CN108347204A - 切换方法、切换装置、永磁同步电机、存储介质和压缩机 - Google Patents

切换方法、切换装置、永磁同步电机、存储介质和压缩机 Download PDF

Info

Publication number
CN108347204A
CN108347204A CN201810306834.3A CN201810306834A CN108347204A CN 108347204 A CN108347204 A CN 108347204A CN 201810306834 A CN201810306834 A CN 201810306834A CN 108347204 A CN108347204 A CN 108347204A
Authority
CN
China
Prior art keywords
switching
given
axis
constant current
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810306834.3A
Other languages
English (en)
Other versions
CN108347204B (zh
Inventor
宋万杰
任新杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Meizhi Compressor Co Ltd
Original Assignee
Guangdong Meizhi Compressor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Meizhi Compressor Co Ltd filed Critical Guangdong Meizhi Compressor Co Ltd
Publication of CN108347204A publication Critical patent/CN108347204A/zh
Application granted granted Critical
Publication of CN108347204B publication Critical patent/CN108347204B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提出了一种电路的切换方法、切换装置、永磁同步电机、存储介质和压缩机,其中,驱动电路的切换方法包括:在接收到切换指令时,冻结矢量控制系统中的控制环路,并控制进行星形绕组与三角形绕组之间的切换;在检测到冻结时间达到预设冻结时间时,解冻控制环路,并根据切换后的控制参数对永磁同步电机进行矢量控制。通过本发明的技术方案,能够减少切换过程中对矢量控制系统的位置冲击,并有利于提升永磁同步电机在星形连接结构与三角形连接结构之间切换的稳定性与可靠性。

Description

切换方法、切换装置、永磁同步电机、存储介质和压缩机
技术领域
本发明涉及矢量控制系统技术领域,具体而言,涉及一种驱动电路的切换方法、一种驱动电路的切换装置、一种永磁同步电机、一种计算机可读存储介质和一种压缩机。
背景技术
随着经济社会的日益发展和科技水平的逐渐提高,永磁同步电机(PMSM,Permanent Magnet Synchronous Motor)的应用领域越来越广泛,对永磁同步电机的性能要求也越来越高。
PMSM控制中由于需要全频段能效达到最优的境界,需要在中低频时提升主磁通,减小定子电流,降低变频器和电机损耗,高频时降低主磁通,降低弱磁带来的电机功率因素偏低,带载能力偏弱,以及电机效率低等问题。由于压缩机领域是sensorless(无传感器)控制,所以在实现星形绕组与三角形绕组控制切换时,必然会对sensorless控制系统和矢量控制系统造成冲击,从而影响了正常切换。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的一个目的在于提供一种驱动电路的切换方法。
本发明的另一个目的在于提供一种驱动电路的切换装置。
本发明的又一个目的在于提供一种永磁同步电机。
本发明的又一个目的在于提供一种计算机可读存储介质。
本发明的又一个目的在于提供一种压缩机。
为了实现上述目的,根据本发明的第一方面的实施例,提出了一种驱动电路的切换方法,适用于永磁同步电机,永磁同步电机通过矢量控制系统控制运行,矢量控制系统包括变频器,变频器连接至多相定子绕组,多相定子绕组能够构造为星形绕组或三角形绕组,星形绕组与三角形绕组分别用于驱动电机以不同频率状态运行,其特征在于,切换方法包括:在接收到切换指令时,冻结矢量控制系统中的控制环路,并控制进行星形绕组与三角形绕组之间的切换;在检测到冻结时间达到预设冻结时间时,解冻控制环路,并根据切换后的控制参数对永磁同步电机进行矢量控制。
在该技术方案中,通过在切换过程中冻结矢量控制系统中的控制环路,对于无传感器控制的矢量控制系统而言,不通过控制环路的输出矢量对电机进行矢量控制,从而能够减少切换过程中对矢量控制系统的位置冲击,并有利于提升永磁同步电机在星形连接结构与三角形连接结构之间切换的稳定性与可靠性。
特别指出的是,通过设置预设解冻时长,实现矢量控制系统和多相定子绕组形态的同时切换,提升了永磁同步电机的稳定性与可靠性。
在上述任一技术方案中,优选地,控制环路包括速度环路、角度环路与电流环路,冻结控制环路,具体包括以下步骤:将速度环路、角度环路以及电流环路中的偏差值调整为0,以根据偏差值调节控制环路的输出,其中,控制环路的输出为u=Kpe+Ki∫Δ,Kp为比例增益,e为偏差值,Ki为积分增益,∫Δ为积分值。
在该技术方案中,将速度环路、角度环路以及电流环路中的偏差值均调整为0,即不执行PI(比例积分控制器)的调节操作,在预设冻结时间段内,预设冻结时间作为死区时间,因为反馈量为0,因此没有电流,通过冻结控制环路,防止了电流环路,速度环路以及角度环路继续工作时造成PI输出的值异常增加而导致的切换过程的工作异常。
在上述任一技术方案中,优选地,根据切换后的控制参数对永磁同步电机进行矢量控制,具体包括以下步骤:根据切换前的第一交轴给定电压与第一直轴给定电压确定切换后的第二交轴给定电压与第二直轴给定电压;根据切换前的第一交轴给定电流与第一直轴给定电流确定切换后的第二交轴给定电流与第二直轴给定电流;根据切换前的第一给定角度、第一给定转子转速与预设冻结时间,确定切换后的第二给定角度与第二给定转子转速;在检测到冻结时间达到预设冻结时间时,根据第二交轴给定电压、第二直轴给定电压、第二交轴给定电流、第二直轴给定电流、第二给定角度与第二给定转子转速控制同步电机运行。
在该技术方案中,通过根据切换前的交轴给定电压与直轴给定电压确定切换后的交轴给定电压与直轴给定电压,根据切换前的交轴给定电流与直轴给定电流确定切换后的交轴给定电流与直轴给定电流,以及根据切换前的转速、给定角度结合预设冻结时间确定切换后的转速与给定角度,实现了切换后矢量控制系统中矢量控制参数的确定,以在完成星形绕组与三角形绕组之间的切换后,根据切换后的矢量控制参数对电机进行矢量控制,进而实现了绕组切换后电机的正常运行。
具体地,电机的三角形绕组将各相绕组依次首尾相连,并将每个相连的点引出,作为三相电的三个相线,三角形接法时电机的相电压等于线电压,即380V,线电流等于根号3倍的相电流,电机的星形绕组是将各相绕组的一端都接在一个点上,而它们的另一端作为引出线,分别为三个相线,星形绕组中线电压是相电压的三倍,线电压为220V,而线电流等于相电流。
在上述任一技术方案中,优选地,还包括:将速度环路中的积分值修订为切换后的第二交轴给定电流与第二直轴给定电流;将角度环路中的积分值修订为切换后的park转化与逆park转化中的第二给定角度;将电流环路中的积分值修订为切换后的第二交轴给定电压与第二直轴给定电压。
在该技术方案中,通过将切换后的矢量参数作为控制环路中的积分值,实现了切换过程的参数补偿,其中,根据第二给定角度,在通过将两相旋转的电压转换为两相静止的电压后,通过park转化将两相电压转换为三相电压,以输入三相定子绕组,或通过逆park转化将三相电压转换为两相电压,进而实现了电机转子运行数据的反馈,进而根据反馈值执行更精确的控制操作。
在上述任一技术方案中,优选地,根据切换前的第一交轴给定电压与第一直轴给定电压确定切换后的第二交轴给定电压与第二直轴给定电压,具体包括以下步骤:在由三角形绕组切换至星形绕组时,根据第一组公式确定第二交轴给定电压与第二直轴给定电压;在由星形绕组切换至三角形绕组时,根据第二组公式确定第二交轴给定电压与第二直轴给定电压;其中,第一组公式为第二组公式为usd2 *为第二直轴给定电压,usq2 *为第二交轴给定电压,usd1 *为第一直轴给定电压,usq1 *为第一交轴给定电压。
在该技术方案中,三角形绕组的相电压为星形绕组的相电压的倍,对应地,在二相向三转换之前的交轴电压与直轴电压,在三角形绕组中也是星形绕组中的倍,进而实现了切换之前的给定电压相切换之后的给定电压的转换,一方面,保证了绕组形状切换之后的电机的正常控制运行,另一方面,实现了电流环路中的积分值的确定,从而保证了切换过程的顺利进行。
在上述任一技术方案中,优选地,根据切换前的第一交轴给定电流与第一直轴给定电流确定切换后的第二交轴给定电流与第二直轴给定电流,具体包括以下步骤:在由三角形绕组切换至星形绕组时,根据第三组公式确定第二交轴给定电流与第二直轴给定电流;在由星形绕组切换至三角形绕组时,根据第四组公式确定第二交轴给定电流与第二直轴给定电流;其中,第三组公式为第四组公式为isd2 *为第二直轴给定电流,isq2 *为第二交轴给定电流,isd1 *为第一直轴给定电流,isq1 *为第一交轴给定电流。
在该技术方案中,三角形绕组的相电流为星形绕组的相电流的倍,对应地,在二相向三转换之前的交轴电流与直轴电流,在三角形绕组中也是星形绕组中的倍,进而实现了切换之前的给定电流相切换之后的给定电流的转换,一方面,保证了绕组形状切换之后的电机的正常控制运行,另一方面,实现了速度环路中的积分值的确定,进一步保证了切换过程的顺利进行。
具体地,交轴电流指定子电流转矩分量反馈值,直轴电流指励磁分量反馈值,以通过对两个直流分量的控制实现磁通和转矩的解耦控制。
在上述任一技术方案中,优选地,根据切换前的第一给定角度、第一给定转子转速与预设冻结时间,确定切换后的第二给定角度与第二给定转子转速,具体包括以下步骤:根据第五公式确定第二给定转子转速;将第二给定转子转速输入至第六公式,以获取损失角度;在由三角形绕组切换至星形绕组时,根据损失角度与第七公式确定第二给定角度;在由星形绕组切换至三角形绕组时,根据损失角度与第八公式确定第二给定角度,其中,第五组公式为第六组公式为第七公式为θ2=θ1-30°-Δθ1,第八公式为θ2=θ1+30°-Δθ1,ω1为第一给定转子转速,ω2为第二给定转子转速,Te为切换转矩,J为转动惯量,Tdead为预设冻结时间,np为极对数,Δθ1为损失角度,θ1为第一给定角度,θ2为第二给定角度。
在该技术方案中,一方面,通过设置预设冻结时间,在绕组切换之前,通过矢量控制系统的稳定控制,且第一给定转子转速ω1为已知数据,在切换之前,输出的电磁转矩为Te,通过对电磁转矩与转动惯量的比值进行预设冻结时间内的积分操作,以确定转速的变化量,进而根据转速的变化量确定切换后的转子转速,以通过矢量控制系统控制电机转子以第二给定转子转速运行,另一方面,在绕组切换过程中,由于磁中心的偏移,导致切换瞬时的角度与d轴(直轴)之间存在30°的角度偏差,而由于切换时刻输出的转矩为0,因此电机转动角度为损失角度,进而根据角度偏差与损失角度确定切换后的第二给定角度,从而使矢量控制系统能够根据第二给定较低执行两相坐标系与三相坐标系之间的切换。
在上述任一技术方案中,优选地,控制进行星形绕组与三角形绕组之间的切换,具体包括以下步骤:在接收到切换指令时,控制断开第一组开关;在检测到冻结时间达到预设冻结时间时,控制导通第二组开关,其中,第一组开关导通时形成星形绕组,第二组开关导通时形成三角形绕组。
在该技术方案中,在接收到切换指令后,启动计时功能,控制切断第一组开关,通过检测自接收到切换指令时刻时起的经历时长,并在判定上述经历时长达到预设冻结时间时,控制第二组开关导通,以实现星形绕组向三角形绕组的切换过程,切换操作简单,可靠性高。
对应地,在接收到切换指令后,启动计时功能,控制切断第二组开关,通过检测自接收到切换指令时刻时起的经历时长,并在判定上述经历时长达到预设冻结时间时,控制第一组开关导通,以实现三角形绕组向星形绕组的切换过程。
根据本发明的第二方面的技术方案,提出了一种驱动电路的切换装置,适用于永磁同步电机,永磁同步电机通过矢量控制系统控制运行,矢量控制系统包括变频器,变频器连接至多相定子绕组,多相定子绕组能够构造为星形绕组或三角形绕组,星形绕组与三角形绕组分别用于驱动电机以不同频率状态运行,其特征在于,切换装置包括:冻结单元,用于在接收到切换指令时,冻结矢量控制系统中的控制环路,并控制进行星形绕组与三角形绕组之间的切换;控制单元,用于在检测到冻结时间达到预设冻结时间时,解冻控制环路,并根据切换后的控制参数对永磁同步电机进行矢量控制。
在该技术方案中,通过在切换过程中冻结矢量控制系统中的控制环路,对于无传感器控制的矢量控制系统而言,不通过控制环路的输出矢量对电机进行矢量控制,从而能够减少切换过程中对矢量控制系统的位置冲击,并有利于提升永磁同步电机在星形连接结构与三角形连接结构之间切换的稳定性与可靠性。
特别指出的是,通过设置预设解冻时长,实现矢量控制系统和多相定子绕组形态的同时切换,提升了永磁同步电机的稳定性与可靠性。
在上述任一技术方案中,优选地,还包括:调整单元,用于将速度环路、角度环路以及电流环路中的偏差值调整为0,以根据偏差值调节控制环路的输出,其中,控制环路的输出为u=Kpe+Ki∫Δ,Kp为比例增益,e为偏差值,Ki为积分增益,∫Δ为积分值。
在该技术方案中,将速度环路、角度环路以及电流环路中的偏差值均调整为0,即不执行PI(比例积分控制器)的调节操作,在预设冻结时间段内,预设冻结时间作为死区时间,因为反馈量为0,因此没有电流,通过冻结控制环路,防止了电流环路,速度环路以及角度环路继续工作时造成PI输出的值异常增加而导致的切换过程的工作异常。
在上述任一技术方案中,优选地,还包括:确定单元,用于根据切换前的第一交轴给定电压与第一直轴给定电压确定切换后的第二交轴给定电压与第二直轴给定电压;确定单元还用于:根据切换前的第一交轴给定电流与第一直轴给定电流确定切换后的第二交轴给定电流与第二直轴给定电流;确定单元还用于:根据切换前的第一给定角度、第一给定转子转速与预设冻结时间,确定切换后的第二给定角度与第二给定转子转速;控制单元还用于:在检测到冻结时间达到预设冻结时间时,根据第二交轴给定电压、第二直轴给定电压、第二交轴给定电流、第二直轴给定电流、第二给定角度与第二给定转子转速控制同步电机运行。
在该技术方案中,通过根据切换前的交轴给定电压与直轴给定电压确定切换后的交轴给定电压与直轴给定电压,根据切换前的交轴给定电流与直轴给定电流确定切换后的交轴给定电流与直轴给定电流,以及根据切换前的转速、给定角度结合预设冻结时间确定切换后的转速与给定角度,实现了切换后矢量控制系统中矢量控制参数的确定,以在完成星形绕组与三角形绕组之间的切换后,根据切换后的矢量控制参数对电机进行矢量控制,进而实现了绕组切换后电机的正常运行。
具体地,电机的三角形绕组将各相绕组依次首尾相连,并将每个相连的点引出,作为三相电的三个相线,三角形接法时电机的相电压等于线电压,即380V,线电流等于根号3倍的相电流,电机的星形绕组是将各相绕组的一端都接在一个点上,而它们的另一端作为引出线,分别为三个相线,星形绕组中线电压是相电压的三倍,线电压为220V,而线电流等于相电流。
在上述任一技术方案中,优选地,还包括:修订单元,用于将速度环路中的积分值修订为切换后的第二交轴给定电流与第二直轴给定电流;修订单元还用于:将角度环路中的积分值修订为切换后的park转化与逆park转化中的第二给定角度;修订单元还用于:将电流环路中的积分值修订为切换后的第二交轴给定电压与第二直轴给定电压。
在该技术方案中,通过将切换后的矢量参数作为控制环路中的积分值,实现了切换过程的参数补偿,其中,根据第二给定角度,在通过将两相旋转的电压转换为两相静止的电压后,通过park转化将两相电压转换为三相电压,以输入三相定子绕组,或通过逆park转化将三相电压转换为两相电压,进而实现了电机转子运行数据的反馈,进而根据反馈值执行更精确的控制操作。
在上述任一技术方案中,优选地,确定单元还用于:在由三角形绕组切换至星形绕组时,根据第一组公式确定第二交轴给定电压与第二直轴给定电压;确定单元还用于:在由星形绕组切换至三角形绕组时,根据第二组公式确定第二交轴给定电压与第二直轴给定电压;其中,第一组公式为第二组公式为usd2 *为第二直轴给定电压,usq2 *为第二交轴给定电压,usd1 *为第一直轴给定电压,usq1 *为第一交轴给定电压。
在该技术方案中,三角形绕组的相电压为星形绕组的相电压的倍,对应地,在二相向三转换之前的交轴电压与直轴电压,在三角形绕组中也是星形绕组中的倍,进而实现了切换之前的给定电压相切换之后的给定电压的转换,一方面,保证了绕组形状切换之后的电机的正常控制运行,另一方面,实现了电流环路中的积分值的确定,从而保证了切换过程的顺利进行。
在上述任一技术方案中,优选地,确定单元还用于:在由三角形绕组切换至星形绕组时,根据第三组公式确定第二交轴给定电流与第二直轴给定电流;确定单元还用于:在由星形绕组切换至三角形绕组时,根据第四组公式确定第二交轴给定电流与第二直轴给定电流;其中,第三组公式为第四组公式为isd2 *为第二直轴给定电流,isq2 *为第二交轴给定电流,isd1 *为第一直轴给定电流,isq1 *为第一交轴给定电流。
在该技术方案中,三角形绕组的相电流为星形绕组的相电流的倍,对应地,在二相向三转换之前的交轴电流与直轴电流,在三角形绕组中也是星形绕组中的倍,进而实现了切换之前的给定电流相切换之后的给定电流的转换,一方面,保证了绕组形状切换之后的电机的正常控制运行,另一方面,实现了速度环路中的积分值的确定,进一步保证了切换过程的顺利进行。
具体地,交轴电流指定子电流转矩分量反馈值,直轴电流指励磁分量反馈值,以通过对两个直流分量的控制实现磁通和转矩的解耦控制。
在上述任一技术方案中,优选地,确定单元还用于:根据第五公式确定第二给定转子转速;切换装置还包括:输入单元,用于将第二给定转子转速输入至第六公式,以获取损失角度;确定单元还用于:在由三角形绕组切换至星形绕组时,根据损失角度与第七公式确定第二给定角度;确定单元还用于:在由星形绕组切换至三角形绕组时,根据损失角度与第八公式确定第二给定角度,其中,第五组公式为第六组公式为第七公式为θ2=θ1-30°-Δθ1,第八公式为θ2=θ1+30°-Δθ1,ω1为第一给定转子转速,ω2为第二给定转子转速,Te为切换转矩,J为转动惯量,Tdead为预设冻结时间,np为极对数,Δθ1为损失角度,θ1为第一给定角度,θ2为第二给定角度。
在该技术方案中,一方面,通过设置预设冻结时间,在绕组切换之前,通过矢量控制系统的稳定控制,且第一给定转子转速ω1为已知数据,在切换之前,输出的电磁转矩为Te,通过对电磁转矩与转动惯量的比值进行预设冻结时间内的积分操作,以确定转速的变化量,进而根据转速的变化量确定切换后的转子转速,以通过矢量控制系统控制电机转子以第二给定转子转速运行,另一方面,在绕组切换过程中,由于磁中心的偏移,导致切换瞬时的角度与d轴(直轴)之间存在30°的角度偏差,而由于切换时刻输出的转矩为0,因此电机转动角度为损失角度,进而根据角度偏差与损失角度确定切换后的第二给定角度,从而使矢量控制系统能够根据第二给定较低执行两相坐标系与三相坐标系之间的切换。
在上述任一技术方案中,优选地,控制单元还用于:在接收到切换指令时,控制断开第一组开关;控制单元还用于:在检测到冻结时间达到预设冻结时间时,控制导通第二组开关,其中,第一组开关导通时形成星形绕组,第二组开关导通时形成三角形绕组。
在该技术方案中,在接收到切换指令后,启动计时功能,控制切断第一组开关,通过检测自接收到切换指令时刻时起的经历时长,并在判定上述经历时长达到预设冻结时间时,控制第二组开关导通,以实现星形绕组向三角形绕组的切换过程,切换操作简单,可靠性高。
对应地,在接收到切换指令后,启动计时功能,控制切断第二组开关,通过检测自接收到切换指令时刻时起的经历时长,并在判定上述经历时长达到预设冻结时间时,控制第一组开关导通,以实现三角形绕组向星形绕组的切换过程。
根据本发明的第三方面的技术方案,提出了一种永磁同步电机,永磁同步电机包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述技术方案中任一项的驱动电路的切换方法的步骤。
根据本发明的第四方面的技术方案,提出了一种计算机可读存储介质,其上存储有计算机程序(指令),计算机程序(指令)被执行实现如第一方面的驱动电路的切换方法。
根据本发明的第五方面的技术方案,提出了一种压缩机,包括本发明的第三方面的技术方案所述的永磁同步电机。
本发明的附加方面和优点将在下面的描述部分中给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本发明的一个实施例的驱动电路的切换方法的示意流程图;
图2示出了根据本发明的一个实施例的驱动电路的切换装置的示意框图;
图3示出了根据本发明的另一个实施例的驱动电路的切换方法的示意流程图;
图4示出了根据本发明的一个实施例的矢量控制系统的示意框图;
图5示出了根据本发明的一个实施例的PI控制环路的示意框图;
图6示出了根据本发明的一个实施例的驱动电路的电路图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面结合图1至图6对根据本发明的实施例的驱动电路的切换方法进行具体说明。
图1示出了根据本发明的一个实施例的驱动电路的切换方法的示意流程图。
如图1所示,根据本发明的实施例的驱动电路的切换方法,适用于永磁同步电机,永磁同步电机通过矢量控制系统控制运行,矢量控制系统包括变频器,变频器连接至多相定子绕组,多相定子绕组能够构造为星形绕组或三角形绕组,星形绕组与三角形绕组分别用于驱动电机以不同频率状态运行,其特征在于,切换方法包括:步骤102,在接收到切换指令时,冻结矢量控制系统中的控制环路,并控制进行星形绕组与三角形绕组之间的切换;步骤104,在检测到冻结时间达到预设冻结时间时,解冻控制环路,并根据切换后的控制参数对永磁同步电机进行矢量控制。
在该实施例中,通过在切换过程中冻结矢量控制系统中的控制环路,对于无传感器控制的矢量控制系统而言,不通过控制环路的输出矢量对电机进行矢量控制,从而能够减少切换过程中对矢量控制系统的位置冲击,并有利于提升永磁同步电机在星形连接结构与三角形连接结构之间切换的稳定性与可靠性。
特别指出的是,通过设置预设解冻时长,实现矢量控制系统和多相定子绕组形态的同时切换,提升了永磁同步电机的稳定性与可靠性。
在上述任一实施例中,优选地,控制环路包括速度环路、角度环路与电流环路,冻结控制环路,具体包括以下步骤:将速度环路、角度环路以及电流环路中的偏差值调整为0,以根据偏差值调节控制环路的输出,其中,控制环路的输出为u=Kpe+Ki∫Δ,Kp为比例增益,e为偏差值,Ki为积分增益,∫Δ为积分值。
在该实施例中,将速度环路、角度环路以及电流环路中的偏差值均调整为0,即不执行PI(比例积分控制器)的调节操作,在预设冻结时间段内,预设冻结时间作为死区时间,因为反馈量为0,因此没有电流,通过冻结控制环路,防止了电流环路,速度环路以及角度环路继续工作时造成PI输出的值异常增加而导致的切换过程的工作异常。
在上述任一实施例中,优选地,根据切换后的控制参数对永磁同步电机进行矢量控制,具体包括以下步骤:根据切换前的第一交轴给定电压与第一直轴给定电压确定切换后的第二交轴给定电压与第二直轴给定电压;根据切换前的第一交轴给定电流与第一直轴给定电流确定切换后的第二交轴给定电流与第二直轴给定电流;根据切换前的第一给定角度、第一给定转子转速与预设冻结时间,确定切换后的第二给定角度与第二给定转子转速;在检测到冻结时间达到预设冻结时间时,根据第二交轴给定电压、第二直轴给定电压、第二交轴给定电流、第二直轴给定电流、第二给定角度与第二给定转子转速控制同步电机运行。
在该实施例中,通过根据切换前的交轴给定电压与直轴给定电压确定切换后的交轴给定电压与直轴给定电压,根据切换前的交轴给定电流与直轴给定电流确定切换后的交轴给定电流与直轴给定电流,以及根据切换前的转速、给定角度结合预设冻结时间确定切换后的转速与给定角度,实现了切换后矢量控制系统中矢量控制参数的确定,以在完成星形绕组与三角形绕组之间的切换后,根据切换后的矢量控制参数对电机进行矢量控制,进而实现了绕组切换后电机的正常运行。
具体地,电机的三角形绕组将各相绕组依次首尾相连,并将每个相连的点引出,作为三相电的三个相线,三角形接法时电机的相电压等于线电压,即380V,线电流等于根号3倍的相电流,电机的星形绕组是将各相绕组的一端都接在一个点上,而它们的另一端作为引出线,分别为三个相线,星形绕组中线电压是相电压的三倍,线电压为220V,而线电流等于相电流。
在上述任一实施例中,优选地,还包括:将速度环路中的积分值修订为切换后的第二交轴给定电流与第二直轴给定电流;将角度环路中的积分值修订为切换后的park转化与逆park转化中的第二给定角度;将电流环路中的积分值修订为切换后的第二交轴给定电压与第二直轴给定电压。
在该实施例中,通过将切换后的矢量参数作为控制环路中的积分值,实现了切换过程的参数补偿,其中,根据第二给定角度,在通过将两相旋转的电压转换为两相静止的电压后,通过park转化将两相电压转换为三相电压,以输入三相定子绕组,或通过逆park转化将三相电压转换为两相电压,进而实现了电机转子运行数据的反馈,进而根据反馈值执行更精确的控制操作。
在上述任一实施例中,优选地,根据切换前的第一交轴给定电压与第一直轴给定电压确定切换后的第二交轴给定电压与第二直轴给定电压,具体包括以下步骤:在由三角形绕组切换至星形绕组时,根据第一组公式确定第二交轴给定电压与第二直轴给定电压;在由星形绕组切换至三角形绕组时,根据第二组公式确定第二交轴给定电压与第二直轴给定电压;其中,第一组公式为第二组公式为usd2 *为第二直轴给定电压,usq2 *为第二交轴给定电压,usd1 *为第一直轴给定电压,usq1 *为第一交轴给定电压。
在该实施例中,三角形绕组的相电压为星形绕组的相电压的倍,对应地,在二相向三转换之前的交轴电压与直轴电压,在三角形绕组中也是星形绕组中的倍,进而实现了切换之前的给定电压相切换之后的给定电压的转换,一方面,保证了绕组形状切换之后的电机的正常控制运行,另一方面,实现了电流环路中的积分值的确定,从而保证了切换过程的顺利进行。
在上述任一实施例中,优选地,根据切换前的第一交轴给定电流与第一直轴给定电流确定切换后的第二交轴给定电流与第二直轴给定电流,具体包括以下步骤:在由三角形绕组切换至星形绕组时,根据第三组公式确定第二交轴给定电流与第二直轴给定电流;在由星形绕组切换至三角形绕组时,根据第四组公式确定第二交轴给定电流与第二直轴给定电流;其中,第三组公式为第四组公式为isd2 *为第二直轴给定电流,isq2 *为第二交轴给定电流,isd1 *为第一直轴给定电流,isq1 *为第一交轴给定电流。
在该实施例中,三角形绕组的相电流为星形绕组的相电流的倍,对应地,在二相向三转换之前的交轴电流与直轴电流,在三角形绕组中也是星形绕组中的倍,进而实现了切换之前的给定电流相切换之后的给定电流的转换,一方面,保证了绕组形状切换之后的电机的正常控制运行,另一方面,实现了速度环路中的积分值的确定,进一步保证了切换过程的顺利进行。
具体地,交轴电流指定子电流转矩分量反馈值,直轴电流指励磁分量反馈值,以通过对两个直流分量的控制实现磁通和转矩的解耦控制。
在上述任一实施例中,优选地,根据切换前的第一给定角度、第一给定转子转速与预设冻结时间,确定切换后的第二给定角度与第二给定转子转速,具体包括以下步骤:根据第五公式确定第二给定转子转速;将第二给定转子转速输入至第六公式,以获取损失角度;在由三角形绕组切换至星形绕组时,根据损失角度与第七公式确定第二给定角度;在由星形绕组切换至三角形绕组时,根据损失角度与第八公式确定第二给定角度,其中,第五组公式为第六组公式为第七公式为θ2=θ1-30°-Δθ1,第八公式为θ2=θ1+30°-Δθ1,ω1为第一给定转子转速,ω2为第二给定转子转速,Te为切换转矩,J为转动惯量,Tdead为预设冻结时间,np为极对数,Δθ1为损失角度,θ1为第一给定角度,θ2为第二给定角度。
在该实施例中,一方面,通过设置预设冻结时间,在绕组切换之前,通过矢量控制系统的稳定控制,且第一给定转子转速ω1为已知数据,在切换之前,输出的电磁转矩为Te,通过对电磁转矩与转动惯量的比值进行预设冻结时间内的积分操作,以确定转速的变化量,进而根据转速的变化量确定切换后的转子转速,以通过矢量控制系统控制电机转子以第二给定转子转速运行,另一方面,在绕组切换过程中,由于磁中心的偏移,导致切换瞬时的角度与d轴(直轴)之间存在30°的角度偏差,而由于切换时刻输出的转矩为0,因此电机转动角度为损失角度,进而根据角度偏差与损失角度确定切换后的第二给定角度,从而使矢量控制系统能够根据第二给定较低执行两相坐标系与三相坐标系之间的切换。
在上述任一实施例中,优选地,控制进行星形绕组与三角形绕组之间的切换,具体包括以下步骤:在接收到切换指令时,控制断开第一组开关;在检测到冻结时间达到预设冻结时间时,控制导通第二组开关,其中,第一组开关导通时形成星形绕组,第二组开关导通时形成三角形绕组。
在该实施例中,在接收到切换指令后,启动计时功能,控制切断第一组开关,通过检测自接收到切换指令时刻时起的经历时长,并在判定上述经历时长达到预设冻结时间时,控制第二组开关导通,以实现星形绕组向三角形绕组的切换过程,切换操作简单,可靠性高。
对应地,在接收到切换指令后,启动计时功能,控制切断第二组开关,通过检测自接收到切换指令时刻时起的经历时长,并在判定上述经历时长达到预设冻结时间时,控制第一组开关导通,以实现三角形绕组向星形绕组的切换过程。
图6示出了根据本发明的一个实施例的驱动电路的电路图。
如图6所示,在上述任一实施例中,优选地,第一形定子绕组为星形定子绕组,第二形定子绕组为三角形定子绕组,第一组开关包括第一开关S1与第二开关S2,第二组开关包括第三开关S3、第四开关S4与第五开关,其中,多相定子绕组包括第一绕组、第二绕组与第三绕组,第一绕组的输入端连接至变频器的第一输出端、第二绕组的输入端连接至变频器的第二输出端,第三绕组的输入端连接至变频器的第三输出端,第一绕组的输出端连接至第一开关S1的一端,第二绕组的输出端连接至第一开关S1的另一端,第一开关S1的另一端还连接至第二开关S2的一端,第二开关S2的另一端连接至第三绕组的输出端,第三开关S3设置于第二绕组的输出端与第三绕组的输入端之间,第四开关S4设置于第一绕组的输出端与第二绕组的输入端之间,第五开关S5设置于第一绕组的输入端与第三绕组的输入端之间。
在该实施例中,第一形定子绕组对应第一组开关,第二形定子绕组对应第二组开关,也即在星形定子绕组至三角形定子绕组的切换过程中,第一开关S1与第二开关S2断开,第三开关S3、第四开关S4与第五开关导通。
图2示出了根据本发明的一个实施例的驱动电路的切换装置的示意框图。
根据本发明的实施例的驱动电路的切换装置200,适用于永磁同步电机,永磁同步电机通过矢量控制系统控制运行,矢量控制系统包括变频器,变频器连接至多相定子绕组,多相定子绕组能够构造为星形绕组或三角形绕组,星形绕组与三角形绕组分别用于驱动电机以不同频率状态运行,其特征在于,切换装置200包括:冻结单元202,用于在接收到切换指令时,冻结矢量控制系统中的控制环路,并控制进行星形绕组与三角形绕组之间的切换;控制单元204,用于在检测到冻结时间达到预设冻结时间时,解冻控制环路,并根据切换后的控制参数对永磁同步电机进行矢量控制。
在该实施例中,通过在切换过程中冻结矢量控制系统中的控制环路,对于无传感器控制的矢量控制系统而言,不通过控制环路的输出矢量对电机进行矢量控制,从而能够减少切换过程中对矢量控制系统的位置冲击,并有利于提升永磁同步电机在星形连接结构与三角形连接结构之间切换的稳定性与可靠性。
特别指出的是,通过设置预设解冻时长,实现矢量控制系统和多相定子绕组形态的同时切换,提升了永磁同步电机的稳定性与可靠性。
在上述任一实施例中,优选地,还包括:调整单元206,用于将速度环路、角度环路以及电流环路中的偏差值调整为0,以根据偏差值调节控制环路的输出,其中,控制环路的输出为u=Kpe+Ki∫Δ,Kp为比例增益,e为偏差值,Ki为积分增益,∫Δ为积分值。
在该实施例中,将速度环路、角度环路以及电流环路中的偏差值均调整为0,即不执行PI(比例积分控制器)的调节操作,在预设冻结时间段内,预设冻结时间作为死区时间,因为反馈量为0,因此没有电流,通过冻结控制环路,防止了电流环路,速度环路以及角度环路继续工作时造成PI输出的值异常增加而导致的切换过程的工作异常。
在上述任一实施例中,优选地,还包括:确定单元208,用于根据切换前的第一交轴给定电压与第一直轴给定电压确定切换后的第二交轴给定电压与第二直轴给定电压;确定单元208还用于:根据切换前的第一交轴给定电流与第一直轴给定电流确定切换后的第二交轴给定电流与第二直轴给定电流;确定单元208还用于:根据切换前的第一给定角度、第一给定转子转速与预设冻结时间,确定切换后的第二给定角度与第二给定转子转速;控制单元204还用于:在检测到冻结时间达到预设冻结时间时,根据第二交轴给定电压、第二直轴给定电压、第二交轴给定电流、第二直轴给定电流、第二给定角度与第二给定转子转速控制同步电机运行。
在该实施例中,通过根据切换前的交轴给定电压与直轴给定电压确定切换后的交轴给定电压与直轴给定电压,根据切换前的交轴给定电流与直轴给定电流确定切换后的交轴给定电流与直轴给定电流,以及根据切换前的转速、给定角度结合预设冻结时间确定切换后的转速与给定角度,实现了切换后矢量控制系统中矢量控制参数的确定,以在完成星形绕组与三角形绕组之间的切换后,根据切换后的矢量控制参数对电机进行矢量控制,进而实现了绕组切换后电机的正常运行。
具体地,电机的三角形绕组将各相绕组依次首尾相连,并将每个相连的点引出,作为三相电的三个相线,三角形接法时电机的相电压等于线电压,即380V,线电流等于根号3倍的相电流,电机的星形绕组是将各相绕组的一端都接在一个点上,而它们的另一端作为引出线,分别为三个相线,星形绕组中线电压是相电压的三倍,线电压为220V,而线电流等于相电流。
在上述任一实施例中,优选地,还包括:修订单元210,用于将速度环路中的积分值修订为切换后的第二交轴给定电流与第二直轴给定电流;修订单元210还用于:将角度环路中的积分值修订为切换后的park转化与逆park转化中的第二给定角度;修订单元210还用于:将电流环路中的积分值修订为切换后的第二交轴给定电压与第二直轴给定电压。
在该实施例中,通过将切换后的矢量参数作为控制环路中的积分值,实现了切换过程的参数补偿,其中,根据第二给定角度,在通过将两相旋转的电压转换为两相静止的电压后,通过park转化将两相电压转换为三相电压,以输入三相定子绕组,或通过逆park转化将三相电压转换为两相电压,进而实现了电机转子运行数据的反馈,进而根据反馈值执行更精确的控制操作。
在上述任一实施例中,优选地,确定单元208还用于:在由三角形绕组切换至星形绕组时,根据第一组公式确定第二交轴给定电压与第二直轴给定电压;确定单元208还用于:在由星形绕组切换至三角形绕组时,根据第二组公式确定第二交轴给定电压与第二直轴给定电压;其中,第一组公式为第二组公式为usd2 *为第二直轴给定电压,usq2 *为第二交轴给定电压,usd1 *为第一直轴给定电压,usq1 *为第一交轴给定电压。
在该实施例中,三角形绕组的相电压为星形绕组的相电压的倍,对应地,在二相向三转换之前的交轴电压与直轴电压,在三角形绕组中也是星形绕组中的倍,进而实现了切换之前的给定电压相切换之后的给定电压的转换,一方面,保证了绕组形状切换之后的电机的正常控制运行,另一方面,实现了电流环路中的积分值的确定,从而保证了切换过程的顺利进行。
在上述任一实施例中,优选地,确定单元208还用于:在由三角形绕组切换至星形绕组时,根据第三组公式确定第二交轴给定电流与第二直轴给定电流;确定单元208还用于:在由星形绕组切换至三角形绕组时,根据第四组公式确定第二交轴给定电流与第二直轴给定电流;其中,第三组公式为第四组公式为isd2 *为第二直轴给定电流,isq2 *为第二交轴给定电流,isd1 *为第一直轴给定电流,isq1 *为第一交轴给定电流。
在该实施例中,三角形绕组的相电流为星形绕组的相电流的倍,对应地,在二相向三转换之前的交轴电流与直轴电流,在三角形绕组中也是星形绕组中的倍,进而实现了切换之前的给定电流相切换之后的给定电流的转换,一方面,保证了绕组形状切换之后的电机的正常控制运行,另一方面,实现了速度环路中的积分值的确定,进一步保证了切换过程的顺利进行。
具体地,交轴电流指定子电流转矩分量反馈值,直轴电流指励磁分量反馈值,以通过对两个直流分量的控制实现磁通和转矩的解耦控制。
在上述任一实施例中,优选地,确定单元208还用于:根据第五公式确定第二给定转子转速;切换装置200还包括:输入单元212,用于将第二给定转子转速输入至第六公式,以获取损失角度;确定单元208还用于:在由三角形绕组切换至星形绕组时,根据损失角度与第七公式确定第二给定角度;确定单元208还用于:在由星形绕组切换至三角形绕组时,根据损失角度与第八公式确定第二给定角度,其中,第五组公式为第六组公式为第七公式为θ2=θ1-30°-Δθ1,第八公式为θ2=θ1+30°-Δθ1,ω1为第一给定转子转速,ω2为第二给定转子转速,Te为切换转矩,J为转动惯量,Tdead为预设冻结时间,np为极对数,Δθ1为损失角度,θ1为第一给定角度,θ2为第二给定角度。
在该实施例中,一方面,通过设置预设冻结时间,在绕组切换之前,通过矢量控制系统的稳定控制,且第一给定转子转速ω1为已知数据,在切换之前,输出的电磁转矩为Te,通过对电磁转矩与转动惯量的比值进行预设冻结时间内的积分操作,以确定转速的变化量,进而根据转速的变化量确定切换后的转子转速,以通过矢量控制系统控制电机转子以第二给定转子转速运行,另一方面,在绕组切换过程中,由于磁中心的偏移,导致切换瞬时的角度与d轴(直轴)之间存在30°的角度偏差,而由于切换时刻输出的转矩为0,因此电机转动角度为损失角度,进而根据角度偏差与损失角度确定切换后的第二给定角度,从而使矢量控制系统能够根据第二给定较低执行两相坐标系与三相坐标系之间的切换。
在上述任一实施例中,优选地,控制单元204还用于:在接收到切换指令时,控制断开第一组开关;控制单元204还用于:在检测到冻结时间达到预设冻结时间时,控制导通第二组开关,其中,第一组开关导通时形成星形绕组,第二组开关导通时形成三角形绕组。
在该实施例中,在接收到切换指令后,启动计时功能,控制切断第一组开关,通过检测自接收到切换指令时刻时起的经历时长,并在判定上述经历时长达到预设冻结时间时,控制第二组开关导通,以实现星形绕组向三角形绕组的切换过程,切换操作简单,可靠性高。
对应地,在接收到切换指令后,启动计时功能,控制切断第二组开关,通过检测自接收到切换指令时刻时起的经历时长,并在判定上述经历时长达到预设冻结时间时,控制第一组开关导通,以实现三角形绕组向星形绕组的切换过程。
下面结合图3至图6描述根据本发明的另一个实施例的驱动电路的切换方案。
如图3所示,根据本发明的另一个实施例的切换方法,包括:步骤302,电机发送切换指令;步骤304,冻结所有控制环路,并根据星形绕组与三角形绕组的电机特性,确定切换后的给定直轴电流、给定交轴电路、给定直轴电压与给定直轴电压;步骤306,根据预设冻结时间,计算对应的切换后的给定角度和给定转速,并代入park转换模块,逆park转换模块与速度环路中。
如图4所示,402为速度环路,404为电流环路,406为角度环路,408为两相旋转坐标向两相静止坐标转换器,410为park转换器,412为空间矢量脉宽控制器,414为逆变器,416为永磁同步电机,418为负载。
416中的电机定子的电压方程为:
磁链方程为:
将磁链方程代入电压方程后,得出给定电压:
其中,p是微分算子,u,ψ,i,ω分别为电压、磁链、电流和速度(电角速度),ψf为永磁体磁链。Lsd,Lsq,Rs分别为d轴、q轴电感和定子电阻。
电机的转矩方程为
Te=npsdisqsqisd)=npfisq+(Lsd-Lsq)isdisq] (4)
其中,np为极对数。
如图6所示,在切换过程中,默认S1,S2是同时打开或同时关闭,S3,S4,S5也是同时打开或同时关闭,但是S1、S2和S3、S4、S5不能同时打开或同时关闭,通过设置死区时间(预设冻结时间)防止电流异常产生,即Tdead
在Tdead时间内,整个电机绕组处于开路状态,电机绕组没有电流产生,输出的电磁转矩Te为0。
其中,J为转动惯量,B为摩擦系数。此时根据方程(5)可以得到压缩机电机的转速是在下降的。忽略掉B摩擦系数,切换前速度ω1,切换后速度ω2,假定切换前Te=TL(因为矢量控制系统稳定,切换前速度ω1已知且稳定)。根据公式5可以推出切换后速度ω2
为了简化计算,采用平均转速计算损失角度,即:
在星形绕组与三角形绕组切换时,由于磁中心偏移,在转换之间d轴角度会偏差30°,再考虑到切换时刻输出转矩为0,所以电机转动角度为Δθ1,在星形绕组切换到三角形绕组的过程中切换瞬间所使用角度为:
θ2=θ1+30°-Δθ1 (8)
在三角形绕组切换到星形绕组的过程中:
θ2=θ1-30°-Δθ1 (9)
其中θ2为切换后给定到转子park和逆park变换中所需要的角度,θ1为切换前给定到转子park和逆park变换中所需要的角度。
同一电机星三角电机参数变化如下:
Y形绕组 三角形绕组
绕组数 sqrt(3)*N N
相电阻 3Rs Rs
d轴电感 3Lsd Lsd
q轴电感 3Lsq Lsq
反电动势常量 sqrt(3)ψf ψf
在三角形绕组切换到星形绕组的切换时刻的给定电压与给定电流如下:
在星形绕组切换到三角形绕组的切换时刻的给定电压与给定电流如下:
其中usd1 *,usq1 *为切换前d,q轴的电压给定,usd2 *,usq2 *为切换后d,q轴的电压给定。
isd1 *,isq1 *为切换前d,q轴的电流给定,isd2 *,isq2 *为切换后d,q轴的电流给定。
在星三角切换时,由于Tdead的存在,所以没有电流,但是如果此时的电流环,速度环还在继续工作,此时pi输出的值会增加的很离谱,因为反馈量为0,所以在切换时将环路锁定,环路的积分量设定为usd2 *,usq2 *和isd2 *,isq2 *
同样的由于sensorless有诸如PLL所相环或磁链估计等估计器,都同步进行锁定。
如图5所示,冻结指PI环中的Error_Input=0,这样KP*0=0,在冻结结束后,Error_Input不等于0,积分的初始值为给定的积分值。
凡是有PI的地方在切换时都要冻结,切换结束后解除冻结。
针对电流环路,在星形绕组切换为三角形绕组时,给定的积分值计算如公式(12)所示,在三角形绕组切换为星形绕组时,给定的积分值计算如公式(13)所示:
针对速度环路,在星形绕组切换为三角形绕组时,给定的积分值计算如公式(14)所示,在三角形绕组切换为星形绕组时,给定的积分值计算如公式(15)所示:
针对角度环路,在星形绕组切换为三角形绕组时,给定的积分值计算如公式(16)所示,在三角形绕组切换为星形绕组时,给定的积分值计算如公式(17)所示:
θ2=θ1+30°-Δθ1 (16)
θ2=θ1-30°-Δθ1 (17)
根据本发明的一个实施例的永磁同步电机,根据本发明的永磁同步电机500,包括上述实施例中任一项的驱动电路的切换方法。
根据本发明的实施例,还提出了一种计算机可读存储介质(指令),其上存储有计算机程序(指令),计算机程序被执行时实现上述驱动电路的切换方法的步骤。
根据本发明的实施例,还提出了一种压缩机,包括上述任一实施例所述的永磁同步电机。
以上结合附图详细说明了本发明的技术方案,本发明提出了一种电路的切换方法、装置、电机、可读存储介质和压缩机,通过在切换过程中冻结矢量控制系统中的控制环路,对于无传感器控制的矢量控制系统而言,不通过控制环路的输出矢量对电机进行矢量控制,从而能够减少切换过程中对矢量控制系统的位置冲击,并有利于提升永磁同步电机在星形连接结构与三角形连接结构之间切换的稳定性与可靠性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

1.一种驱动电路的切换方法,适用于永磁同步电机,所述永磁同步电机通过矢量控制系统控制运行,所述矢量控制系统包括变频器,所述变频器连接至多相定子绕组,所述多相定子绕组能够构造为星形绕组或三角形绕组,所述星形绕组与所述三角形绕组分别用于驱动所述电机以不同频率状态运行,其特征在于,所述切换方法包括:
在接收到切换指令时,冻结所述矢量控制系统中的控制环路,并控制进行所述星形绕组与所述三角形绕组之间的切换;
在检测到冻结时间达到预设冻结时间时,解冻所述控制环路,并根据切换后的控制参数对所述永磁同步电机进行矢量控制。
2.根据权利要求1所述的驱动电路的切换方法,其特征在于,所述控制环路包括速度环路、角度环路与电流环路,所述冻结所述控制环路,具体包括以下步骤:
将所述速度环路、所述角度环路以及所述电流环路中的偏差值调整为0,以根据所述偏差值调节所述控制环路的输出,
其中,所述控制环路的输出为u=Kpe+Ki∫Δ,Kp为比例增益,e为所述偏差值,Ki为积分增益,∫Δ为积分值。
3.根据权利要求2所述的驱动电路的切换方法,其特征在于,所述根据切换后的控制参数对所述永磁同步电机进行矢量控制,具体包括以下步骤:
根据切换前的第一交轴给定电压与第一直轴给定电压确定切换后的第二交轴给定电压与第二直轴给定电压;
根据切换前的第一交轴给定电流与第一直轴给定电流确定切换后的第二交轴给定电流与第二直轴给定电流;
根据切换前的第一给定角度、第一给定转子转速与预设冻结时间,确定切换后的第二给定角度与第二给定转子转速;
在检测到所述冻结时间达到所述预设冻结时间时,根据所述第二交轴给定电压、所述第二直轴给定电压、所述第二交轴给定电流、所述第二直轴给定电流、所述第二给定角度与所述第二给定转子转速控制所述同步电机运行。
4.根据权利要求3所述的驱动电路的切换方法,其特征在于,还包括:
将所述速度环路中的所述积分值修订为切换后的所述第二交轴给定电流与所述第二直轴给定电流;
将所述角度环路中的所述积分值修订为切换后的park转化与逆park转化中的所述第二给定角度;
将所述电流环路中的所述积分值修订为切换后的所述第二交轴给定电压与所述第二直轴给定电压。
5.根据权利要求3所述的驱动电路的切换方法,其特征在于,所述根据切换前的第一交轴给定电压与第一直轴给定电压确定切换后的第二交轴给定电压与第二直轴给定电压,具体包括以下步骤:
在由所述三角形绕组切换至所述星形绕组时,根据第一组公式确定所述第二交轴给定电压与所述第二直轴给定电压;
在由所述星形绕组切换至所述三角形绕组时,根据第二组公式确定所述第二交轴给定电压与所述第二直轴给定电压;
其中,所述第一组公式为所述第二组公式为usd2 *为所述第二直轴给定电压,usq2 *为所述第二交轴给定电压,usd1 *为所述第一直轴给定电压,usq1 *为所述第一交轴给定电压。
6.根据权利要求3所述的驱动电路的切换方法,其特征在于,所述根据切换前的第一交轴给定电流与第一直轴给定电流确定切换后的第二交轴给定电流与第二直轴给定电流,具体包括以下步骤:
在由所述三角形绕组切换至所述星形绕组时,根据第三组公式确定所述第二交轴给定电流与所述第二直轴给定电流;
在由所述星形绕组切换至所述三角形绕组时,根据第四组公式确定所述第二交轴给定电流与所述第二直轴给定电流;
其中,所述第三组公式为所述第四组公式为isd2 *为所述第二直轴给定电流,isq2 *为所述第二交轴给定电流,isd1 *为所述第一直轴给定电流,isq1 *为所述第一交轴给定电流。
7.根据权利要求3所述的驱动电路的切换方法,其特征在于,所述根据切换前的第一给定角度、第一给定转子转速与预设冻结时间,确定切换后的第二给定角度与第二给定转子转速,具体包括以下步骤:
根据第五公式确定所述第二给定转子转速;
将所述第二给定转子转速输入至第六公式,以获取损失角度;
在由所述三角形绕组切换至所述星形绕组时,根据所述损失角度与第七公式确定所述第二给定角度;
在由所述星形绕组切换至所述三角形绕组时,根据所述损失角度与第八公式确定所述第二给定角度,
其中,所述第五组公式为所述第六组公式为所述第七公式为θ2=θ1-30°-Δθ1,所述第八公式为θ2=θ1+30°-Δθ1,ω1为所述第一给定转子转速,ω2为所述第二给定转子转速,Te为切换转矩,J为转动惯量,Tdead为所述预设冻结时间,np为极对数,Δθ1为所述损失角度,θ1为所述第一给定角度,θ2为所述第二给定角度。
8.根据权利要求1至7中任一项所述的驱动电路的切换方法,其特征在于,所述控制进行所述星形绕组与所述三角形绕组之间的切换,具体包括以下步骤:
在接收到所述切换指令时,控制断开第一组开关;
在检测到所述冻结时间达到所述预设冻结时间时,控制导通第二组开关,
其中,所述第一组开关导通时形成所述星形绕组,所述第二组开关导通时形成所述三角形绕组。
9.一种驱动电路的切换装置,适用于永磁同步电机,所述永磁同步电机通过矢量控制系统控制运行,所述矢量控制系统包括变频器,所述变频器连接至多相定子绕组,所述多相定子绕组能够构造为星形绕组或三角形绕组,所述星形绕组与所述三角形绕组分别用于驱动所述电机以不同频率状态运行,其特征在于,所述切换装置包括:
冻结单元,用于在接收到切换指令时,冻结所述矢量控制系统中的控制环路,并控制进行所述星形绕组与所述三角形绕组之间的切换;
控制单元,用于在检测到冻结时间达到预设冻结时间时,解冻所述控制环路,并根据切换后的控制参数对所述永磁同步电机进行矢量控制。
10.根据权利要求9所述的驱动电路的切换装置,其特征在于,还包括:
调整单元,用于将所述速度环路、所述角度环路以及所述电流环路中的偏差值调整为0,以根据所述偏差值调节所述控制环路的输出,
其中,所述控制环路的输出为u=Kpe+Ki∫Δ,Kp为比例增益,e为所述偏差值,Ki为积分增益,∫Δ为积分值。
11.根据权利要求10所述的驱动电路的切换装置,其特征在于,还包括:
确定单元,用于根据切换前的第一交轴给定电压与第一直轴给定电压确定切换后的第二交轴给定电压与第二直轴给定电压;
所述确定单元还用于:根据切换前的第一交轴给定电流与第一直轴给定电流确定切换后的第二交轴给定电流与第二直轴给定电流;
所述确定单元还用于:根据切换前的第一给定角度、第一给定转子转速与预设冻结时间,确定切换后的第二给定角度与第二给定转子转速;
所述控制单元还用于:在检测到所述冻结时间达到所述预设冻结时间时,根据所述第二交轴给定电压、所述第二直轴给定电压、所述第二交轴给定电流、所述第二直轴给定电流、所述第二给定角度与所述第二给定转子转速控制所述同步电机运行。
12.根据权利要求11所述的驱动电路的切换装置,其特征在于,还包括:
修订单元,用于将所述速度环路中的所述积分值修订为切换后的所述第二交轴给定电流与所述第二直轴给定电流;
所述修订单元还用于:将所述角度环路中的所述积分值修订为切换后的park转化与逆park转化中的所述第二给定角度;
所述修订单元还用于:将所述电流环路中的所述积分值修订为切换后的所述第二交轴给定电压与所述第二直轴给定电压。
13.根据权利要求11所述的驱动电路的切换装置,其特征在于,
所述确定单元还用于:在由所述三角形绕组切换至所述星形绕组时,根据第一组公式确定所述第二交轴给定电压与所述第二直轴给定电压;
所述确定单元还用于:在由所述星形绕组切换至所述三角形绕组时,根据第二组公式确定所述第二交轴给定电压与所述第二直轴给定电压;
其中,所述第一组公式为所述第二组公式为usd2 *为所述第二直轴给定电压,usq2 *为所述第二交轴给定电压,usd1 *为所述第一直轴给定电压,usq1 *为所述第一交轴给定电压。
14.根据权利要求11所述的驱动电路的切换装置,其特征在于,
所述确定单元还用于:在由所述三角形绕组切换至所述星形绕组时,根据第三组公式确定所述第二交轴给定电流与所述第二直轴给定电流;
所述确定单元还用于:在由所述星形绕组切换至所述三角形绕组时,根据第四组公式确定所述第二交轴给定电流与所述第二直轴给定电流;
其中,所述第三组公式为所述第四组公式为isd2 *为所述第二直轴给定电流,isq2 *为所述第二交轴给定电流,isd1 *为所述第一直轴给定电流,isq1 *为所述第一交轴给定电流。
15.根据权利要求11所述的驱动电路的切换装置,其特征在于,
所述确定单元还用于:根据第五公式确定所述第二给定转子转速;
所述切换装置还包括:
输入单元,用于将所述第二给定转子转速输入至第六公式,以获取损失角度;
所述确定单元还用于:在由所述三角形绕组切换至所述星形绕组时,根据所述损失角度与第七公式确定所述第二给定角度;
所述确定单元还用于:在由所述星形绕组切换至所述三角形绕组时,根据所述损失角度与第八公式确定所述第二给定角度,
其中,所述第五组公式为所述第六组公式为所述第七公式为θ2=θ1-30°-Δθ1,所述第八公式为θ2=θ1+30°-Δθ1,ω1为所述第一给定转子转速,ω2为所述第二给定转子转速,Te为切换转矩,J为转动惯量,Tdead为所述预设冻结时间,np为极对数,Δθ1为所述损失角度,θ1为所述第一给定角度,θ2为所述第二给定角度。
16.根据权利要求9至15中任一项所述的驱动电路的切换装置,其特征在于,
所述控制单元还用于:在接收到所述切换指令时,控制断开第一组开关;
所述控制单元还用于:在检测到所述冻结时间达到所述预设冻结时间时,控制导通第二组开关,
其中,所述第一组开关导通时形成所述星形绕组,所述第二组开关导通时形成所述三角形绕组。
17.一种永磁同步电机,其特征在于,所述永磁同步电机包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现如权利要求1-8中任意一项所述切换方法的步骤。
18.一种计算机可读存储介质,其上存储有计算机程序(指令),其特征在于:所述计算机程序(指令)被处理器执行时实现如权利要求1-8中任意一项所述切换方法的步骤。
19.一种压缩机,其特征在于,包括如权利要求17所述的永磁同步电机。
CN201810306834.3A 2018-01-03 2018-04-08 切换方法、切换装置、永磁同步电机、存储介质和压缩机 Active CN108347204B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810005009X 2018-01-03
CN201810005009 2018-01-03

Publications (2)

Publication Number Publication Date
CN108347204A true CN108347204A (zh) 2018-07-31
CN108347204B CN108347204B (zh) 2020-08-25

Family

ID=62956869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810306834.3A Active CN108347204B (zh) 2018-01-03 2018-04-08 切换方法、切换装置、永磁同步电机、存储介质和压缩机

Country Status (1)

Country Link
CN (1) CN108347204B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542194A (zh) * 2019-09-24 2019-12-06 珠海格力节能环保制冷技术研究中心有限公司 压缩机的控制方法、装置、存储介质、处理器及压缩机
CN111245325A (zh) * 2018-11-28 2020-06-05 安徽美芝精密制造有限公司 三相绕组的星角切换方法和空调器
CN113328671A (zh) * 2021-06-16 2021-08-31 青岛海信日立空调系统有限公司 空调系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119583A1 (en) * 1983-03-16 1984-09-26 Kabushiki Kaisha Toshiba AC current control system
JPH10112990A (ja) * 1996-10-03 1998-04-28 Fuji Electric Co Ltd タイマ
CN1565075A (zh) * 2001-10-03 2005-01-12 株式会社安川电机 3相交流电动机的绕组切换装置
CN1606230A (zh) * 2003-10-07 2005-04-13 津田驹工业株式会社 感应电动机的驱动方法
JP2008228513A (ja) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
CN101304225A (zh) * 2008-06-04 2008-11-12 沈阳天成自动化工程有限公司 电动机节能转换控制器及控制方法
CN102484437A (zh) * 2009-07-08 2012-05-30 英那赛福有限公司 用于交流电动机控制的方法以及装置
CN102811018A (zh) * 2011-06-03 2012-12-05 西门子公司 采用与负载相关的星形接法或三角形接法的异步电动机
CN104682811A (zh) * 2013-05-12 2015-06-03 英飞凌科技股份有限公司 同步电动机优化控制
CN104953743A (zh) * 2014-03-27 2015-09-30 陈意辉 电动汽车与电动车电子多挡变速电机及控制系统
CN105141210A (zh) * 2015-06-23 2015-12-09 无锡新大洲电动车有限公司 永磁同步电动机磁场定向控制方法
CN105262376A (zh) * 2015-10-20 2016-01-20 珠海格力电器股份有限公司 用于三相电机的星三角启动电路及其启动方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119583A1 (en) * 1983-03-16 1984-09-26 Kabushiki Kaisha Toshiba AC current control system
JPH10112990A (ja) * 1996-10-03 1998-04-28 Fuji Electric Co Ltd タイマ
CN1565075A (zh) * 2001-10-03 2005-01-12 株式会社安川电机 3相交流电动机的绕组切换装置
CN1606230A (zh) * 2003-10-07 2005-04-13 津田驹工业株式会社 感应电动机的驱动方法
JP2008228513A (ja) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
CN101304225A (zh) * 2008-06-04 2008-11-12 沈阳天成自动化工程有限公司 电动机节能转换控制器及控制方法
CN102484437A (zh) * 2009-07-08 2012-05-30 英那赛福有限公司 用于交流电动机控制的方法以及装置
CN102811018A (zh) * 2011-06-03 2012-12-05 西门子公司 采用与负载相关的星形接法或三角形接法的异步电动机
CN104682811A (zh) * 2013-05-12 2015-06-03 英飞凌科技股份有限公司 同步电动机优化控制
CN104953743A (zh) * 2014-03-27 2015-09-30 陈意辉 电动汽车与电动车电子多挡变速电机及控制系统
CN105141210A (zh) * 2015-06-23 2015-12-09 无锡新大洲电动车有限公司 永磁同步电动机磁场定向控制方法
CN105262376A (zh) * 2015-10-20 2016-01-20 珠海格力电器股份有限公司 用于三相电机的星三角启动电路及其启动方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245325A (zh) * 2018-11-28 2020-06-05 安徽美芝精密制造有限公司 三相绕组的星角切换方法和空调器
CN110542194A (zh) * 2019-09-24 2019-12-06 珠海格力节能环保制冷技术研究中心有限公司 压缩机的控制方法、装置、存储介质、处理器及压缩机
CN113328671A (zh) * 2021-06-16 2021-08-31 青岛海信日立空调系统有限公司 空调系统

Also Published As

Publication number Publication date
CN108347204B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN107086834B (zh) 方波注入的永磁同步电机转子位置时延补偿方法估算方法
CN105634358B (zh) 永磁同步电机的弱磁控制方法和驱动控制装置
CN100440720C (zh) 永磁同步电动机的混合式调速方法
Meyer et al. Optimum control for interior permanent magnet synchronous motors (IPMSM) in constant torque and flux weakening range
US7830106B2 (en) Controller for motor
CN106936349B (zh) 用于控制三相ac电机的方法和控制电路
CN104993743B (zh) 用于新能源汽车永磁同步驱动电机的堵转延时方法
CN109617483B (zh) 一种永磁同步电机转矩控制方法
CN108347204A (zh) 切换方法、切换装置、永磁同步电机、存储介质和压缩机
CN102545742A (zh) 永磁同步电动机无位置传感器控制装置和控制方法
JP6190967B2 (ja) 発電システム
CN103401506A (zh) 一种电动车用隐极式混合励磁电机直接转矩控制方法
US20060043923A1 (en) Performance enhancement for motor field oriented control system
CN104767455A (zh) 一种混合励磁同步电机无位置传感器直接转矩控制方法
Lee et al. Analysis and control of mono inverter dual parallel SPMSM drive system
CN109995293A (zh) 永磁同步电机无速度传感器控制下i/f启动与闭环控制的切换方法
Shen et al. A new efficient sensorless I/f control method for IPMSM drives
CN105429547A (zh) 基于虚拟相构造的单相无刷直流电机矢量控制方法
CN108418485A (zh) 一种隐极式混合励磁电机恒功率损耗模型预测控制方法
CN111987957B (zh) 永磁同步电机混合控制方法
TWI814538B (zh) 在弱磁模式下操作同步馬達的方法及其控制器
CN111293943A (zh) 双三相电机缺相运行的控制方法
CN110535390A (zh) 一种永磁同步电机mtpa控制与fw控制的切换方法
Rahman et al. Comparison of torque responses of the interior permanent magnet motor under pwm current and direct torque controls
CN114744928A (zh) 一种电励磁双凸极电机宽速域弱磁控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant