CN108345289A - 一种基于替代数据法的工业过程平稳性检测方法 - Google Patents

一种基于替代数据法的工业过程平稳性检测方法 Download PDF

Info

Publication number
CN108345289A
CN108345289A CN201810015041.6A CN201810015041A CN108345289A CN 108345289 A CN108345289 A CN 108345289A CN 201810015041 A CN201810015041 A CN 201810015041A CN 108345289 A CN108345289 A CN 108345289A
Authority
CN
China
Prior art keywords
autocorrelation function
signal
industrial process
original signal
global
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810015041.6A
Other languages
English (en)
Other versions
CN108345289B (zh
Inventor
谢磊
钟丹
郎恂
吴杭天
苏宏业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810015041.6A priority Critical patent/CN108345289B/zh
Publication of CN108345289A publication Critical patent/CN108345289A/zh
Application granted granted Critical
Publication of CN108345289B publication Critical patent/CN108345289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种基于替代数据法的工业过程平稳性检测方法,包括如下步骤:在待检测的工业过程中,预先采集其控制回路的过程输出信号;求取自相关函数,并分别计算局部自相关函数与全局自相关函数的相似性程度;构造原信号的替代数据,仿照原信号计算相似性程度;计算原信号和替代数据的非平稳统计指标,综合这些指标在假设检验的框架下判定原信号的平稳性。利用本发明方法,可以对工业过程的控制回路信号进行定性定量的平稳性检测,为性能评估和故障诊断提供数据支持,为后续的非线性振荡源检测工作奠定基础。

Description

一种基于替代数据法的工业过程平稳性检测方法
技术领域
本发明涉及工业控制系统中的性能评估领域,具体涉及一种基于替代数据法的工业过程平稳性检测方法。
背景技术
随着工业控制回路的性能评估技术迅速发展,控制回路的性能评估及故障诊断在工程研究领域备受关注。工业过程控制回路中常常出现控制性能下降的现象,其原因可能是内部元件故障、外部扰动或回路中存在非线性环节等,主要表现为过程方差增大,甚至出现振荡现象。
在控制性能下降的过程中,控制回路的非平稳现象也较为常见。引发控制回路非平稳特性的诱因有很多种,如负载变化、外部干扰等。如果在控制回路非平稳特性存在的情况下,采用以信号平稳为前提的方法检测控制回路的非线性,甚至诊断非线性环节,可能会造成误诊或诊断准确率下降。因此采用适当的方法监测控制回路中的非平稳特性,对于准确诊断工业过程故障或者潜在隐患的存在性有非常重要的实用意义,也有利于工业过程控制性能的定量评估。同时,对所监测的过程回路中的非平稳环节进行有效区分并予以剔除,可极大提高对原数据的后续相关分析和建模的准确率,是性能评估领域的一项重要预处理步骤。
现如今以时频分析为基础的信号处理方法的快速发展,如短时傅里叶变换、小波变换、Wigner-Ville分布、希尔伯特-黄变换等,兼顾信号在时域及频域与局部及全局的特征,为分析处理非平稳信号提供更多选择。然而这些方法在高噪声、弱平稳信号的平稳性检测上仍有待发展。有效提取非平稳信号蕴含的信息,进行工业控制过程非平稳检测,仍旧是性能评估及故障诊断领域的研究的热点和难点问题之一。
在工业过程平稳性检测的实际应用中,有效检测工业控制回路是否存在非平稳信号,并定量评估非平稳程度,对于控制回路的非线性检测具有重要意义,能极大提高非线性检测的准确率,降低因过程非平稳造成的非线性误检,也有利于间歇过程进行统计性能监控。
发明内容
本发明提供了一种基于替代数据法的工业过程平稳性检测方法,能够适用于高噪声、弱平稳的工业控制回路过程,检测方法普遍适用于非线性或线性的过程数据,只需要获取常规运行数据,无需过程机理知识。
一种基于替代数据法的工业过程平稳性检测方法,包括以下步骤:
步骤1,采集待检测工业过程的回路输出信号;
步骤2,求取信号的局部自相关函数和全局自相关函数,并分别计算各局部自相关函数与全局自相关函数相似性程度;
步骤3,计算信号的非平稳统计指标;
步骤4,在置信水平1-α下,利用替代数据法构造K组原信号的替代数据,α表示显著性水平;
步骤5,重复步骤2和步骤3,求取各组替代数据的非平稳统计指标;
步骤6,综合原信号与各组替代数据的非平稳统计指标,完成单边假设测试,并在假设检验的框架下判定原信号的平稳性。
本发明可以对工业过程的控制回路信号进行定性定量的平稳性检测,为性能评估和故障诊断提供数据支持,为后续的非线性振荡源检测和整修工作奠定基础。
本发明直接采用化工过程的可测变量作为过程输出信号,所有待检测过程输出信号均通过现场实时采集获得,并随着时间推移,不断采集和更新输出信号到监控系统。然后利用构造替代数据,计算原信号与替代数据的非平稳统计指标,从而判断过程信号是否存在非平稳。
作为优选,步骤2中,求取原信号的局部自相关函数和全局自相关函数的步骤如下:
步骤2-1,分段计算原信号的局部自相关函数,具体公式为:
其中,xm(k)表示将原信号x(i)均匀分割为M个不重叠的连续片段中的第m个序列片段,每个片段的序列长度为B,r(τ,m)表示第m段信号序列的自相关函数,τ表示延迟时间;
步骤2-2,计算原信号的全局自相关函数,具体公式为:
其中,x(i)表示长度为L的原始信号序列,r(τ)表示原信号的全局自相关函数。
作为优选,分别计算各局部自相关函数与全局自相关函数相似性程度是指,利用Kullback-Leibier距离公式衡量局部与全局自相关函数的差异。具体公式如下:
dm:=κ(r(τ,m),r(τ))
其中,κ(r(τ,m),r(τ))表示利用距离公式衡量局部与全局自相关函数的相似度,Kullback-Leibier距离定义为:
其中,分别表示局部与全局自相关函数的归一化形式。
作为优选,步骤3中,计算原信号的非平稳统计指标是指,计算分段信号的局部自相关和全局自相关函数的Kullback-Leibier距离的对数二阶矩。具体公式如下:
其中,dm表示各段局部自相关函数与全局自相关函数的相似性程度,<dm>表示平均局部自相关函数与全局自相关函数的相似性程度。
作为优选,步骤4中,在置信水平α下,利用替代数据法构造K组原信号的替代数据的步骤如下:
步骤4-1,输入原始序列x[k],k=1,...,N,计算原序列x[k]的离散傅里叶变换z[n],具体公式如下:
其中,n=0,1,...,N-1;
步骤4-2,随机化相位,具体公式如下:
z'[n]=z[n]eiφ[n]
其中,φ[1]=0,
步骤4-3,将z'[n]对称化,具体公式如下:
其中,i=1,...,floor(n/2),当N为偶数时,具体公式如下:
其中,是z[n]的共轭复数;
步骤4-4,将进行逆傅里叶变换得到原序列x[k]的替代数据x'[k],具体公式如下:
其中,k=0,1,...,N-1;
步骤4-5,重复步骤4-1、4-2、4-3和4-4,得到K组替代数据。其中K=1/α-1。
作为优选,步骤4中,置信水平1-α中,α的取值为0.05。
作为优选,步骤6中,综合原信号与各组替代数据的非平稳统计指标,完成单边假设测试,并在假设检验的框架下判定原信号的平稳性的具体方式为:如果原信号的非平稳统计指标Θ1均大于K组替代数据的非平稳统计指标Θ0(j),j=1,...,K,则在置信水平1-α下拒绝零假设,判断原信号在α显著性水平下是非平稳信号。
本发明与现有技术相比具有的有益效果有:
1、无需外部附加信号激励,也不会对控制系统引入附加扰动,能够实现非侵入式的检测与诊断。
2、所提出的非平稳统计指标在工业控制回路非平稳检测中,具有较高的准确度和鲁棒性,能克服回路中存在的高斯噪声扰动。
3、所采用的替代数据法,在假设检验的框架下可适用于弱平稳、高噪声的工业控制回路过程。
4、能够对工业过程各回路信号的非平稳程度进行量化指标检测,为待检测回路性能的评估和故障源诊断提供了丰富的数据支持。
5、完全采用数据驱动型的方法,无需过程先验知识,也不需要进行人工干预。
附图说明
图1为实例中化工过程的流程示意图;
图2为本发明的方法流程图;
图3实施例中采集的待检测控制回路过程输出信号;
图4为实施例中过程输出信号的替代数据信号。
具体实施方式
下面以国内某工厂的化工过程性能评估为例,对存在蒸汽压力传感器漂移故障特性的化工过程的平稳性检测方法做详细描述。
如图1所示,在生产过程中,流化床4需要由惰性气体供气以保证其安全性,该气体在填料之前充满设备,在生产过程中保持稳定,在收集阶段后充当清洗气体,并经由风机作用,在装置中不断循环。惰性气体经过热交换器1加热温度,在风机2的作用下进入储罐3,储罐3控制压力后,惰性气体进入流化床4,流体介质从顶部雾化喷嘴喷入流化床4后不断进行流化过程。该气源流出流化床4,同时维持产品容器5的压力。
对于该回路,先验地已知存在蒸汽压力传感器漂移故障,并且其中存在自激振荡行为,加剧系统发散和非平稳行为。为了给该生产过程控制回路的非线性研究提供数据支持,采集蒸汽控制回路输出信号进行非平稳检测分析。
如图2所示,一种基于替代数据法的工业过程平稳性检测方法,包括:
步骤1,采集待检测工业过程的回路输出信号,即采集蒸汽压力输出信号。
采集过程输出信号的方法为,在预设的每个采样间隔内记录下待检测的控制回路中的过程数据,且每个采样间隔内采集到的过程数据都添加在先前所采集的过程数据末端。
采样间隔是指性能评估系统的采样间隔。过程数据随着时间推移不断更新,每经过一个采样间隔的时间长度,均有新的过程数据添加到先前采集的过程数据的末端。性能评估系统的采样间隔一般与工业控制系统中的控制周期相同,也可以选择为控制周期的整数倍,具体根据性能监控和工业现场的实时性要求和数据存储量限制来确定。
本实施例所采集的过程输出信号经过中心化后如图3所示,图3中横坐标为采样点序数,单位为Sample(1个Sample对应一个数据的采样间隔),纵坐标为经过中心化后的正常工况下气体压力,单位为MPa。
步骤2,求取原信号的局部自相关函数和全局自相关函数,并分别计算各局部自相关函数与全局自相关函数相似性程度,其具体实施方式为:
步骤2-1,分段计算原信号的局部自相关函数,具体公式为:
其中,xm(k)表示将原信号x(i)均匀分割为10个不重叠的连续片段中的第m个序列片段,每个片段的序列长度为150,r(τ,m)表示第m段信号序列的自相关函数,τ表示延迟时间;
步骤2-2,计算原信号的全局自相关函数,具体公式为:
其中,x(i)表示长度为1500的原始信号序列,r(τ)表示原信号的全局自相关函数。
步骤2-3,分别计算各局部自相关函数与全局自相关函数相似性程度,具体实施方式是利用Kullback-Leibier距离公式衡量局部与全局自相关函数的差异。具体公式如下:
dm:=κ(r(τ,m),r(τ))
其中,κ(r(τ,m),r(τ))表示利用距离公式衡量局部与全局自相关函数的相似度,Kullback-Leibier距离定义为:
其中,分别表示局部与全局自相关函数的归一化形式。
步骤3,计算原信号的非平稳统计指标,即计算分段信号的局部自相关和全局自相关函数的Kullback-Leibier距离的对数二阶矩。具体公式如下:
其中,dm表示各段局部自相关函数与全局自相关函数的相似性程度,<dm>表示平均局部自相关函数与全局自相关函数的相似性程度。
步骤4,在显著性水平α=0.05下,即置信水平1-α=0.95,利用替代数据法构造19组原信号的替代数据,具体实施方式为:
步骤4-1,输入原始序列x[k],k=1,...,N,计算原序列x[k]的离散傅里叶变换z[n],具体公式如下:
其中,n=0,1,...,N-1;
步骤4-2,随机化相位,具体公式如下:
z'[n]=z[n]eiφ[n]
其中,φ[1]=0,
步骤4-3,将z'[n]对称化,具体公式如下:
其中,i=1,...,floor(n/2),当N为偶数时,具体公式如下:
其中,是z[n]的共轭复数;
步骤4-4,将进行逆傅里叶变换得到原序列x[k]的替代数据x'[k],具体公式如下:
其中,k=0,1,...,N-1。
步骤5,仿照步骤2和3,求取各组替代数据的非平稳统计指标。
步骤6,综合原信号与各组替代数据的非平稳统计指标,完成单边假设测试,并在假设检验的框架下判定原信号的平稳性的具体方式为:如果原信号的非平稳统计指标Θ1均大于19组替代数据的非平稳统计指标Θ0(j),j=1,...,19,则在置信水平95%下拒绝零假设,判断原信号在0.05显著性水平下是非平稳信号。
现有的非平稳检测大多基于统计学的假设检验,本质上都基于以下两个假设的检验基础:
H0:可以将信号建模为一个独立同分布非对称随机信号激励下的二阶平稳系统的输出。
H1:无法将信号建模为一个独立同分布非对称随机信号激励下的二阶平稳系统的输出,从而判断原信号是非平稳信号。
通过定义检测指标,使得其在满足零假设和备择假设的情况下的概率密度分布存在较大的差异,并将接受或拒绝零假设的边界条件作为监控线,从而实现非平稳检测。
本实施例中,利用步骤4构造的替代数据之一如图4所示。原始压力信号的非平稳统计指标为9.6577,替代数据的非平稳统计指标最大值为为max(Θ0(j),j=1,...,19)=8.5484。显然原信号的非平稳统计指标均大于替代数据的非平稳统计指标。因此在置信水平95%下拒绝零假设,无法将信号建模为一个独立同分布非对称随机信号激励下的二阶平稳系统的输出,判断该控制回路蒸汽压力信号是非平稳信号。

Claims (7)

1.一种基于替代数据法的工业过程平稳性检测方法,其特征在于,包括以下步骤:
步骤1,采集待检测工业过程的回路输出信号;
步骤2,求取信号的局部自相关函数和全局自相关函数,并分别计算各局部自相关函数与全局自相关函数相似性程度;
步骤3,计算信号的非平稳统计指标;
步骤4,在置信水平1-α下,利用替代数据法构造K组原信号的替代数据,α表示显著性水平;
步骤5,重复步骤2和步骤3,求取各组替代数据的非平稳统计指标;
步骤6,综合原信号与各组替代数据的非平稳统计指标,完成单边假设测试,并在假设检验的框架下判定原信号的平稳性。
2.根据权利要求1所述的基于替代数据法的工业过程平稳性检测方法,其特征在于,步骤2中,求取信号的局部自相关函数和全局自相关函数的步骤如下:
步骤2-1,分段计算原信号的局部自相关函数,具体公式为:
其中,xm(k)表示将原信号x(i)均匀分割为M个不重叠的连续片段中的第m个序列片段,每个片段的序列长度为B,r(τ,m)表示第m段信号序列的自相关函数,τ表示延迟时间;
步骤2-2,计算原信号的全局自相关函数,具体公式为:
其中,x(i)表示长度为L的原始信号序列,r(τ)表示原信号的全局自相关函数。
3.根据权利要求1所述的基于替代数据法的工业过程平稳性检测方法,其特征在于,步骤2中,计算各局部自相关函数与全局自相关函数相似性程度的具体方法为,利用Kullback-Leibier距离公式衡量局部与全局自相关函数的差异,公式如下:
dm:=κ(r(τ,m),r(τ))
其中,κ(r(τ,m),r(τ))表示利用距离公式衡量局部与全局自相关函数的相似度,Kullback-Leibier距离定义为:
其中,分别表示局部与全局自相关函数的归一化形式。
4.根据权利要求1所述的基于替代数据法的工业过程平稳性检测方法,其特征在于,步骤3中,计算信号的非平稳统计指标的具体方法为,计算分段信号的局部自相关和全局自相关函数的Kullback-Leibier距离的对数二阶矩,公式如下:
其中,dm表示各段局部自相关函数与全局自相关函数的相似性程度,<dm>表示平均局部自相关函数与全局自相关函数的相似性程度。
5.根据权利要求1所述的基于替代数据法的工业过程平稳性检测方法,其特征在于,步骤4的具体步骤如下:
步骤4-1,输入原始序列x[k],k=1,...,N,计算原序列x[k]的离散傅里叶变换z[n],具体公式如下:
其中,n=0,1,...,N-1;
步骤4-2,随机化相位,具体公式如下:
z'[n]=z[n]eiφ[n]
其中,φ[1]=0,n=2,...,N,即φ[n]表示[0,2π)上的独立均匀分布随机相位;
步骤4-3,将z'[n]对称化相位,具体公式如下:
Rez”[n]=Re(z'[n]+z'[N-1-n]/2)
Imz”[n]=Im(z'[n]+z'[N-1-n]/2)
其中,是z[n]的共轭复数;
步骤4-4,将进行逆傅里叶变换得到原序列x[k]的替代数据x'[k],具体公式如下:
其中,k=0,1,...,N-1;
步骤4-5,重复步骤4-1、4-2、4-3和4-4,得到K组替代数据;其中K=1/α-1。
6.根据权利要求1所述的基于替代数据法的工业过程平稳性检测方法,其特征在于,步骤4中,所述的置信水平1-α中,α取值为0.05。
7.根据权利要求1所述的基于替代数据法的工业过程平稳性检测方法,其特征在于,步骤6的具体步骤为:如果原信号的非平稳统计指标Θ1均大于K组替代数据的非平稳统计指标Θ0(j),j=1,...,K,则在置信水平1-α下拒绝零假设,判断原信号在α显著性水平下是非平稳信号。
CN201810015041.6A 2018-01-08 2018-01-08 一种基于替代数据法的工业过程平稳性检测方法 Active CN108345289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810015041.6A CN108345289B (zh) 2018-01-08 2018-01-08 一种基于替代数据法的工业过程平稳性检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810015041.6A CN108345289B (zh) 2018-01-08 2018-01-08 一种基于替代数据法的工业过程平稳性检测方法

Publications (2)

Publication Number Publication Date
CN108345289A true CN108345289A (zh) 2018-07-31
CN108345289B CN108345289B (zh) 2020-03-31

Family

ID=62960402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810015041.6A Active CN108345289B (zh) 2018-01-08 2018-01-08 一种基于替代数据法的工业过程平稳性检测方法

Country Status (1)

Country Link
CN (1) CN108345289B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109359662A (zh) * 2018-08-20 2019-02-19 浙江大学 一种面向百万千瓦超超临界机组非平稳特性的基于因果分析的多层贝叶斯网络故障诊断方法
CN111473761A (zh) * 2020-04-27 2020-07-31 西安理工大学 一种结合非线性检测的滑动副间隙值快速识别方法
CN112001027A (zh) * 2020-07-16 2020-11-27 南京航空航天大学 一种小样本试验数据下的颤振预测结果置信度分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925983A (zh) * 2014-05-05 2014-07-16 重庆大学 一种多通道微弱振动信号同步采集装置及分析方法
CN106546818A (zh) * 2016-10-20 2017-03-29 南京航空航天大学 一种基于差分非线性模式分解的谐波信号检测方法
CN106645947A (zh) * 2016-12-14 2017-05-10 南京航空航天大学 一种基于非线性模式分解和自适应最优核的时频分析方法
CN106647691A (zh) * 2016-11-08 2017-05-10 浙江大学 一种工业过程多回路振荡提取与检测方法
CN107436598A (zh) * 2017-07-21 2017-12-05 浙江大学 基于多维本质时间尺度分解的工业多回路振荡检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925983A (zh) * 2014-05-05 2014-07-16 重庆大学 一种多通道微弱振动信号同步采集装置及分析方法
CN106546818A (zh) * 2016-10-20 2017-03-29 南京航空航天大学 一种基于差分非线性模式分解的谐波信号检测方法
CN106647691A (zh) * 2016-11-08 2017-05-10 浙江大学 一种工业过程多回路振荡提取与检测方法
CN106645947A (zh) * 2016-12-14 2017-05-10 南京航空航天大学 一种基于非线性模式分解和自适应最优核的时频分析方法
CN107436598A (zh) * 2017-07-21 2017-12-05 浙江大学 基于多维本质时间尺度分解的工业多回路振荡检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
眭烨: "替代数据及其应用", 《信息科技辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109359662A (zh) * 2018-08-20 2019-02-19 浙江大学 一种面向百万千瓦超超临界机组非平稳特性的基于因果分析的多层贝叶斯网络故障诊断方法
CN109359662B (zh) * 2018-08-20 2021-08-31 浙江大学 面向百万千瓦超超临界机组的非平稳分析与因果诊断方法
CN111473761A (zh) * 2020-04-27 2020-07-31 西安理工大学 一种结合非线性检测的滑动副间隙值快速识别方法
CN111473761B (zh) * 2020-04-27 2022-01-07 西安理工大学 一种结合非线性检测的滑动副间隙值快速识别方法
CN112001027A (zh) * 2020-07-16 2020-11-27 南京航空航天大学 一种小样本试验数据下的颤振预测结果置信度分析方法

Also Published As

Publication number Publication date
CN108345289B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
Shi et al. Rolling bearing initial fault detection using long short-term memory recurrent network
CN112508105B (zh) 一种采油机故障检测与检索方法
CN103868692B (zh) 基于核密度估计和k-l散度的旋转机械故障诊断方法
CN108345289B (zh) 一种基于替代数据法的工业过程平稳性检测方法
CN106447040B (zh) 基于异类多传感器数据融合的机械设备健康状态评估方法
CN110779745B (zh) 一种基于bp神经网络的换热器早期故障诊断方法
Yan et al. Fisher’s discriminant ratio based health indicator for locating informative frequency bands for machine performance degradation assessment
CN104764869A (zh) 一种基于多维特征量的变压器气体故障诊断和报警方法
CN113947017B (zh) 一种滚动轴承剩余使用寿命预测方法
CN113657221B (zh) 一种基于智能感知技术的电厂设备状态监测方法
CN109932179A (zh) 一种基于ds自适应谱重构的滚动轴承故障检测方法
CN111964909A (zh) 滚动轴承运行状态检测方法、故障诊断方法及系统
CN117312997A (zh) 一种电力管理系统智能诊断方法及系统
CN104132967A (zh) 一种基于双阈值随机共振的低浓度气体检测方法
CN103729444A (zh) 一种基于设备监测数据间潜在关系的异常数据检测方法
CN110308713A (zh) 一种基于k近邻重构的工业过程故障变量识别方法
CN111538309B (zh) 一种基于多变量非线性调频模态分解的工业过程厂级振荡检测方法
CN117575027B (zh) 一种利用知识增强时空因果的传感器故障诊断方法
Lang et al. Bihocerence based industrial control loop nonlinearity detection and diagnosis in short nonstationary time series
CN116738859B (zh) 一种铜管在线无损寿命评估方法及系统
CN108345214B (zh) 一种基于替代数据法的工业过程非线性检测方法
CN113537156B (zh) 一种基于区间标准差结合频谱分析的振动数据清洗方法
CN112857806B (zh) 一种基于移动窗口时域特征提取的轴承故障检测方法
CN104808643B (zh) 一种基于改进的倒双谱分析的控制回路非线性检测方法
CN114894980A (zh) 一种基于气敏传感器阵列的未知气体响应信号特征提取及数据挖掘方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant