发明内容
为了克服现有技术中多旋翼飞行器输出的最大驱动力的限制大、多旋翼飞行器的控制精度不可调的技术问题,本发明实施例提供一种多旋翼飞行器的控制方法以及控制装置,通过将支撑轴设置为可伸缩结构,并根据多旋翼飞行器的飞行状态对支撑轴的长度进行调整,从而增大多旋翼飞行器可输出的最大驱动力、调整控制精度,在不增加使用成本的情况下,提升控制精度,满足用户需求,提升了用户体验。
为了实现上述目的,本发明一方面提供一种多旋翼飞行器的控制方法,所述多旋翼飞行器包括连接多个旋翼与主体框架的多个支撑轴,所述多个支撑轴的长度可调节,所述控制方法包括:获取飞行控制指令;基于所述飞行控制指令,向所述多旋翼飞行器输出与所述飞行控制指令对应的输出电流;获取所述多旋翼飞行器的飞行姿态,判断所述飞行姿态与所述飞行控制指令是否匹配;在所述飞行姿态与所述飞行控制指令不匹配的情况下,调节所述支撑轴的长度。
优选地,所述获取所述多旋翼飞行器的飞行姿态,判断所述飞行姿态与所述飞行控制指令是否匹配,包括:当所述飞行控制指令为升高时,获取所述输出电流的大小,在所述输出电流达到最大输出电流且所述飞行控制指令为保持升高的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;当所述飞行控制指令为悬停时,获取所述多旋翼飞行器的空间位置,在所述空间位置的变化无法保持在预设抖动阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配。
优选地,所述获取所述多旋翼飞行器的空间位置,在所述空间位置的变化无法保持在预设抖动阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配,包括:获取所述多旋翼飞行器的高度值,在所述高度值的变化无法保持在预设高度变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;获取所述多旋翼飞行器在前后方向上的摆动值,在所述摆动值的变化无法保持在预设摆动变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;获取所述多旋翼飞行器在左右方向上的平移值,在所述平移值的变化无法保持在预设平移变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配。
优选地,所述在所述飞行姿态与所述飞行控制指令不匹配的情况下,调节所述支撑轴的长度,包括:当所述飞行控制指令为升高时,延长所述支撑轴的长度;当所述飞行控制指令为悬停时,缩短所述支撑轴的长度。
本发明第二方面提供一种多旋翼飞行器的控制装置,所述多旋翼飞行器包括连接多个旋翼与主体框架的多个支撑轴,所述多个支撑轴的长度可调节,所述控制装置包括:指令获取模块,用于获取飞行控制指令;电流输出模块,用于基于所述飞行控制指令,向所述多旋翼飞行器输出与所述飞行控制指令对应的输出电流;判断模块,用于获取所述多旋翼飞行器的飞行姿态,判断所述飞行姿态与所述飞行控制指令是否匹配;调节模块,用于在所述飞行姿态与所述飞行控制指令不匹配的情况下,调节所述支撑轴的长度。
优选地,所述判断模块包括:上升判断子模块,用于当所述飞行控制指令为升高时,获取所述输出电流的大小,在所述输出电流达到最大输出电流且所述飞行控制指令为保持升高的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;悬停判断子模块,用于当所述飞行控制指令为悬停时,获取所述多旋翼飞行器的空间位置,在所述空间位置的变化无法保持在预设抖动阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配。
优选地,所述悬停判断子模块包括:高度判断子模块,用于获取所述多旋翼飞行器的高度值,在所述高度值的变化无法保持在预设高度变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;摆动判断子模块,用于获取所述多旋翼飞行器在前后方向上的摆动值,在所述摆动值的变化无法保持在预设摆动变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;平移判断子模块,用于获取所述多旋翼飞行器在左右方向上的平移值,在所述平移值的变化无法保持在预设平移变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配。
优选地,所述调节模块包括:延长子模块,用于在所述飞行控制指令为升高的情况下,则延长所述支撑轴的长度;缩短子模块,用于在所述飞行控制指令为悬停的情况下,则缩短所述支撑轴的长度。
另一方面,本发明还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明提供的方法。
通过本发明提供的技术方案,本发明至少具有如下技术效果:
通过将支撑轴设置为可伸缩结构,并根据多旋翼飞行器的飞行状态对支撑轴的长度进行调整,从而增大多旋翼飞行器可输出的最大驱动力、调整控制精度,在不增加使用成本的情况下,提升控制精度,满足用户需求,提升了用户体验。
具体实施方式
为了克服现有技术中多旋翼飞行器输出的最大驱动力的限制大、多旋翼飞行器的控制精度不可调的技术问题,本发明实施例提供一种多旋翼飞行器的控制方法以及控制装置,通过将支撑轴设置为可伸缩结构,并根据多旋翼飞行器的飞行状态对支撑轴的长度进行调整,从而增大多旋翼飞行器可输出的最大驱动力、调整控制精度,在不增加使用成本的情况下,提升控制精度,满足用户需求,提升了用户体验。
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本发明实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
请参见图1,本发明实施例提供一种多旋翼飞行器的控制方法,所述多旋翼飞行器包括连接多个旋翼与主体框架的多个支撑轴,所述多个支撑轴的长度可调节,所述控制方法包括:
S10)获取飞行控制指令;
S20)基于所述飞行控制指令,向所述多旋翼飞行器输出与所述飞行控制指令对应的输出电流;
S30)获取所述多旋翼飞行器的飞行姿态,判断所述飞行姿态与所述飞行控制指令是否匹配;
S40)在所述飞行姿态与所述飞行控制指令不匹配的情况下,调节所述支撑轴的长度。
在本发明实施例中,在所述多旋翼飞行器的正常飞行状态,即所述多旋翼飞行器的飞行控制指令与飞行姿态匹配的情况下,所述多旋翼飞行器的支撑轴为正常长度,该正常长度为出厂调试时的最佳长度或预设的最佳长度,当该多旋翼飞行器的飞行姿态与飞行控制指令不匹配时,支撑轴的长度可以向外延伸直至达到最大延伸长度或向内缩短直至达到最短缩短位置。
在本发明实施例中,所述获取所述多旋翼飞行器的飞行姿态,判断所述飞行姿态与所述飞行控制指令是否匹配,包括:当所述飞行控制指令为升高时,获取所述输出电流的大小,在所述输出电流达到最大输出电流且所述飞行控制指令为保持升高的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;当所述飞行控制指令为悬停时,获取所述多旋翼飞行器的空间位置,在所述空间位置的变化无法保持在预设抖动阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配。
在一种可能的实施方式中,用户需要通过多旋翼飞行器运输货物,因此将货物固定在多旋翼飞行器上后,通过向前拨动无线遥控设备上的油门开关以向该多旋翼飞行器发出向上提升的飞行控制指令,其中该飞行控制指令中包括了用户向前拨动该油门开关的深度值,多旋翼飞行器的主控系统接收到该飞行控制指令后,根据该深度值向每个旋翼的电动机输出与该深度值对应的输出电流,例如15A的输出电流,从而控制多旋翼飞行器向上提升。
由于在该输出电流的情况下,多旋翼飞行器的飞行高度达不到安全高度要求,因此用户增加油门的拨动深度,以进一步提升多旋翼飞行器的飞行高度,在本发明实施例中,用户将该无线遥控设备上的油门开关拨动到最大深度,即此时向每个旋翼的电动机输出的输出电流达到最大输出电流,例如40A的输出电流,而此时多旋翼飞行器的飞行高度依然未达到安全高度,但用户期望该多旋翼飞行器继续升高,因此保持对无线遥控设备的拨动深度,此时主控系统检测到当前输出电流为最大输出电流且飞行控制指令依然保持升高,因此确定当前的飞行姿态与飞行控制指令不匹配。
在另一个可能的实施方式中,当用户需要从空中对某处的风景进行稳定的拍摄,因此驱动多旋翼飞行器悬停在空中一固定空间位置,但由于环境因素的影响,导致该多旋翼飞行器此时无法稳定的悬停在该固定空间位置(即所述空间位置的变化无法保持在预设抖动阈值内),因此确定当前的飞行姿态与飞行控制指令不匹配。
由于多旋翼飞行器的支撑轴的正常长度为出厂调试时的最佳长度,因此延长或缩短支撑轴的长度都会对多旋翼飞行器的控制精度产生影响,因此在本发明实施例中,通过将对支撑轴的长度的调节的条件进行进一步限定,仅在当前控制性能不满足用户需求的情况下才判断当前的飞行姿态与飞行控制指令不匹配,从而使得在不影响多旋翼飞行器的正常使用的情况下,对支撑轴的长度进行调节,从而满足用户的实际需求,提升用户体验。
在本发明实施例中,所述获取所述多旋翼飞行器的空间位置,在所述空间位置的变化无法保持在预设抖动阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配,包括:获取所述多旋翼飞行器的高度值,在所述高度值的变化无法保持在预设高度变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;获取所述多旋翼飞行器在前后方向上的摆动值,在所述摆动值的变化无法保持在预设摆动变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;获取所述多旋翼飞行器在左右方向上的平移值,在所述平移值的变化无法保持在预设平移变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配。
在一种可能的实施方式中,多旋翼飞行器在悬停过程中,多旋翼飞行器的主控系统检测到多旋翼飞行器的摆动值在不断变化,因此主控系统根据该变化对多旋翼飞行器的飞行姿态进行反向调控,以期望将多旋翼飞行器的摆动值保持在预设摆动变化阈值内,但由于环境因素的影响,在主控系统调控的过程中依然检测到摆动值的变化无法保持在预设摆动变化阈值内,因此确定所述飞行姿态与所述飞行控制指令不匹配。
需要说明的是,在本发明实施例中,在多旋翼飞行器的高度值、摆动值以及平移值中的至少一个值无法保持在其对应的变化阈值范围内时,都可以确定所述飞行姿态与所述飞行控制指令不匹配,而不应限定为根据其中单独的一个值无法保持在其对应的变化阈值范围内才能确定所述飞行姿态与所述飞行控制指令不匹配,对于本领域技术人员来讲是显而易见的,因此根据上述三个值的任意值或其组合来判断多旋翼飞行器的飞行姿态是否与飞行控制指令匹配都应该属于本发明实施例的保护范围,在此不做过多赘述。
由于多旋翼飞行器的飞行姿态是在三维空间中的位置变化,因此在三维空间中的每个维度上的位置变化都会影响多旋翼飞行器的悬停的稳定性,因此通过对多旋翼飞行器在三维空间中的每个维度上的位置变化进行监控,并在每个维度上的位置变化超出变化阈值范围时,都判断多旋翼飞行器的飞行姿态与飞行控制指令不匹配,即此时多旋翼飞行器的控制精度不够,无法满足用户的实际需求。
在本发明实施例中,所述在所述飞行姿态与所述飞行控制指令不匹配的情况下,调节所述支撑轴的长度,包括:当所述飞行控制指令为升高时,延长所述支撑轴的长度;当所述飞行控制指令为悬停时,缩短所述支撑轴的长度。
在本发明实施例中,为了进一步保证在支撑轴的长度调节过程中多旋翼飞行器的稳定性,多旋翼飞行器的支撑轴上包括多个标准调节长度。
在一种可能的实施方式中,用户需要从空中对地面某个物体进行固定视角的拍摄,因此控制多旋翼飞行器飞到空中并进行悬停,然而在悬停过程中,用户观察到拍摄的摄像头中的图像抖动剧烈,同时收到多旋翼飞行器的主控系统发送的飞行姿态与飞行控制指令不匹配的提示信息,此时主控系统控制支撑轴缩短一个标准调节长度,并继续监测该多旋翼飞行器的飞行姿态与飞行控制指令是否匹配,若依然不匹配,则主控系统继续控制支撑轴进行缩短操作,直至该多旋翼飞行器的飞行姿态与飞行控制指令匹配或达到支撑轴长度调节的最大限度值。
在本发明实施例中,通过根据多旋翼飞行器的实际运行状况对支撑轴的长度进行调节,从而使得在不增加额外的硬件成本、不占用额外的空间、不增加多旋翼飞行器的重量以及不增加大量的能量消耗的情况下,使得多旋翼无人机能突破现有的驱动力或控制精度的限制,输出更大的驱动力或更高的控制精度,从而在特定场合,例如仅需要增大驱动力而对控制精度没有要求或仅需要增加控制精度而对驱动力没有更高的要求的情况下,能够更加满足用户的需求,提升用户体验。
下面结合附图对本发明实施例所提供的多旋翼飞行器的控制装置进行说明。
请参见图2,基于同一发明构思,本发明实施例提供一种多旋翼飞行器的控制装置,所述多旋翼飞行器包括连接多个旋翼与主体框架的多个支撑轴,所述多个支撑轴的长度可调节,所述控制装置包括:指令获取模块,用于获取飞行控制指令;电流输出模块,用于基于所述飞行控制指令,向所述多旋翼飞行器输出与所述飞行控制指令对应的输出电流;判断模块,用于获取所述多旋翼飞行器的飞行姿态,判断所述飞行姿态与所述飞行控制指令是否匹配;调节模块,用于在所述飞行姿态与所述飞行控制指令不匹配的情况下,调节所述支撑轴的长度。
在本发明实施例中,所述判断模块包括:上升判断子模块,用于当所述飞行控制指令为升高时,获取所述输出电流的大小,在所述输出电流达到最大输出电流且所述飞行控制指令为保持升高的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;悬停判断子模块,用于当所述飞行控制指令为悬停时,获取所述多旋翼飞行器的空间位置,在所述空间位置的变化无法保持在预设抖动阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配。
进一步地,在本发明实施例中,所述悬停判断子模块包括:高度判断子模块,用于获取所述多旋翼飞行器的高度值,在所述高度值的变化无法保持在预设高度变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;摆动判断子模块,用于获取所述多旋翼飞行器在前后方向上的摆动值,在所述摆动值的变化无法保持在预设摆动变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配;平移判断子模块,用于获取所述多旋翼飞行器在左右方向上的平移值,在所述平移值的变化无法保持在预设平移变化阈值内的情况下,确定所述飞行姿态与所述飞行控制指令不匹配。
在本发明实施例中,所述调节模块包括:延长子模块,用于在所述飞行控制指令为升高的情况下,则延长所述支撑轴的长度;缩短子模块,用于在所述飞行控制指令为悬停的情况下,则缩短所述支撑轴的长度。
进一步地,本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明所述的方法。
以上结合附图详细描述了本发明实施例的可选实施方式,但是,本发明实施例并不限于上述实施方式中的具体细节,在本发明实施例的技术构思范围内,可以对本发明实施例的技术方案进行多种简单变型,这些简单变型均属于本发明实施例的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施例对各种可能的组合方式不再另行说明。
本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得单片机、芯片或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本发明实施例的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明实施例的思想,其同样应当视为本发明实施例所公开的内容。