℃煅烧之后得到层状的复合氧化物,所得Mn-Al层状氧化物的比表面积和平均粒径列于表2中。
利用浸渍法,将Pd负载在Mn-Al层状氧化物表面,得到负载量为2.5wt.%的Pd/Mn-Al层状氧化物复合型催化剂。按照实施例14的测试条件,测试所得复合型催化剂的催化性能,结果列于表4中。
对比例11
采用共沉淀法在80℃条件下制备的Fe-Co水滑石层状结构氢氧化物前驱体,在450℃煅烧之后得到层状的复合氧化物,所得Fe-Co层状氧化物的比表面积和平均粒径列于表2中。
利用浸渍法,将Pd负载在Fe-Co层状氧化物表面,得到负载量为2.5wt.%的Pd/Fe-Co氧化物复合型催化剂。按照实施例15的测试条件,测试所得复合型催化剂的催化性能,结果列于表4中。
表1实施例1~9所得氧化物纳米片的结构测试结果
由表1数据可知,本发明提供的氧化物纳米片具有纳米级别的超薄厚度,而且氧化物纳米片横截面的长度达到微米级别,说明氧化物纳米片为典型的二维层状结构。此外,氧化物纳米片具有多孔结构,进一步提高了氧化物的比表面积,为负载催化活性组分提供有利条件。
表2对比例1~9所得氧化物的形貌测试结果
编号 比表面积/m2/g 平均粒径/μm
对比例1 65 10
对比例2 65 10
对比例3 75 15
对比例4 27 0.54
对比例5 15 0.5~0.8
对比例6 68 0.03~0.045
对比例7 206 0.5~1
对比例8 75 0.007~0.016
对比例9 46 0.009~0.02
对比例10 63 0.05~0.12
对比例11 71 0.07~0.15
表2中,对比例1~9为常规沉积法制备得到的氧化物纳米颗粒,所得氧化物纳米颗粒的平均粒径在微米级别,比表面积较小;对比例10~11为现有技术制备得到二维层状氧化物,厚度最小为0.05μm,比表面积较小。
表3实施例1~17复合型催化剂元素组分
由表3数据可知,本发明实施例1~17制备得到了氧化物纳米片负载Pd的复合型催化剂,所述复合型催化剂的Pd负载量最高达到2.50wt%。
表4实施例1~9及对比例1~11所得复合型催化剂催化性能测试结果
由表4的测试结果可知,在同等催化活性组分和负载量的条件下,本发明提供的氧化物纳米片作为催化剂载体时,相对于现有颗粒状或二维层状的氧化物载体而言,对提升复合型催化剂的转化率和选择性更有优势。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种氧化物纳米片,化学组成为RxOy,其中x为1~4且y为1~6,所述R为Si元素或金属元素;所述氧化物纳米片具有二维层状结构;所述氧化物纳米片的厚度为2.0~15.0nm;所述氧化物纳米片横截面的长度为0.1~10μm。
2.如权利要求1所述的氧化物纳米片,其特征在于,所述氧化物纳米片的比表面积为40~400m2/g。
3.如权利要求1所述的氧化物纳米片,其特征在于,所述氧化物纳米片具有孔洞,所述孔洞的平均孔径为3.0~15.0nm,所述氧化物纳米片的孔容积为0.01~0.5cm3/g。
4.如权利要求1所述的氧化物纳米片,其特征在于,所述金属元素包括Ce、Zr、Co、Ni、Al、W、Mo、Mg、Ti、Cu、Mn、Zn、Fe、Cr和La中的一种或几种。
5.权利要求1~4任意一项所述氧化物纳米片的制备方法,包括如下步骤:
(1)将氧化石墨烯与极性溶剂混合,得到氧化石墨烯分散液;
(2)将所述步骤(1)得到的氧化石墨烯分散液与载体源混合,得到预反应液;所述载体源包括可溶性硅化物或可溶性金属盐;
(3)将所述步骤(2)得到的预反应液依次进行溶剂挥发自组装、干燥和研磨,得到预烧结体;
(4)将所述步骤(3)得到的预烧结体在含氧气氛下烧结,得到氧化物纳米片。
6.如权利要求5所述的制备方法,其特征在于,所述步骤(1)中氧化石墨烯的质量与极性溶剂的体积比为1g:16~1000mL。
7.如权利要求5所述的制备方法,其特征在于,当所述步骤(2)中的载体源为可溶性硅化物时,载体源的浓度以硅原子计;当所述载体源为可溶性金属盐时,载体源的浓度以金属离子计;所述载体源在预反应液中的摩尔浓度为0.02~0.3mol/L。
8.如权利要求5所述的制备方法,其特征在于,所述步骤(3)中溶剂挥发自组装的温度为40~120℃,所述溶剂挥发自组装的时间为12~72h。
9.如权利要求5所述的制备方法,其特征在于,所述步骤(4)中的烧结温度为450~850℃,所述烧结的时间为4~36h。
10.一种包括权利要求1~4任意一项所述的氧化物纳米片或者权利要求5~9任意一项所述制备方法制备得到的氧化物纳米片的复合型催化剂。
CN201810217725.4A 2018-03-16 2018-03-16 一种氧化物纳米片及其制备方法和复合型催化剂 Active CN108355632B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810217725.4A CN108355632B (zh) 2018-03-16 2018-03-16 一种氧化物纳米片及其制备方法和复合型催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810217725.4A CN108355632B (zh) 2018-03-16 2018-03-16 一种氧化物纳米片及其制备方法和复合型催化剂

Publications (2)

Publication Number Publication Date
CN108355632A true CN108355632A (zh) 2018-08-03
CN108355632B CN108355632B (zh) 2019-12-06

Family

ID=63000480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810217725.4A Active CN108355632B (zh) 2018-03-16 2018-03-16 一种氧化物纳米片及其制备方法和复合型催化剂

Country Status (1)

Country Link
CN (1) CN108355632B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231172A (zh) * 2018-09-03 2019-01-18 复旦大学 一种二维金属氧化物纳米片及其制备方法
CN110013841A (zh) * 2019-04-23 2019-07-16 上海理工大学 一种二维二氧化钛纳米片光催化材料及其制备方法
CN110560062A (zh) * 2019-08-30 2019-12-13 华北电力大学 一种二维铁氧化物纳米片催化剂的制备方法和应用
CN111547710A (zh) * 2020-04-03 2020-08-18 新奥(内蒙古)石墨烯材料有限公司 石墨烯基复合材料及其制备方法和应用
WO2020258959A1 (zh) * 2019-06-26 2020-12-30 五邑大学 一种ZnO纳米片及其制备方法
CN112704736A (zh) * 2021-01-08 2021-04-27 深圳万物创新集团有限公司 一种CeO2/MXene复合二维材料及其制备方法和应用
EP4008687A1 (en) 2020-12-02 2022-06-08 Fundación Imdea Materiales A method for the large scale synthesis of metal oxide nanosheets, and their uses
CN114620769A (zh) * 2022-03-24 2022-06-14 复旦大学 一种组分可调的介孔金属氧化物二维片的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275939A (zh) * 2011-07-28 2011-12-14 浙江大学 一种二维多孔二氧化硅纳米片的制备方法
CN103991903A (zh) * 2014-06-04 2014-08-20 江苏大学 一种混相二氧化钛纳米片光催化剂的制备方法
CN106865625A (zh) * 2017-02-14 2017-06-20 黑龙江大学 一种由过渡金属氧化物纳米粒子构成的纳米片及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275939A (zh) * 2011-07-28 2011-12-14 浙江大学 一种二维多孔二氧化硅纳米片的制备方法
CN103991903A (zh) * 2014-06-04 2014-08-20 江苏大学 一种混相二氧化钛纳米片光催化剂的制备方法
CN106865625A (zh) * 2017-02-14 2017-06-20 黑龙江大学 一种由过渡金属氧化物纳米粒子构成的纳米片及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LELE PENG ET AL.: ""Holey two-dimensional transition metal oxide nanosheets for efficient energy storage"", 《NATURE COMMUNICATIONS》 *
SAI ZHANG ET AL.: ""High Catalytic Activity and Chemoselectivity of Sub-nanometric Pd Clusters on Porous Nanorods of CeO2 for Hydrogenation of Nitroarenes"", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231172A (zh) * 2018-09-03 2019-01-18 复旦大学 一种二维金属氧化物纳米片及其制备方法
CN110013841A (zh) * 2019-04-23 2019-07-16 上海理工大学 一种二维二氧化钛纳米片光催化材料及其制备方法
WO2020258959A1 (zh) * 2019-06-26 2020-12-30 五邑大学 一种ZnO纳米片及其制备方法
CN110560062A (zh) * 2019-08-30 2019-12-13 华北电力大学 一种二维铁氧化物纳米片催化剂的制备方法和应用
CN110560062B (zh) * 2019-08-30 2020-10-16 华北电力大学 一种二维铁氧化物纳米片催化剂的制备方法和应用
CN111547710A (zh) * 2020-04-03 2020-08-18 新奥(内蒙古)石墨烯材料有限公司 石墨烯基复合材料及其制备方法和应用
CN111547710B (zh) * 2020-04-03 2022-06-07 新奥(内蒙古)石墨烯材料有限公司 石墨烯基复合材料及其制备方法和应用
EP4008687A1 (en) 2020-12-02 2022-06-08 Fundación Imdea Materiales A method for the large scale synthesis of metal oxide nanosheets, and their uses
CN112704736A (zh) * 2021-01-08 2021-04-27 深圳万物创新集团有限公司 一种CeO2/MXene复合二维材料及其制备方法和应用
CN114620769A (zh) * 2022-03-24 2022-06-14 复旦大学 一种组分可调的介孔金属氧化物二维片的制备方法

Also Published As

Publication number Publication date
CN108355632B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
CN108355632A (zh) 一种氧化物纳米片及其制备方法和复合型催化剂
TWI477453B (zh) A composite particle support, a method for producing the composite particle support, and a method for producing the compound using the composite particle support as a catalyst for chemical synthesis
CN102883809B (zh) 制备具有沉积在载体上的贵金属纳米颗粒的催化剂的方法
Hou et al. Rare earth oxides and their supported noble metals in application of environmental catalysis
Chen et al. Multicomponent metal oxides derived from Mn-BTC anchoring with metal acetylacetonate complexes as excellent catalysts for VOCs and CO oxidation
TWI396588B (zh) Catalysts for the production of carboxylic acid esters, methods for their manufacture and methods for producing carboxylic acids
US10183276B2 (en) Rhodium-containing catalysts for automotive emissions treatment
EP1826180A1 (en) A composite material composed of nanoparticles of transition metal and magnetic ferric oxide, a methode of preparing the same, and uses of the same
JP4547935B2 (ja) 排ガス浄化用触媒、排ガス浄化触媒、及び触媒の製造方法
US20070203022A1 (en) Metal Oxide Catalyst And Method For The Preparation Thereof
CA2975108A1 (en) Platinum group metal (pgm) catalysts for automotive emissions treatment
JP2009507751A (ja) 金属酸化物の表面に金属酸化物超微粒子をコートする方法、およびこれから製造されたコーティング体
Zhu et al. Highly dispersed Ni/NiCaAlOx nanocatalyst derived from ternary layered double hydroxides for phenol hydrogenation: Spatial confinement effects and basicity of the support
Li et al. Nanoporous CeO2-Ag catalysts prepared by etching the CeO2/CuO/Ag2O mixed oxides for CO oxidation
Gamonchuang et al. The effect of alcohol type on the thickness of silica layer of Co3O4@ SiO2 core-shell particle
Yang et al. Nano porous PtRu alloy catalyst with enhanced synergic effect for selective hydrogenation of chloronitrobenzene
EP3384985A1 (en) Steam reforming catalyst for hydrocarbons
Zhao et al. In situ growth route to fabricate ternary Co–Ni–Al mixed-metal oxide film as a promising structured catalyst for the oxidation of benzyl alcohol
JP2008173592A (ja) 複合材料、複合材料基材、複合材料分散液、及びそれらの製造方法
Wang et al. Fabrication of high-performance CeO 2–MnO x/TiO 2/Ti monolithic catalysts for low-temperature and stable CO oxidation
Weerachawanasak et al. Liquid-phase hydrogenation of phenylacetylene over the nano-sized Pd/TiO2 catalysts
Winnubst et al. Synthesis and characteristics of nanocrystalline 3Y-TZP and CuO powders for ceramic composites
Wojcieszak et al. Influence of the preparation method on catalytic properties of Pd/TiO2 catalysts in the reaction of partial oxidation of methanol
TWI755847B (zh) 羧酸酯製造用觸媒及羧酸酯之製造方法
JP7573627B2 (ja) カルボン酸エステル製造用触媒及びカルボン酸エステルの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant