CN108342768B - 一种双相不锈钢交变电腐刻方法 - Google Patents
一种双相不锈钢交变电腐刻方法 Download PDFInfo
- Publication number
- CN108342768B CN108342768B CN201810377044.4A CN201810377044A CN108342768B CN 108342768 B CN108342768 B CN 108342768B CN 201810377044 A CN201810377044 A CN 201810377044A CN 108342768 B CN108342768 B CN 108342768B
- Authority
- CN
- China
- Prior art keywords
- stainless steel
- phase
- etching
- ferrite
- alternating potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005530 etching Methods 0.000 title claims abstract description 34
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 34
- 239000010935 stainless steel Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000007797 corrosion Effects 0.000 title claims abstract description 10
- 238000005260 corrosion Methods 0.000 title claims abstract description 10
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 14
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 14
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims abstract description 7
- 238000004090 dissolution Methods 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 229910001039 duplex stainless steel Inorganic materials 0.000 abstract description 9
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 239000000956 alloy Substances 0.000 abstract description 3
- 239000002253 acid Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 238000000866 electrolytic etching Methods 0.000 description 4
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/02—Etching
- C25F3/06—Etching of iron or steel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
Abstract
本发明属于不锈钢相结构刻蚀技术领域,具体为一种双相不锈钢交变电腐刻方法。本发明方法以三氯化铁溶液为介质,在合适的温度下,在双相不锈钢工作电极上施加一正弦交变电位,通过控制交变电位幅值、频率和施加时间,控制铁素体、奥氏体两相较慢选择性溶解,从而获得铁素体、奥氏体两相分布结构规律。通过本发明方法能够准确有效的对不同双相不锈钢进行两相腐刻,获得铁素体、奥氏体两相在合金中的形状、分布等相关信息,为研究双相不锈钢的两相分布提供重要的依据,同时也为双相不锈钢刻蚀提供一种新方法,具有重要的实际应用价值。
Description
技术领域
本发明属于不锈钢相结构刻蚀技术领域,具体涉及一种考察双相不锈钢两相分布特点的方法。
背景技术
在不锈钢结构、性能研究中常常涉及到金相结构的获得,从而研究不锈钢中相结构分布特点对其力学及机械性能的影响。通常用于不锈钢金相刻蚀的方法主要有化学腐刻和电化学腐刻两种;化学腐刻有:Beraha II etchant (60 mL H2O + 30 mL HCl + 1 gK2S2O5)法([1] Z.Q. Zhang, Appl. Surf. Sci. 435 (2018) 352.); 电化学腐刻有:草酸电解腐刻法([2]S.C. Zhang, Mater. Charact. 137 (2018) 244.), 氢氧化钾/钠电解腐刻法([3] C.M. Lee, Mater. Chem. Phys. 207 (2018) 91; [4]W.K. Chan, Mater.Chem. Phys. 207 (2018) 451; [4]S. Emami, J. Alloy Compd. 739 (2018) 678.)。这两大类方法分别通过化学试剂侵蚀和电化学选择性侵蚀来获得一相或多相在合金中的金相分布,往往涉及到酸、碱体系;化学腐刻较为迅速,需要完美控制好刻蚀时间防止过度腐刻使得金相模糊,电解刻蚀则需要提供较大直流电流,往往也会存在过度腐刻的风险,需要精准控制时间,刻蚀后的电解液涉及酸碱,因此也存在后处理过程繁琐等缺点。
因此,希望开发一种刻蚀过程不涉及强酸碱,无需强电流,同时可以有效控制腐刻深度,来获得准确有效的双相不锈钢两相结构分布新方法。
发明内容
本发明的目的在于提供一种不涉及强酸碱、无需强电流,同时可以有效控制腐刻深度,获得准确有效的双相不锈钢两相结构分布的交变电腐刻方法。
本发明提供的交变电腐刻方法,在无酸性介质和小电流下,可在双相不锈钢表面刻蚀出铁素体、奥氏体两相结构。
本本发明提供的交变电腐刻方法,以三氯化铁(FeCl3)溶液为介质,在合适的温度下,在双相不锈钢工作电极上施加一正弦交变电位,通过控制交变电位幅值、频率和施加时间,控制铁素体、奥氏体两相较慢选择性溶解,从而获得铁素体、奥氏体两相分布结构规律。
具体操作步骤如下:
(1)配置质量分数为6%-10%的三氯化铁(FeCl3)溶液,控制体系温度为室温与50℃之间;
(2)采用两电极体系,辅助电极采用石墨电极,不锈钢样品作为工作电极;在不锈钢工作电极上施加一正弦交变电位,交变电位幅度大于800mV~,频率在10Hz~50Hz之间;
(3)根据施加的交变电位幅值大小,选择适当的刻蚀时间;刻蚀时间范围为300-600秒;
(4)用放大倍数不低于400倍的光学显微镜或扫描电子显微镜观察样品的两相组织分布。
本发明方法主要借助交变电信号发生器提供稳定连续的交流电位信号,通过选择合适的溶液介质和温度,控制交变电位信号的幅值与频率,在一定时间内可以在双相不锈钢表面发生两相的选择性溶解,从而得到全面、清晰的铁素体、奥氏体两相分布。通过本发明方法能够准确有效的对不同双相不锈钢进行两相腐刻,获得铁素体、奥氏体两相在合金中的形状、分布等相关信息,为研究双相不锈钢的两相分布提供重要的依据,同时也为双相不锈钢刻蚀提供一种新方法,具有重要的实际应用价值。
附图说明
图1为实验实施装置示意图。
图2为2205不锈钢交变电腐刻后的金相结构图。
图3为交变电腐刻后2205两相SEM图。
图4为2205不锈钢交变电腐刻后的两相EDS能谱。其中,(a)2205不锈钢中亮色区域元素EDS谱图;(b)暗色区域元素EDS谱图。
图5为2507不锈钢交变电腐刻后的金相结构图。
图6为交变电腐刻后2507两相SEM图。
图7为2507不锈钢交变电腐刻后的两相EDS能谱。其中,(a)2507不锈钢中亮色区域元素EDS谱图;(b)暗色区域元素EDS谱图。
具体实施方式
实施例1,2205不锈钢刻蚀金相结构图
2205双相不锈钢样品(12mm×12mm),经环氧树脂封装成电极,打磨后留出1cm2的表面进行实验。具体条件是:介质为6wt.% FeCl3溶液,保持温度为30℃。施加的正弦交变电幅值为1000mV,频率分别为25Hz和10 Hz,施加时间分别为10min和5min。腐刻结果如附图2~图4所示。双相钢样品表面出现亮色和深色部分,为不锈钢铁素体和奥氏体两相;表1列出了两相EDS能谱分析结果,亮色部分含Cr、Mo元素较多,为铁素体相,深色部分含Ni元素多,则为奥氏体相。由此可见通过这种刻蚀方法可以顺利的区分不锈钢中的两相。
实施例2,2507双相不锈钢刻蚀金相结构图
2507双相不锈钢样品(12mm×12mm),经环氧树脂封装成电极,打磨后留出1cm2的表面进行实验。具体条件是:介质为6wt.% FeCl3溶液,保持温度为40℃。施加的正弦交变电幅值为1000mV,频率分别为25Hz和10 Hz,施加时间分别为10min和5min。腐刻结果如附图5~图7所示。双相钢样品表面出现亮色和深色部分,为不锈钢铁素体和奥氏体两相;根据EDS能谱分析,表2列出了不同相中元素含量,亮色部分含Cr、Mo元素多,为铁素体相;深色部分含Ni元素多,则为奥氏体相。
表2 2507不锈钢交变电腐刻后的两相元素成分(质量分数)
Claims (1)
1.一种双相不锈钢交变电腐刻方法,其特征在于,以三氯化铁溶液为介质,在合适的温度下,在双相不锈钢工作电极上施加一正弦交变电位,通过控制交变电位幅值、频率和施加时间,控制铁素体、奥氏体两相较慢选择性溶解,从而获得铁素体、奥氏体两相分布结构规律;
具体操作步骤如下:
(1)配置质量分数为6%-10%的三氯化铁溶液,控制体系温度为室温与50℃之间;
(2)采用两电极体系,辅助电极采用石墨电极,不锈钢样品作为工作电极;在不锈钢工作电极上施加一正弦交变电位,交变电位幅度大于800mV,频率在10Hz~50Hz之间;
(3)根据施加的交变电位幅值大小,选择适当的刻蚀时间;刻蚀时间范围为300-600秒;
(4)用放大倍数不低于400倍的光学显微镜或扫描电子显微镜观察样品的两相组织分布。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810377044.4A CN108342768B (zh) | 2018-04-25 | 2018-04-25 | 一种双相不锈钢交变电腐刻方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810377044.4A CN108342768B (zh) | 2018-04-25 | 2018-04-25 | 一种双相不锈钢交变电腐刻方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108342768A CN108342768A (zh) | 2018-07-31 |
CN108342768B true CN108342768B (zh) | 2020-05-12 |
Family
ID=62955179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810377044.4A Expired - Fee Related CN108342768B (zh) | 2018-04-25 | 2018-04-25 | 一种双相不锈钢交变电腐刻方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108342768B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109916692B (zh) * | 2019-02-28 | 2021-09-03 | 无锡光旭新材料科技有限公司 | 一种铸造奥氏体不锈钢单相刻蚀的电化学方法 |
CN112179838B (zh) * | 2020-09-29 | 2023-02-07 | 复旦大学 | 一种考察双相不锈钢耐缝隙腐蚀性能的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1916597A (zh) * | 2005-11-11 | 2007-02-21 | 太原钢铁(集团)有限公司 | 一种不锈钢显微组织的观察方法 |
JP2009221607A (ja) * | 2008-02-19 | 2009-10-01 | Toyota Central R&D Labs Inc | 二相ステンレス鋼部材とその製造方法およびその表面処理方法、固体高分子型燃料電池とそのセパレータ、導通部材並びにバイオデバイス |
CN103924246A (zh) * | 2014-04-01 | 2014-07-16 | 甘肃酒钢集团宏兴钢铁股份有限公司 | 一种金相腐蚀液及其配置方法及2205双相不锈钢金相的显示方法 |
CN106248460A (zh) * | 2016-10-09 | 2016-12-21 | 江苏科技大学 | 一种双相不锈钢相含量的测定方法 |
-
2018
- 2018-04-25 CN CN201810377044.4A patent/CN108342768B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1916597A (zh) * | 2005-11-11 | 2007-02-21 | 太原钢铁(集团)有限公司 | 一种不锈钢显微组织的观察方法 |
JP2009221607A (ja) * | 2008-02-19 | 2009-10-01 | Toyota Central R&D Labs Inc | 二相ステンレス鋼部材とその製造方法およびその表面処理方法、固体高分子型燃料電池とそのセパレータ、導通部材並びにバイオデバイス |
CN103924246A (zh) * | 2014-04-01 | 2014-07-16 | 甘肃酒钢集团宏兴钢铁股份有限公司 | 一种金相腐蚀液及其配置方法及2205双相不锈钢金相的显示方法 |
CN106248460A (zh) * | 2016-10-09 | 2016-12-21 | 江苏科技大学 | 一种双相不锈钢相含量的测定方法 |
Non-Patent Citations (1)
Title |
---|
"Pitting Corrosion Study of Hyper-Duplex Stainless Steel 3207 in 6% FeCl3 using Weight Loss, Potentiodynamic Polarization Methods and Electrochemical Impedance Spectroscopy (EIS) Analysis";Rini Riastuti et al;《ResearchGate》;20151130;第1-5页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108342768A (zh) | 2018-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Meng et al. | Effect of microstructures on corrosion behavior of nickel coatings:(II) competitive effect of grain size and twins density on corrosion behavior | |
Wu et al. | Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface | |
Davoodi et al. | In situ investigation of localized corrosion of aluminum alloys in chloride solution using integrated EC-AFM/SECM techniques | |
Yin et al. | Production of iron and oxygen in molten K2CO3–Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode | |
Chiba et al. | Direct observation of pit initiation process on type 304 stainless steel | |
CN106092710B (zh) | 奥氏体和铁素体异种钢接头金相组织的显示方法 | |
Tang et al. | Effect of zirconia sol in electrolyte on the characteristics of microarc oxidation coating on AZ91D magnesium | |
CN108342768B (zh) | 一种双相不锈钢交变电腐刻方法 | |
Aouina et al. | Single pit initiation on 316L austenitic stainless steel using scanning electrochemical microscopy | |
Jinlong et al. | Comparison of corrosion behavior between coarse grained and nanocrystalline NiFe alloys in chloride solutions and proton exchange membrane fuel cell environment by EIS, XPS and Raman spectra techniques | |
Takabatake et al. | Grain-dependent passivation of iron in sulfuric acid solution | |
Schneider et al. | Anodic dissolution behaviour and surface texture development of cobalt under electrochemical machining conditions | |
Dauphin-Ducharme et al. | Corrosion product formation monitored using the feedback mode of scanning electrochemical microscopy with carbon microelectrodes | |
CN102435485B (zh) | 用于扫描电镜观测钢中夹杂物的样品预处理方法 | |
Neergat et al. | Electrodissolution of 304 stainless steel in neutral electrolytes for surface decontamination applications | |
Cao et al. | Performance of protective oxide films on Fe–Ni alloy anodes in molten KF–AlF3–Al2O3 salts at 700° C | |
Raaijman et al. | Clean and reproducible voltammetry of copper single crystals with prominent facet-specific features using induction annealing | |
Dong et al. | In situ characterization of pitting corrosion of stainless steel by a scanning electrochemical microscopy | |
Zhang et al. | Quantitative analysis of the polarization behavior of iron in an aerated acidic solution using SECM | |
Casanova et al. | Influence of stoichiometry on the corrosion response of titanium oxide coatings produced by plasma electrolytic oxidation | |
Li et al. | Preparation of carbon and oxygen by carbon dioxide electrolysis in LiF-Li2CO3 eutectic molten salt | |
Song et al. | Electrochemical preparation of a carbon/Cr-OC bilayer film on stainless steel in molten LiCl-KCl-K2CO3 | |
Lister et al. | Scanning electrochemical microscopy study of corrosion dynamics on type 304 stainless steel | |
Li et al. | Electrochemical study of nickel from urea-acetamide-LiBr low-temperature molten salt | |
Zhang et al. | Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200512 |