CN108336907B - 一种自激式交错并联Buck变换器 - Google Patents

一种自激式交错并联Buck变换器 Download PDF

Info

Publication number
CN108336907B
CN108336907B CN201810282091.0A CN201810282091A CN108336907B CN 108336907 B CN108336907 B CN 108336907B CN 201810282091 A CN201810282091 A CN 201810282091A CN 108336907 B CN108336907 B CN 108336907B
Authority
CN
China
Prior art keywords
self
buck
main circuit
excited
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810282091.0A
Other languages
English (en)
Other versions
CN108336907A (zh
Inventor
谢廉毅
陈怡�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Bigfish Bio Tech Co ltd
Original Assignee
Hangzhou Bigfish Bio Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Bigfish Bio Tech Co ltd filed Critical Hangzhou Bigfish Bio Tech Co ltd
Priority to CN201810282091.0A priority Critical patent/CN108336907B/zh
Publication of CN108336907A publication Critical patent/CN108336907A/zh
Application granted granted Critical
Publication of CN108336907B publication Critical patent/CN108336907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种自激式交错并联Buck变换器,包括Buck单元和输出电容,Buck单元至少两个,每个Buck单元的主电路包括三极管、主电路二极管和主电路电感,每个Buck单元有且仅有另外一个Buck单元通过自激通路相连,所有Buck单元形成闭环自激回路;自激通路包括分压电阻、自激电容和自激二极管;每个三极管的基极与发射极之间连有自激二极管,自激二极管的阳极与三极管的基极相连,自激二极管的阴极与三极管的发射极相连;由自激通路相连的两个Buck单元中、分压电阻和自激电容连于其中一个三极管的基极和另一个三极管的集电极;自激电容的电压被限制。本发明具有易于扩容和起振但又不易停振的特点,适用于高电压输入低电压输出的工作场合。

Description

一种自激式交错并联Buck变换器
技术领域
本发明涉及降压型DC-DC变换器领域,更具体的说,它涉及一种自激式交错并联Buck变换器。
背景技术
与单一的Buck变换器相比,交错并联的Buck变换器具有容量大、输入电流和输出电流纹波均小的优点。和他激式Buck变换器相比,自激式Buck变换器具有易于启动、性价比高等优点。而市场急需集合两者优点的Buck变换器,达到令Buck变换器的性能获得进一步提升的技术方案。
发明内容
本发明克服了现有技术的不足,提供了通过构建易于起振但又不易停振的多通道“互锁”自激单元,可令自激式交错并联Buck变换器易于扩展,增加容量;易于起振,对参与自激的元器件要求低;也不易停振,在缺省控制环路的情况下仍可自主工作的一种自激式交错并联Buck变换器。
为了解决上述技术问题,本发明的技术方案如下:
一种自激式交错并联Buck变换器,包括Buck单元和输出电容,Buck单元至少两个,每个Buck单元的主电路包括三极管、主电路二极管和主电路电感,所有Buck单元的三极管的发射极与直流电源的正端相连,所有主电路电感的第一端与本Buck单元的三极管集电极相连,所有主电路电感的第二端连在一起、并与输出电容的一端相连;
每个Buck单元有且仅有另外一个Buck单元通过自激通路相连,所有Buck 单元形成闭环自激回路;自激通路包括分压电阻、自激电容和自激二极管;每个三极管的基极与发射极之间连有自激二极管,自激二极管的阳极与三极管的基极相连,自激二极管的阴极与三极管的发射极相连;由自激通路相连的两个 Buck单元中、分压电阻和自激电容连于其中一个三极管的基极和另一个三极管的集电极;自激电容的电压被限制。主电路电感的第一端和第二端只是为了区别电感的两端,并不是数学意义的第一和第二。
明确主电路电感的设置方式为:主电路电感只有一个;或者主电路电感由至少两个电感串联形成。
明确主电路二极管的连接方式为:主电路二极管的阳极与直流电源负极相连;当主电路电感只有一个时,主电路二极管的阴极与本Buck单元的三极管集电极相连;当主电路电感由至少两个电感串联时,主电路二极管的阴极连于本 Buck单元的两个主回路电感之间。
第一种自激电容的电压限制方式为:限压电阻与自激电容并联。
第二种自激电容的电压限制方式为:限压电阻一端连于分压电阻与自激电容之间,另一端与直流电源的负极相连。
第三种自激电容的电压限制方式为:限压电阻一端连于分压电阻与自激电容之间,另一端连于主电路电感与输出电容Co之间。
本发明相比现有技术优点在于:
1、Buck单元的主电路连接于直流电源正极与输出电容之间,Buck单元之间通过自激通路相连,形成闭环自激回路,Buck单元的个数易于扩展,方便增加容量。
2、由自激通路相连的两个Buck单元,其中一个Buck单元的三极管导通时,另一个Buck单元截止,即两个Buck单元利用电容实现互锁,闭环自激回路易于启动。
3、自激闭环回路由三极管、二极管和电感组成,对自激的元器件要求低,不易停振,在缺省控制环路的情况下仍可自主工作。
附图说明
图1是本发明有1个主电路电感、限压电阻与自激电容并联的电路图。
图2是本发明有1个主电路电感、限压电阻与直流电源负极相连的电路图。
图3是本发明有1个主电路电感、限压电阻与输出电容相连的电路图。
图4是本发明有2个主电路电感、限压电阻连于两个主电路电感之间的电路图。
图5是图1所示电路的仿真波形图。
图6是图4所示电路的仿真波形图。
具体实施方式
如图1-图4所示,一种自激式交错并联Buck变换器,包括Buck单元和输出电容,Buck单元至少两个,每个Buck单元的主电路包括三极管Qpj_1、主电路二极管Dj_1和主电路电感Lj_1,所有Buck单元的三极管发射极与直流电源 Vi的正端相连,所有主电路电感Lj_1的第一端与本Buck单元的三极管集电极相连,所有主电路电感的第二端连在一起、并与输出电容Co的一端相连;输出电容与负载Z并联。
每个Buck单元有且仅有另外一个Buck单元通过自激通路相连,所有Buck 单元形成闭环自激回路;自激通路包括分压电阻Rpj-1_2、自激电容Cpj_1和自激二极管Dpj-1_1;每个三极管的基极与发射极之间连有自激二极管Dpj_1,自激二极管Dpj_1的阳极与三极管基极相连,自激二极管Dpj_1的阴极与三极管发射极相连;由自激通路相连的两个Buck单元中、分压电阻Rpj-1_2和自激电容Cpj_1连于其中一个三极管Qpj-1_1的基极和另一个三极管Qpj_1的集电极;自激电容Cpj_1的电压被限压电阻Rpj_1限制。主电路电感的第一端和第二端只是为了区别电感的两端,并不是数学意义的第一和第二。
图1中,电阻Rp1_1至电阻Rpn_1、电阻Rp1_2至电阻Rpn_2、电容Cp1_1 至电容Cpn_1、二极管Dp1_1至二极管Dpn_1、二极管D1_1至二极管Dn_1、三极管Qp1_1至三极管Qpn_1形成闭环的自激单元。所有三极管均为PNP型 BJT管。
通过自激通路相连的两个Buck单元互锁。以图1-图4为例,假设第j个Buck 单元作为本级单元,第j-1个Buck单元作为下一级单元。
PNP型BJT管Qpj_1的发射极同时与直流电源Vi的正端和二极管Dpj_1的阴极相连,PNP型BJT管Qpj_1的基极同时与二极管Dpj_1的阳极和电阻Rpj_2 的一端相连,PNP型BJT管Qpj_1的集电极同时与电阻Rpj_1的一端、电容Cpj_1 的一端、二极管Dj_1的阴极和电感Lj_1的一端相连,电感Lj_1的另一端同时与电容Co的一端和负载Z的一端相连,负载Z的另一端同时与电容Co的另一端、二极管Dj_1的阳极和直流电源Vi的负端相连,j的取值范围是1至n。电阻Rp1_2的另一端同时与电阻Rp2_1的另一端和电容Cp2_1的另一端相连,以此类推,电阻Rpn-1_2的另一端同时与电阻Rpn_1的另一端和电容Cpn_1的另一端相连,电阻Rpn_2的另一端同时与电阻Rp1_1的另一端和电容Cp1_1的另一端相连。
图1-图4所示的电路,利用自激单元内部(主要是PNP型BJT管Qp1_1 至PNP型BJT管Qpn_1)的不一致性,产生所需的振荡。假设Qp1_1率先导通,二极管D1_1截止,电感L1_1充磁,电流iL1_1逐渐增加,直流电源Vi通过电阻Rp1_2给电容Cp2_1充电。在Cp2_1的充电过程中,Qp1_1的基极电流逐渐减小,而Qp1_1的集电极电流逐渐增加,Qp1_1逐步退出饱和状态进入截止状态。当Qp1_1截止后,D1_1导通,L1_1放磁,iL1_1逐渐减小。同时,PNP型 BJT管Qpn_1导通,二极管Dn_1截止,电感Ln_1充磁,电流iLn_1逐渐增加,直流电源Vi通过电阻Rpn_2给电容Cp1_1充电。以此类推,Qpn_1滞后于Qp1_1 导通和截止,Qpk-1_1滞后于Qk_1导通和截止,Qp1_1滞后于Qp2_1导通和截止,k的取值范围是2至n。稳态时,当Qp1_1导通时,Cp1_1通过Rpn_2和 Dpn_1进行放电;当Qpk_1导通时,Cpk_1通过Rpk-1_2和Dpk-1_1进行放电;当Qpn_1导通时,Cpn_1通过Rpn-1_2和Dpn-1_1进行放电。周而复始。Dpj_1 的作用是保护Qpj_1并参与振荡,电阻Rpj_1的作用是限制Cpj_1的端电压。
主电路电感和主电路二极管的设置方式为:
如图1-3所示,主电路电感只有一个,主电路二极管的阳极与直流电源Vi 负极相连,主电路二极管的阴极与本Buck单元的三极管集电极相连。
或者,如图4所示,主电路电感由至少两个电感串联形成。当主电路电感由至少两个电感串联时,主电路二极管的阴极连于本单元的两个主电路电感之间。
图5是图1所示电路(n=3)的仿真波形图。由图5可知图1所示电路的自激工作状态,其输出电压Vo小于Vi,PNP型BJT管的导通顺序依次为Qp1_1 →Qp3_1→Qp2_1→Qp1_1。
自激电容的电压限制方式:
在一些实施例中,如图1所示,主电路电感只有1个、即Lj_1,限压电阻 Rpj_1与自激电容Cpj_1并联。可通过改变分压电阻Rpj-1_2和限压电阻Rpj_1 的阻值,调节自激电容Cpj_1的电压,从而改变自激式交错并联Buck变换器的工作频率。j的取值范围是1至n,Rpj_1表示第j个Buck单元的限压电阻,n 表示Buck单元的总数。
在一些实施例中,如图2所示,主电路电感只有1个、即Lj_1,限压电阻 Rpj_1一端与连于分压电阻与自激电容之间,另一端与直流电源的负极相连。与图1所示电路相比,当Qpj_1导通时,图2所示电路中Rpj_1会令Cpj_1具有更快的放电速度。j的取值范围是1至n,Rpj_1表示第j个Buck单元的限压电阻, n表示Buck单元的总数。
在一些实施例中,如图3所示,主电路电感只有1个、即Lj_1,限压电阻 Rpj_1的一端与输出电容Co的一端相连,j的取值范围是1至n。与图1所示电路相比,当Dj_1导通时,图3所示电路中Rpj_1会令Cpj_1具有更高的充电电压上限。j的取值范围是1至n,Rpj_1表示第j个Buck单元的限压电阻,n表示Buck单元的总数。
在一些实施例中,如图4所示,主电路电感由Lj_2和Lj_1串联形成,PNP 型BJT管Qpj_1的集电极和电容Cpj_1的一端都与电感Lj_2的一端相连,二极管Dj_1的阴极和电感Lj_1的一端都与电感Lj_2的另一端相连,电感Lj_2的一端与电感Lj_1的一端是同名端关系,j的取值范围是1至n,Rpj_1表示第j个 Buck单元的限压电阻,n表示Buck单元的总数。由于Lj_1和Lj_2的耦合关系,可实现高降压比。
图6是图4所示电路(n=2)的仿真波形图。由图6可知图4所示电路的自激工作状态,其输出电压Vo小于Vi,PNP型BJT管的导通顺序依次为Qp1_1 →Qp2_1→Qp1_1。与图1所示电路相比,其Vo更低。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明保护范围内。

Claims (7)

1.一种自激式交错并联Buck变换器,其特征在于:变换器包括Buck单元和输出电容,Buck单元至少两个,每个Buck单元的主电路包括三极管、主电路二极管和主电路电感,所有Buck单元的三极管的发射极与直流电源的正端相连,所有主电路电感的第一端与本Buck单元的三极管集电极相连,所有主电路电感的第二端连在一起、并与输出电容的一端相连;每个Buck单元有且仅有另外一个Buck单元通过自激通路相连,所有Buck单元形成闭环自激回路;自激通路包括分压电阻、自激电容和自激二极管;每个三极管的基极与发射极之间连有自激二极管,自激二极管的阳极与三极管的基极相连,自激二极管的阴极与三极管的发射极相连;由自激通路相连的两个Buck单元中,分压电阻和自激电容连于其中一个三极管的基极和另一个三极管的集电极;自激电容的电压被限制。
2.根据权利要求1所述的一种自激式交错并联Buck变换器,其特征在于:主电路电感只有一个。
3.根据权利要求1所述的一种自激式交错并联Buck变换器,其特征在于:主电路电感由至少两个电感串联形成。
4.根据权利要求1所述的一种自激式交错并联Buck变换器,其特征在于:主电路二极管的阳极与直流电源负极相连;当主电路电感只有一个时,主电路二极管的阴极与本Buck单元的三极管集电极相连;当主电路电感由至少两个电感串联时,主电路二极管的阴极连于本Buck单元的两个主回路电感之间。
5.根据权利要求4所述的一种自激式交错并联Buck变换器,其特征在于:限压电阻与自激电容并联。
6.根据权利要求4所述的一种自激式交错并联Buck变换器,其特征在于:限压电阻一端连于分压电阻与自激电容之间,另一端与直流电源的负极相连。
7.根据权利要求4所述的一种自激式交错并联Buck变换器,其特征在于:限压电阻一端连于分压电阻与自激电容之间,另一端连于主电路电感与输出电容Co之间。
CN201810282091.0A 2018-04-02 2018-04-02 一种自激式交错并联Buck变换器 Active CN108336907B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810282091.0A CN108336907B (zh) 2018-04-02 2018-04-02 一种自激式交错并联Buck变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810282091.0A CN108336907B (zh) 2018-04-02 2018-04-02 一种自激式交错并联Buck变换器

Publications (2)

Publication Number Publication Date
CN108336907A CN108336907A (zh) 2018-07-27
CN108336907B true CN108336907B (zh) 2023-12-19

Family

ID=62932026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810282091.0A Active CN108336907B (zh) 2018-04-02 2018-04-02 一种自激式交错并联Buck变换器

Country Status (1)

Country Link
CN (1) CN108336907B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221169B (zh) * 2019-05-21 2022-03-22 西安许继电力电子技术有限公司 一种直流电网短路电流试验装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877532A (zh) * 2010-06-28 2010-11-03 浙江工业大学 双极型晶体管型自激式Buck变换器
CN201733223U (zh) * 2010-06-28 2011-02-02 浙江工业大学 双极型晶体管型自激式Buck变换器
EP2528216A1 (en) * 2011-05-24 2012-11-28 Osram AG Self-oscillating buck converter
CN105790578A (zh) * 2014-12-22 2016-07-20 中兴通讯股份有限公司 一种并联交错buck变换器及控制方法
CN108400711A (zh) * 2018-04-02 2018-08-14 浙江工业大学 自激式交错并联Buck变换器
CN211508910U (zh) * 2018-04-02 2020-09-15 杭州比格飞序生物科技有限公司 一种自激式交错并联Buck变换器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917075B2 (en) * 2010-11-01 2014-12-23 Anadigics, Inc. Switched inductor DC-DC converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877532A (zh) * 2010-06-28 2010-11-03 浙江工业大学 双极型晶体管型自激式Buck变换器
CN201733223U (zh) * 2010-06-28 2011-02-02 浙江工业大学 双极型晶体管型自激式Buck变换器
EP2528216A1 (en) * 2011-05-24 2012-11-28 Osram AG Self-oscillating buck converter
CN105790578A (zh) * 2014-12-22 2016-07-20 中兴通讯股份有限公司 一种并联交错buck变换器及控制方法
CN108400711A (zh) * 2018-04-02 2018-08-14 浙江工业大学 自激式交错并联Buck变换器
CN211508910U (zh) * 2018-04-02 2020-09-15 杭州比格飞序生物科技有限公司 一种自激式交错并联Buck变换器

Also Published As

Publication number Publication date
CN108336907A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
KR100517552B1 (ko) 스위칭 전원 장치
CN104333216A (zh) 开关电源控制器及其控制方法
JP6790583B2 (ja) スイッチング電源装置
US8581561B2 (en) DC-DC boost converter circuit with an output stabilization circuit and method for driving the same
CN102792574A (zh) 开关电源装置
CN103051184A (zh) 一种升压电路
US20080265670A1 (en) Converter for Providing Several Output Voltages
CN102710114B (zh) 起动电路和输入电容器平衡电路
Irving et al. Analysis and design of self-oscillating flyback converter
CN108336907B (zh) 一种自激式交错并联Buck变换器
US20120091979A1 (en) High gain dc transformer
CN116155101B (zh) 一种基于耦合电感的高增益变换器
CN211508910U (zh) 一种自激式交错并联Buck变换器
Li et al. Coupled inductor based ZVS high step-up DC/DC converter in photovoltaic applications
CN108400711A (zh) 自激式交错并联Buck变换器
CN211508909U (zh) 一种自激式交错并联Buck变换器
WO2021249332A1 (zh) 一种电荷泵控制电路及驱动电源
CN218783723U (zh) 一种基于控制芯片的反激式开关电源
CN116054592A (zh) 次级控制模式的直流变换器及其控制方法
CN210142981U (zh) 一种自激式交错并联Buck变换器
CN109787477B (zh) 开关位于输入侧的自激式dc-dc变换器及其交错并联形式
Amir et al. Voltage multiplier-based continuous conduction LCCL series resonant inverter fed high voltage DC-DC converter
Moradisizkoohi et al. Ultra-high step-up DC/DC converter based on dual-coupled-inductors with low voltage stress and input current ripple for renewable energy applications
JPH07298614A (ja) スイッチング電源装置
CN110048604B (zh) 电感位于输入侧的自激式dc-dc变换器及其交错并联形式

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant