WO2020010730A1 - 无人机系统的数据传输方法、装置、系统和地面图传模块 - Google Patents

无人机系统的数据传输方法、装置、系统和地面图传模块 Download PDF

Info

Publication number
WO2020010730A1
WO2020010730A1 PCT/CN2018/109465 CN2018109465W WO2020010730A1 WO 2020010730 A1 WO2020010730 A1 WO 2020010730A1 CN 2018109465 W CN2018109465 W CN 2018109465W WO 2020010730 A1 WO2020010730 A1 WO 2020010730A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
data packet
buffer queue
terminal device
image transmission
Prior art date
Application number
PCT/CN2018/109465
Other languages
English (en)
French (fr)
Inventor
李昭早
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to EP18925852.8A priority Critical patent/EP3806349A4/en
Publication of WO2020010730A1 publication Critical patent/WO2020010730A1/zh
Priority to US17/142,674 priority patent/US11792129B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/22Traffic shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/22Traffic shaping
    • H04L47/225Determination of shaping rate, e.g. using a moving window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/29Flow control; Congestion control using a combination of thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/04Protocols specially adapted for terminals or networks with limited capabilities; specially adapted for terminal portability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/06Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to a data transmission method, device, system, and ground image transmission module for an unmanned aerial system.
  • FIG. 1 is a schematic diagram of an existing drone system. As shown in FIG. 1, the drone system is mainly divided into an aircraft side and a ground side, and the ground side and the aircraft side are wirelessly connected to each other. When files need to be uploaded to the drone system, such as uploading upgrade files, configuration files, etc., the terminal device is connected to the ground remote control on the ground side of the drone system.
  • files need to be uploaded to the drone system such as uploading upgrade files, configuration files, etc.
  • modules of the UAV system there are many modules of the UAV system. For example, there are cameras, gimbals, vision, 4 ESCs, smart batteries, ultrasound, flight control, aircraft image transmission and other modules on the aircraft side, and a remote control microcontroller on the ground side. , Ground image transmission, remote control panel and other modules.
  • Each module is an independent hardware and software system, connected through a serial port or a network, and the transmission bandwidth between these links is different, and the fluctuation is relatively large. How to upload files to various modules of the drone quickly and steadily becomes a difficult problem in development.
  • the embodiments of the present invention provide a data transmission method, device, system and ground image transmission module of an unmanned aerial vehicle system.
  • an embodiment of the present invention provides a data transmission method for a drone system, including:
  • the ground image transmission module receives at least two data packets sent in parallel by the terminal device, and each of the at least two data packets corresponds to a module in the drone system;
  • the ground image transmission module transmits a data packet corresponding to the module to the module through a communication channel between the modules corresponding to the data packet in the UAV system.
  • the method further includes:
  • the ground image transmission module buffers each data packet in the at least two data packets to a buffer queue corresponding to each data packet;
  • the ground image transmission module transmits a data packet corresponding to the module to the module through a communication channel between the modules corresponding to the data packet in the drone system, including:
  • the ground image transmission module transmits each data packet in the buffer queue to the module corresponding to the data packet through a communication channel between the modules corresponding to the data packet in the UAV system.
  • the ground image transmission module buffers each data packet in the at least two data packets to a buffer queue corresponding to each data packet, the The method also includes:
  • the ground image transmission module sends a transmission instruction to the terminal device according to the data amount of the data packet buffered in the buffer queue, so that the terminal device adjusts the transmission rate of the data packet corresponding to the buffer queue according to the transmission instruction.
  • the ground image transmission module sending a transmission instruction to the terminal device according to a data amount of a data packet buffered in a buffer queue includes:
  • the ground image transmission module sends a first transmission instruction to the terminal device, so that the terminal device is configured according to the first A transmission instruction reduces a transmission rate of a data packet corresponding to the buffer queue to a first rate range;
  • the ground image transmission module sends a second transmission instruction to the terminal device, so that the terminal device performs a second transmission according to the second transmission
  • the instruction increases a transmission rate of a data packet corresponding to the buffer queue to a second rate range.
  • the method further includes:
  • the ground image transmission module sends a third transmission instruction to the terminal device, so that the terminal device performs a third transmission instruction according to the third transmission
  • the instruction reduces the transmission rate of the data packet corresponding to the buffer queue to a third rate range; wherein the second threshold value is greater than the first threshold value, and the maximum value of the third rate range is less than the first rate The minimum value of the range.
  • the method further includes: determining whether a data amount of a data packet buffered in the buffer queue and a data amount of a previous moment in the buffer queue are at a same threshold Within range
  • the method further includes: if a data amount of a data packet buffered in the buffer queue is less than a first threshold, and a data amount at a previous moment of the buffer queue is greater than Equal to the first threshold, the ground image transmission module sends a second transmission instruction to the terminal device, so that the terminal device increases the transmission rate of the data packet corresponding to the buffer queue to the terminal device according to the second transmission instruction Within the second rate range.
  • the method further includes: if a data amount of a data packet buffered in the buffer queue is greater than a third threshold, and a data amount at a previous moment of the buffer queue is less than Or equal to the third threshold, or the data amount of the data packets buffered in the buffer queue is less than the fourth threshold and the data amount at the previous moment of the buffer queue is greater than or equal to the fourth threshold, the ground image transmission module sends the The terminal device sends a first transmission instruction, so that the terminal device reduces a transmission rate of a data packet corresponding to the buffer queue to a first rate range according to the first transmission instruction.
  • the ground image transmission module receiving at least two data packets sent in parallel by a terminal device includes:
  • the ground image transmission module receives at least two data packets sent in parallel by the terminal device through a USB channel.
  • an embodiment of the present invention provides a data transmission device for an unmanned aerial vehicle system, including:
  • a receiving module configured to receive at least two data packets sent in parallel by a terminal device, and each of the at least two data packets corresponds to a module in a drone system;
  • a sending module is configured to transmit a data packet corresponding to the module to the module through a communication channel between the modules corresponding to the data packet in the UAV system.
  • the apparatus further includes:
  • a buffering module configured to buffer each data packet in the at least two data packets to a buffer queue corresponding to each data packet
  • the sending module is specifically configured to transmit a data packet in a buffer queue to a module corresponding to the data packet through a communication channel between the modules corresponding to the data packet in the UAV system.
  • the sending module is specifically configured to send a transmission instruction to the terminal device according to a data amount of a data packet buffered in a buffer queue, so that the terminal device performs The transmission instruction adjusts a transmission rate of a data packet corresponding to the buffer queue.
  • the apparatus further includes:
  • a judging module configured to judge whether a data amount of a data packet buffered in the buffer queue is greater than a first threshold
  • the sending module is further configured to: if the data amount of the data packet buffered in the buffer queue is greater than or equal to the first threshold, the ground image transmission module sends a first transmission instruction to the terminal device, so that The terminal device reduces a transmission rate of a data packet corresponding to the buffer queue to a first rate range according to the first transmission instruction.
  • the sending module is further configured to send a second transmission instruction to the terminal device if the data amount of the data packet buffered in the buffer queue is smaller than the first threshold, so that the The terminal device increases the transmission rate of the data packet corresponding to the buffer queue to a second rate range according to the second transmission instruction.
  • the determining module is further configured to determine, if the data amount of the data packet buffered in the buffer queue is smaller than the first threshold, determining Whether the data amount of the data packet is greater than a second threshold;
  • the sending module is specifically configured to send a third transmission instruction to the terminal device if the data amount of a data packet buffered in the buffer queue is greater than or equal to a second threshold, so that the terminal device The terminal device reduces the transmission rate of the data packet corresponding to the buffer queue to a third rate range according to the third transmission instruction, wherein the second threshold value is greater than the first threshold value, and the third rate range The maximum value is less than the minimum value of the first rate range.
  • the determining module is further configured to determine whether a data amount of a data packet buffered in the buffer queue is the same as a data amount of a previous time in the buffer queue. Within a threshold range; if not, determine whether the data amount of the data packet buffered in the buffer queue is greater than the first threshold.
  • the receiving module is specifically configured to receive at least two data packets sent in parallel by the terminal device through a USB channel.
  • an embodiment of the present invention provides a ground image transmission module, including:
  • the processor is configured to execute the computer program to implement the data transmission method of the drone system according to the first aspect.
  • an embodiment of the present invention provides a data upload system for an unmanned aerial vehicle, which is characterized by comprising: a terminal device and a drone system for communication connection, the drone system including a ground system and an aircraft connected for communication System, the ground system comprising the ground image transmission module according to the third aspect.
  • an embodiment of the present invention provides a computer storage medium, characterized in that a computer program is stored in the storage medium, and the computer program, when executed, implements the data transmission method of the drone system according to the first aspect. .
  • the data transmission method, device, system and ground image transmission module of the unmanned aerial vehicle system provided by the embodiments of the present invention.
  • the ground image transmission module receives at least two data packets sent in parallel by a terminal device, and each of the at least two data packets Each data packet corresponds to a module in the drone system; then, the ground image transmission module transmits the data packet corresponding to the module to the module through a communication channel between the modules corresponding to the data packet in the drone system. That is, in this embodiment, the link bandwidth between the terminal device and the ground image transmission module and the link bandwidth between the modules are used to quickly implement data packet transmission corresponding to each module.
  • FIG. 1 is a schematic diagram of an existing drone system
  • FIG. 2 is a flowchart of a data transmission method of an unmanned aerial vehicle system according to a first embodiment of the present invention
  • FIG. 3 is a flowchart of a data transmission method of an unmanned aerial vehicle system according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a data transmission process of a drone system according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of channel bandwidth comparison between modules involved in Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart of a data transmission method of an unmanned aerial vehicle system according to a third embodiment of the present invention.
  • FIG. 7 is a flowchart of a data transmission method of an unmanned aerial vehicle system according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a buffer queue according to the fourth embodiment.
  • FIG. 9 is a schematic diagram of another buffer queue according to the fourth embodiment.
  • FIG. 10 is a flowchart of a data transmission method of an unmanned aerial vehicle system according to Embodiment 5 of the present invention.
  • FIG. 11 is a schematic diagram of a buffer queue according to the fifth embodiment.
  • FIG. 12 is a schematic structural diagram of a data transmission device of an unmanned aerial vehicle system according to Embodiment 1 of the present invention.
  • FIG. 13 is a schematic structural diagram of a data transmission device of an unmanned aerial vehicle system according to Embodiment 2 of the present invention.
  • FIG. 14 is a schematic structural diagram of a data transmission device of an unmanned aerial vehicle system according to a third embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a ground image transmission module according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a data upload system of a drone according to an embodiment of the present invention.
  • the technical solution provided by the embodiment of the present invention is applicable to a scenario in which a terminal device sends data to a drone system.
  • the ground image transmission module is directly connected to the terminal device.
  • the ground image transmission module receives the data packets of each module of the drone system sent in parallel by the terminal device, and transmits the data through the communication channel with each module.
  • the packet is sent to the corresponding module, and the bandwidth of each link is fully utilized in the shortest time to complete the data transmission quickly.
  • the method of this embodiment can select the optimal rate to transmit data in real time according to the current bandwidth status, the transmission rate will automatically change according to the current bandwidth fluctuation, and the problem of transmission rate switching oscillation will not be introduced.
  • FIG. 2 is a flowchart of a data transmission method of an unmanned aerial vehicle system according to a first embodiment of the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • the ground image transmission module receives at least two data packets sent in parallel by a terminal device, and each of the at least two data packets corresponds to a module in a drone system.
  • the execution subject of this embodiment is a ground image transmission module in a drone system, and the ground image transmission module is used to implement a communication connection with the image transmission module in the drone, so as to implement sending instructions or information to the drone, or from The drone receives data (such as image data).
  • the ground image transmission module can be configured on the ground side (or remote control equipment, ground remote control, etc.).
  • the terminal device in this embodiment may be a terminal device that can interact with a drone system, such as a smart phone, a desktop computer, and a notebook computer.
  • the terminal device can realize the communication connection with the ground image transmission module through the ground-side communication interface.
  • the communication interface may be a wired or wireless communication interface.
  • the ground side can receive data transmitted by the terminal device through the communication interface, and the communication interface can transmit the data to the ground image transmission module.
  • the terminal device and the ground image transmission module directly implement a communication connection, which is not limited herein.
  • the drone system of this embodiment may include a drone side, a ground side, and the ground side includes a plurality of modules in addition to a ground image transmission module, for example, a remote control panel; the drone side may Including aircraft image transmission module, camera module, etc.
  • a ground image transmission module for example, a remote control panel
  • the drone side may Including aircraft image transmission module, camera module, etc.
  • the ground image transmission module and the terminal device in this embodiment may be connected through a wired connection or wirelessly to communicate.
  • the data packet sent by the terminal device in this embodiment may be module upgrade file data, configuration file data, and the like.
  • a data packet corresponds to a module in a drone system.
  • the data packet includes an identifier of the module, and the module corresponding to the data packet can be obtained according to the identifier.
  • the ground image transmission module receives at least two data packets sent by the terminal device in parallel.
  • multiple communication channels can be established between the terminal device and the ground image transmission module, and the terminal device and the ground image transmission module respectively establish the same number of threads as the communication channels to transmit data in parallel using the multiple communication channels.
  • the terminal device and the ground image transmission module can be connected via USB.
  • the terminal equipment can transmit multiple data packets to the ground image transmission module in parallel using multiple communication channels, thereby improving transmission efficiency.
  • the terminal device can use multiple communication channels to transmit ground image transmission data packets, remote control panel data packets, aircraft image transmission data packets, and camera data packets, respectively.
  • each data packet is transmitted through a communication channel.
  • plural means at least two.
  • the data package in this embodiment may be downloaded by the terminal device from the network.
  • the terminal device downloads the latest upgrade file data of the camera from the network. Package, and send the upgrade file data package to the ground image transmission module.
  • the foregoing S101 may include:
  • the ground image transmission module receives at least two data packets sent in parallel by the terminal device through a USB channel.
  • USB Universal Serial Bus
  • the terminal device sends data packets of the four modules of the camera, vision module, remote control panel, and flight control module in the UAV system in parallel.
  • the ground image transmission module can establish four threads and receive the terminal on the first thread.
  • the above 4 threads are executed in parallel, thereby improving the data packet receiving rate and taking full advantage of the bandwidth advantage of the USB channel.
  • the ground image transmission module transmits a data packet corresponding to the module to the module through a communication channel between the modules corresponding to the data packet in the UAV system.
  • the communication connections between the various modules in the UAV system for example, the camera and the aircraft image transmission module are connected via Ethernet communication, and the aircraft image transmission module and the ground image transmission module are connected by wireless network communication.
  • the ground image transmission module transmits the data packet of the module to the communication channel through the communication channel between the modules corresponding to the data packet in the drone system. Module.
  • the ground image transmission module receives the data packet of the camera and the remote control panel in parallel from the terminal device, the ground image transmission module sends the camera data packet to the aircraft image transmission module through the wireless network channel. Then, the aircraft image transmission The module sends the camera's data packet to the camera via the Ethernet channel. At the same time, the ground image transmission module sends the data packets of the remote control panel to the remote control panel through the Ethernet channel, thereby realizing the distribution of each data packet.
  • the data transmission method of the drone system provided by the embodiment of the present invention.
  • the ground image transmission module receives at least two data packets sent by the terminal device in parallel, and each of the at least two data packets corresponds to the drone system.
  • a module then, the ground image transmission module transmits a data packet corresponding to the module to the module through a communication channel between the modules corresponding to the data packet in the drone system. That is, in this embodiment, the link bandwidth between the terminal device and the ground image transmission module and the link bandwidth between the modules are used to quickly implement data packet transmission corresponding to each module.
  • FIG. 3 is a flowchart of a data transmission method of an unmanned aerial vehicle system according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a connection channel between various modules in the unmanned aerial vehicle system according to the second embodiment of the present invention.
  • the modules in the UAV system of this embodiment include a ground image transmission module, a remote control panel, a remote control single-chip microcomputer, an aircraft image transmission module, a vision module, a camera, and at least one first module.
  • the first module is communicatively connected with the aircraft image transmission module through a serial port.
  • each first module may be any one of a PTZ module, an ESC module, a battery module, an ultrasound module, and a flight control module.
  • the ground image transmission module receives at least two data packets sent in parallel by the terminal device through a USB channel, and can be replaced by the following S201.
  • the ground image transmission module receives at least two of a camera data packet, a ground image transmission data packet, an aircraft image transmission data packet, and a remote control panel data packet sent in parallel by the terminal device through a USB channel.
  • the ground image transmission data packet may include a data packet of a ground image transmission module and / or a data packet of the remote control microcontroller
  • the aircraft image transmission data packet may include a data packet of the vision module, the aircraft image At least one of a data packet of the module and a data packet of each of the first modules.
  • the terminal device establishes 4 threads to send 4 data packets in parallel through the USB channel, which are a camera data packet, a ground image transmission data packet, an aircraft image transmission data packet, and a remote control panel data packet.
  • the ground image transmission module establishes four threads to receive the four file data sent by the USB channel in parallel.
  • the corresponding S102 may include the following S202, S203, S204, and S205. In this embodiment, there is no sequence between S202, S203, S204, and S205, and they may be performed in parallel without mutual interference.
  • the ground image transmission module sends the aircraft image transmission data packet to a storage device of the aircraft image transmission module through a wireless network channel, so that the aircraft image transmission module transmits the aircraft image transmission data packet through a serial port.
  • a data packet about the first module is sent to the first module.
  • the ground image transmission module sends the camera data packet to an aircraft image transmission module through a wireless network channel, so that the aircraft image transmission module sends the camera data packet to a camera through an Ethernet channel.
  • the ground image transmission module sends the remote control panel data packet to the remote control panel through an Ethernet channel.
  • the ground image transmission module sends a data packet of the remote control single-chip microcomputer in the ground image transmission data packet to the remote control single-chip microcomputer through a serial port.
  • the ground image transmission module can disassemble the ground image transmission module from the ground image transmission data packet.
  • Data packet the data packet of the ground image transmission module is directly stored in Flash1, and then the data packet of the remote control microcontroller is disassembled from the ground image transmission data packet, and the data packet of the remote control microcontroller is sent to the remote control microcontroller through the serial port 3.
  • the ground image transmission module sends the remote control panel data packet to the remote control panel through the Ethernet channel. After receiving the remote control panel data packet, the remote control panel directly saves it to Flash2.
  • the ground image transmission module sends the aircraft image transmission data packet to the aircraft image transmission module through the wireless network channel.
  • the aircraft image transmission module disassembles the data packet of the aircraft image transmission module from the aircraft image transmission data packet, and transmits the aircraft image transmission module.
  • the data package is saved to Flash3.
  • the aircraft image transmission module disassembles the vision module data packet from the aircraft image transmission data packet, and sends the data packet of the vision module to the vision module through the serial port 1.
  • the aircraft image transmission module disassembles the data package of each of the first modules, such as the gimbal module, ESC module, battery module, ultrasonic module, and flight control module, from the aircraft image transmission data package, and transmits them one by one through serial port 2. Go out.
  • the ground image transmission module sends the camera data packet to the aircraft image transmission module through the wireless network channel.
  • the aircraft image module transmits the camera data packet to the camera through the Ethernet channel, and the camera saves the camera data packet to the camera's Flash4.
  • Each Flash in FIG. 5 is an implementation manner of the storage device in the module.
  • the USB channel has the largest bandwidth for each communication link, followed by Ethernet, and wireless again, and the serial channel has the smallest bandwidth.
  • each bandwidth can be fully utilized in the shortest time, and file transmission can be completed quickly.
  • FIG. 6 is a flowchart of a data transmission method of an unmanned aerial vehicle system according to Embodiment 3 of the present invention. Based on the foregoing embodiment, this embodiment relates to a process of adjusting a transmission rate of a terminal device. As shown in FIG. 6, this embodiment may include:
  • the ground image transmission module receives at least two data packets sent by the terminal device in parallel.
  • the ground image transmission module buffers each data packet in the at least two data packets to a buffer queue corresponding to each data packet.
  • the ground image transmission module in this embodiment includes multiple buffer queues, and stores each data packet sent by the terminal device in a buffer queue corresponding to each data packet, that is, one data packet corresponds to one buffer queue. For example, save to the FLASH buffer queue in the ground image transmission module.
  • the ground image transmission module sends a transmission instruction to the terminal device according to the data amount of the data packet buffered in the buffer queue, so that the terminal device adjusts the transmission rate of the data packet corresponding to the buffer queue according to the transmission instruction. .
  • this embodiment performs statistics on the data amount of the data packets buffered in each buffer queue, and sends a transmission instruction to the terminal device according to the data amount of the data packet to adjust the transmission rate of the terminal device.
  • the ground image transmission module sends a transmission instruction to the terminal device, and the transmission instruction is used to instruct the terminal device to reduce the The data packet transmission rate.
  • the ground image transmission module sends a transmission instruction to the terminal device, and the transmission instruction is used to instruct the terminal device to increase the data packet. Transmission rate.
  • the ground image transmission module of this embodiment can adjust the transmission rate of the terminal device to transmit the data packet according to the data amount of the data packet buffered in the buffer queue, so that the terminal device selects the most appropriate rate to transmit the data packet and improve the data. Packet transmission efficiency.
  • the manner in which the terminal device adjusts the transmission rate of the data packet may be that the ground image transmission module carries the transmission rate of the data packet in the transmission instruction, and the terminal device directly adjusts the data according to the transmission rate carried in the transmission instruction.
  • the transmission rate of the packet may be that the ground image transmission module carries the transmission rate of the data packet in the transmission instruction, and the terminal device directly adjusts the data according to the transmission rate carried in the transmission instruction.
  • the transmission rate of the packet may be that the ground image transmission module carries the transmission rate of the data packet in the transmission instruction, and the terminal device directly adjusts the data according to the transmission rate carried in the transmission instruction.
  • the transmission rate of the packet may be that the ground image transmission module carries the transmission rate of the data packet in the transmission instruction, and the terminal device directly adjusts the data according to the transmission rate carried in the transmission instruction.
  • the transmission rate of the packet may be that the ground image transmission module carries the transmission rate of the data packet in the transmission instruction, and the terminal device directly adjusts the data according to the transmission rate carried in
  • the ground image transmission module transmits a data packet in a buffer queue to a module corresponding to the data packet through a communication channel between the modules corresponding to the data packet in the UAV system.
  • the ground image transmission module receives a camera data packet, a ground image transmission data packet, an airplane image transmission data packet, and a remote control panel data packet, etc., sent by the terminal device in parallel through a USB channel. Save to the corresponding buffer queue, and then transmit the data packets in the buffer queue to the module corresponding to the data packet through the communication channel between the modules corresponding to the data packet in the drone system through the ground image transmission module.
  • the ground image transmission module establishes 4 buffer queues.
  • the first buffer queue is used to buffer camera data packets
  • the second buffer queue is used to buffer ground image transmission packets
  • the third buffer queue is used to buffer aircraft image transmission packets.
  • Three buffer queues are used to buffer remote control panel data packets.
  • the ground image transmission module sends the camera data packet in the first buffer queue to the aircraft image transmission module through the wireless network channel, so that the aircraft image transmission module forwards the image data to the camera through the Ethernet channel.
  • the ground image transmission module sends the remote control single-chip computer data packet in the ground image transmission data packet in the second buffer queue to the remote control single-chip computer through the serial port 3.
  • the ground image transmission module sends the aircraft image transmission data packet in the third buffer queue to the aircraft image transmission module through the wireless network channel.
  • the ground image transmission module sends the remote control panel data packet in the fourth buffer queue to the remote control panel through the Ethernet channel.
  • the ground image transmission module buffers each data packet in at least two data packets to a buffer queue corresponding to each data packet; then, the ground image transmission module according to the buffer queue
  • the data amount of the data packet buffered in the medium sends a transmission instruction to the terminal device, so that the terminal device adjusts the transmission rate of the data packet corresponding to the buffer queue according to the transmission instruction; then, the ground image transmission module passes the data in the drone system through A communication channel between the modules corresponding to the packet, and transmits the data packets in the buffer queue to the module corresponding to the data packet.
  • a buffer queue is set for each data packet in the ground image transmission module, and the transmission rate of the data packet transmitted by the terminal device is adjusted according to the amount of data buffered in the buffer queue, so that the terminal device automatically selects the most real-time Transmission of data packets at a proper rate improves the transmission efficiency of the data packets.
  • the transmission rate will automatically change according to the current bandwidth fluctuation, and it will not introduce the problem of data packet loss caused by transmission rate switching oscillation.
  • FIG. 7 is a flowchart of a data transmission method of an unmanned aerial vehicle system according to a fourth embodiment of the present invention
  • FIG. 8 is a schematic diagram of a buffer queue according to the fourth embodiment. Based on the above embodiment, this embodiment relates to a specific process in which the ground image transmission module sends a transmission instruction to the terminal device according to the data amount of the data packet buffered in the buffer queue, as shown in FIG. 7.
  • S303 may include:
  • S401 Determine whether a data amount of a data packet buffered in the buffer queue is greater than a first threshold.
  • the ground image transmission module sends a first transmission instruction to the terminal device, so that the terminal device is The first transmission instruction reduces a transmission rate of a data packet corresponding to the buffer queue to a first rate range.
  • the ground image transmission module sends a second transmission instruction to the terminal device, so that the terminal device performs a second transmission instruction according to the second transmission.
  • the instruction increases a transmission rate of a data packet corresponding to the buffer queue to a second rate range.
  • the ground image transmission module includes four buffer queues, and each queue is provided with a waterline (for example, waterline L 1 ).
  • the transmission rate can be divided into two levels of fast (H) and slow (S), which correspond to the first transmission rate and the second transmission rate in order.
  • This embodiment uses one buffer queue as an example for description, and other buffer queues can be referred to.
  • the ground image transmission module counts the data amount n of the data packets buffered in the buffer queue. If the data amount n is greater than the first threshold L1, it means that the current drone system has a tight bandwidth, and sends a transmission instruction to the terminal device to notify the terminal device to enter. S file, sending data at a slower rate. That is, the first transmission instruction sent by the ground image transmission module to the terminal device, so that the terminal device reduces the transmission rate of the data packet corresponding to the buffer queue to a first rate range according to the first transmission instruction (that is, corresponding to the S file). Rate range).
  • the terminal device If the data amount n of the data packet buffered in the buffer queue is less than the first threshold L1, it means that the current drone system has sufficient bandwidth, and the terminal device is notified to enter the H-range to send data at a faster rate. That is, the second transmission instruction sent by the ground image transmission module to the terminal device, so that the terminal device increases the transmission rate of the data packet corresponding to the buffer queue to a second rate range according to the second transmission instruction (that is, H Speed range).
  • the second transmission rate is greater than the first transmission rate.
  • the method in this embodiment further includes:
  • the ground image transmission module sends a third transmission instruction to the terminal device, so that the terminal device performs a third transmission instruction according to the third transmission
  • the instruction reduces the transmission rate of the data packet corresponding to the buffer queue to a third rate range; wherein the second threshold value is greater than the first threshold value, and the maximum value of the third rate range is less than the first rate The minimum value of the range.
  • the ground image transmission module includes four buffer queues, and each queue is provided with two water lines (high water line L 2 and low water line L 1 ).
  • the transmission rate can be divided into three levels: fast (H), medium (M), and slow (S), which correspond to the third transmission rate, the second transmission rate, and the first transmission rate in this order.
  • This embodiment uses one buffer queue as an example for description, and other buffer queues can be referred to.
  • the ground image transmission module counts the data amount n of the data packets buffered in the buffer queue. If the data amount n is greater than the first threshold L1 and greater than the second threshold L2, the current bandwidth of the drone system is very tight, and the terminal device is notified to enter S Files, sending data at a slower rate. That is, the third transmission instruction sent by the ground image transmission module to the terminal device, so that the terminal device reduces the transmission rate of the data packet corresponding to the buffer queue to a third rate range according to the third transmission instruction (that is, S Speed range).
  • the data amount n of the data packets buffered in the buffer queue is larger than the first threshold L1 and smaller than the second threshold L2, that is, L2 ⁇ n ⁇ L1, it means that the current bandwidth of the drone system is in a normal state, and the terminal device is notified to enter the M range.
  • Data is transmitted at a first transmission rate. That is, as shown in FIG. 9, when two water lines are set in each queue, the above-mentioned first transmission rate corresponds to M gears.
  • the second threshold is greater than the first threshold, and the second transmission rate> the first transmission rate> the third transmission rate.
  • the data transmission method of the drone system provided by the embodiment of the present invention instructs the terminal device to use three different transmission rates to transmit the data packets according to the data amount of the data packets buffered in the buffer queue, thereby automatically adjusting the transmission rate. Furthermore, problems such as transmission packet loss due to bandwidth fluctuations can be avoided.
  • FIG. 10 is a flowchart of a data transmission method of an unmanned aerial vehicle system according to a fifth embodiment of the present invention
  • FIG. 11 is a schematic diagram of a buffer queue according to the fifth embodiment. Based on the above embodiment, as shown in FIG. 10, this embodiment further includes:
  • S501 Determine whether a data amount of a data packet buffered in the buffer queue and a data amount of a previous moment in the buffer queue are within a same threshold range.
  • the amount of data in the buffer queue can be counted periodically. At this time, the previous moment can be understood as the previous sampling period.
  • the previous moment in this embodiment may be a time point when the data amount in the buffer queue was last counted.
  • the ground image transmission module sends the data to the terminal.
  • the device sends a third transmission instruction, so that the terminal device reduces the transmission rate of the data packet corresponding to the buffer queue to a third rate range according to the third transmission instruction.
  • the ground image transmission module sends the data to the terminal device. Send a second transmission instruction, so that the terminal device increases the transmission rate of the data packet corresponding to the buffer queue to a second rate range according to the second transmission instruction.
  • the second transmission rate is greater than the first transmission rate, and the second threshold is less than the first threshold.
  • the ground image transmission module sends a first transmission instruction to the terminal device, so that the terminal device A transmission instruction reduces a transmission rate of a data packet corresponding to the buffer queue to a first rate range.
  • the third transmission rate is smaller than the first transmission rate
  • the third threshold is larger than the first threshold and smaller than the fourth threshold
  • the fourth threshold is smaller than the second threshold
  • the waterlines L 1 and L 2 in FIG. 9 are modified to L 1u , L 1d , L 2u , and L 2d , where L 1d ⁇ L 1 ⁇ L 1u , L 2d ⁇ L 2 ⁇ L 2u .
  • the transmission rate is still divided into fast (H), medium (M), and slow (S).
  • This embodiment uses one buffer queue as an example for description, and other buffer queues can be referred to.
  • the ground image transmission module counts the data amount L of the data packet buffered at the current moment in the buffer queue and the data amount L o of the data packet buffered at the previous time.
  • the drone system If the data amount L at the current moment of the buffer queue is greater than the second threshold L 2u and the data amount L o at the previous moment of the buffer queue is less than or equal to L 2u , that is, L> L 2u and L o ⁇ L 2u , it means that the drone system
  • the current bandwidth is very tight, and the terminal device is notified to enter the S-range to send data at a slower rate. That is, the third transmission instruction sent by the ground image transmission module to the terminal device, so that the terminal device reduces the transmission rate of the data packet corresponding to the buffer queue to a third rate range according to the third transmission instruction (that is, S Speed range).
  • the human-machine system currently has sufficient bandwidth to notify the terminal device to enter the H-range to send data at a faster rate. That is, the second transmission instruction sent by the ground image transmission module to the terminal device, so that the terminal device increases the transmission rate of the data packet corresponding to the buffer queue to a second rate range according to the second transmission instruction (that is, H Speed range).
  • the data amount L at the current moment of the buffer queue is greater than the third threshold L 2u , and the data amount L o at the previous moment of the buffer queue is less than or equal to the third threshold L 2u , that is, L> L 2u and L o ⁇ L 2u , or
  • the amount of data L at the current moment in the queue is less than the fourth threshold L 1d
  • the amount of data at the previous moment in the buffer queue L o is greater than or equal to the fourth threshold L 1d , that is, L ⁇ L 1d and L o ⁇ L 1d
  • the drone The current bandwidth of the system is in a normal state, and the terminal device is notified to enter the M range and send data at a moderate rate. That is, the first transmission instruction sent by the ground image transmission module to the terminal device, so that the terminal device reduces the transmission rate of the data packet corresponding to the buffer queue to a first rate range according to the first transmission instruction (that is, M Speed range).
  • the data transmission method of the drone system provided by the embodiment of the present invention instructs the terminal device to use three different transmissions according to the data amount of the data packet buffered at the current moment in the buffer queue and the data amount of the data packet buffered at the previous time in the buffer queue. Rate to transmit data packets, which further improves the adjustment accuracy of the transmission rate and avoids the problem of oscillation during the transmission rate switching process.
  • FIG. 121 is a schematic structural diagram of a data transmission device of an unmanned aerial vehicle system according to Embodiment 1 of the present invention.
  • the data transmission device 100 of the drone system of this embodiment may include:
  • the receiving module 110 is configured to receive at least two data packets sent in parallel by a terminal device, and each of the at least two data packets corresponds to a module in a drone system;
  • the sending module 120 is configured to transmit a data packet corresponding to the module to the module through a communication channel between the modules corresponding to the data packet in the UAV system.
  • the data transmission device of the unmanned aerial vehicle system according to the embodiment of the present invention may be used to execute the technical solution of the method embodiment shown above, and the implementation principles and technical effects thereof are similar, and are not repeated here.
  • FIG. 13 is a schematic structural diagram of a data transmission device of an unmanned aerial vehicle system according to a second embodiment of the present invention. Based on the above embodiment, as shown in FIG. 13, the data transmission device 100 of the drone system of this embodiment may further include a cache module 130:
  • the buffer module 130 is configured to buffer each data packet in the at least two data packets to a buffer queue corresponding to each data packet;
  • the sending module 120 is specifically configured to transmit a data packet in a buffer queue to a module corresponding to the data packet through a communication channel between the modules corresponding to the data packet in the UAV system.
  • the sending module 120 is further configured to send a transmission instruction to the terminal device according to a data amount of a data packet buffered in each of the buffer queues, so that the terminal The device transmits a data packet of each of the modules according to a transmission rate indicated by the transmission instruction.
  • the data transmission device of the unmanned aerial vehicle system according to the embodiment of the present invention may be used to execute the technical solution of the method embodiment shown above, and the implementation principles and technical effects thereof are similar, and are not repeated here.
  • FIG. 14 is a schematic structural diagram of a data transmission device of an unmanned aerial vehicle system according to a third embodiment of the present invention. Based on the above embodiment, as shown in FIG. 14, the data transmission device 100 of the UAV system in this embodiment may further include a determination module 140:
  • a judging module judging whether a data amount of a data packet buffered in the buffer queue is greater than a first threshold
  • the sending module 120 is specifically configured to send a first transmission instruction to the terminal device if the data amount of the data packet buffered in the buffer queue is greater than or equal to the first threshold, so as to Enabling the terminal device to reduce a transmission rate of a data packet corresponding to the buffer queue to a first rate range according to the first transmission instruction.
  • the sending module 120 is further specifically configured to send a second transmission instruction to the terminal device if the data amount of the data packet buffered in the buffer queue is less than the first threshold, so that According to the second transmission instruction, the terminal device increases a transmission rate of a data packet corresponding to the buffer queue to a second rate range.
  • the determining module 140 is further configured to determine the data buffered in the buffer queue if the data amount of the data packet buffered in the buffer queue is less than the first threshold. Whether the data amount of the packet is greater than the second threshold;
  • the sending module 120 is further specifically configured to send a third transmission instruction to the terminal device if the data amount of the data packet buffered in the buffer queue is greater than or equal to a second threshold, so that The terminal device reduces the transmission rate of the data packet corresponding to the buffer queue to a third rate range according to the third transmission instruction; wherein the second threshold value is greater than the first threshold value and the third rate The maximum value of the range is less than the minimum value of the first rate range.
  • the determining module 140 is further configured to determine whether a data amount of a data packet buffered in the buffer queue and a data amount of a previous moment in the buffer queue are in Within the same threshold range; if not, determine whether the data amount of the data packet buffered in the buffer queue is greater than the second threshold.
  • the receiving module 110 is specifically configured to receive at least two data packets sent in parallel by the terminal device through a USB channel.
  • the data transmission device of the unmanned aerial vehicle system according to the embodiment of the present invention may be used to execute the technical solution of the method embodiment shown above, and the implementation principles and technical effects thereof are similar, and are not repeated here.
  • FIG. 15 is a schematic structural diagram of a ground image transmission module according to an embodiment of the present invention. As shown in FIG. 15, the ground image transmission module 30 of this embodiment includes:
  • the processor 32 is configured to execute the computer program to implement the data transmission method of the UAV system, and its implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of a UAV data upload system according to an embodiment of the present invention. As shown in FIG. 16, the UAV data upload system 40 of this embodiment includes:
  • the communication-connected terminal device 41 and the drone system 42 include a ground system 421 and an aircraft system 422 that are communicatively connected, and the ground system 421 includes the ground image transmission module 30 described in FIG. 14.
  • the terminal device 41 in this embodiment and the ground image transmission module 30 are connected through USB.
  • the ground image transmission module 30 can implement the data transmission method of the drone system described in the foregoing embodiment, and its implementation principle It is similar to the technical effect and will not be repeated here.
  • the embodiment of the present invention also provides a computer storage medium, where the computer storage medium is used for storing the above-mentioned drone.
  • the computer software instructions for data uploading when run on a computer, enable the computer to execute the data transmission methods of various possible drone systems in the above method embodiments.
  • the processes or functions according to the embodiments of the present invention may be generated in whole or in part.
  • the computer instructions may be stored in a computer storage medium, or transmitted from one computer storage medium to another computer storage medium, and the transmission may be wireless (for example, cellular communication, infrared, short-range wireless, microwave, etc.) to another A website site, computer, server, or data center.
  • the computer storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, an SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Communication Control (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例公开了一种无人机系统的数据传输方法、装置、系统和地面图传模块,所述方法包括:地面图传模块通过接收终端设备并行发送的至少两个数据包,其中至少两个数据包中的每个数据包对应无人机系统中的一个模块;接着,地面图传模块通过与无人机系统中数据包对应的模块之间的通信通道,将该模块对应的数据包传输至该模块。即本实施例,利用终端设备与地面图传模块之间的链路带宽,以及各模块之间的链路带宽,快速实现各模块对应的数据包的传输。

Description

无人机系统的数据传输方法、装置、系统和地面图传模块
申请要求于2018年7月13日申请的、申请号为201810772483.5、申请名称为“无人机系统的数据传输方法、装置、系统和地面图传模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种无人机系统的数据传输方法、装置、系统和地面图传模块。
背景技术
图1为现有的无人机系统的示意图,如图1所示,无人机系统主要分为飞机侧和地面侧,其中地面侧与飞机侧无线通信连接。当需要上传文件到无人机系统,比如上传升级文件、配置文件等时,终端设备与无人机系统地面侧的地面遥控器连接。
如图1所示,无人机系统的模块众多,例如飞机侧有相机、云台、视觉、4个电调、智能电池、超声、飞控、飞机端图传等模块,地面侧有遥控单片机、地面图传、遥控面板等模块。各个模块都是独立的硬件和软件系统,之间通过串口或者网络连接,而这些链路之间传输带宽是不同的,而且波动比较大。如何把文件快速稳定的上传到无人机各个模块,成为开发的难点问题。
发明内容
本发明实施例提供一种无人机系统的数据传输方法、装置、系统和地面图传模块。
第一方面,本发明实施例提供一种无人机系统的数据传输方法,包括:
地面图传模块接收终端设备并行发送的至少两个数据包,所述至少两个 数据包中的每个数据包对应无人机系统中的一个模块;
所述地面图传模块通过与所述无人机系统中数据包对应的模块之间的通信通道,将所述模块对应的数据包传输至所述模块。
在第一方面的一种可能的实现方式中,所述地面图传模块接收终端设备并行发送的至少两个数据包之后,所述方法还包括:
所述地面图传模块将所述至少两个数据包中的各数据包分别缓存至所述各数据包对应的缓冲队列中;
所述地面图传模块通过与所述无人机系统中数据包对应的模块之间的通信通道,将所述模块对应的数据包传输至所述模块,包括:
所述地面图传模块通过与所述无人机系统中数据包对应的模块之间的通信通道,将缓冲队列中的各数据包传输至所述数据包对应的模块。
在第一方面的另一种可能的实现方式中,所述地面图传模块将所述至少两个数据包中的各数据包分别缓存至所述各数据包对应的缓冲队列中之后,所述方法还包括:
所述地面图传模块根据缓冲队列中缓存的数据包的数据量,向所述终端设备发送传输指令,以使所述终端设备按照所述传输指令调整所述缓冲队列对应的数据包的传输速率。
在第一方面的另一种可能的实现方式中,所述地面图传模块根据缓冲队列中缓存的数据包的数据量,向所述终端设备发送传输指令,包括:
判断所述缓冲队列中缓存的数据包的数据量是否大于第一阈值;
若所述缓冲队列中缓存的数据包的数据量大于或等于所述第一阈值,则所述地面图传模块向所述终端设备发送第一传输指令,以使所述终端设备根据所述第一传输指令将所述缓冲队列对应的数据包的传输速率降低至第一速率范围内;
若所述缓冲队列中缓存的数据包的数据量小于所述第一阈值,则所述地面图传模块向所述终端设备发送第二传输指令,以使所述终端设备根据所述第二传输指令将所述缓冲队列对应的数据包的传输速率提升至第二速率范围内。
在第一方面的另一种可能的实现方式中,所述方法还包括:
若所述缓冲队列中缓存的数据包的数据量小于所述第一阈值,判断所述缓冲队列中缓存的数据包的数据量是否大于第二阈值;
若所述缓冲队列中缓存的数据包的数据量大于或等于第二阈值,则所述地面图传模块向所述终端设备发送第三传输指令,以使所述终端设备根据所述第三传输指令将所述缓冲队列对应的数据包的传输速率降低至第三速率范围内;其中,所述第二阈值大于所述第一阈值,所述第三速率范围的最大值小于所述第一速率范围的最小值。
在第一方面的另一种可能的实现方式中,所述方法还包括:判断所述缓冲队列中缓存的数据包的数据量与所述缓冲队列中前一时刻的数据量是否处于同一个阈值范围内;
若否,判断所述缓冲队列中缓存的数据包的数据量是否大于所述第一阈值。
在第一方面的另一种可能的实现方式中,所述方法还包括:若所述缓冲队列中缓存的数据包的数据量小于第一阈值,且所述缓冲队列前一时刻的数据量大于等于第一阈值,则所述地面图传模块向所述终端设备发送第二传输指令,以使所述终端设备根据所述第二传输指令将所述缓冲队列对应的数据包的传输速率提升至第二速率范围内。
在第一方面的另一种可能的实现方式中,所述方法还包括:若所述缓冲队列中缓存的数据包的数据量大于第三阈值,且所述缓冲队列前一时刻的数据量小于或等于第三阈值,或所述缓冲队列中缓存的数据包的数据量小于第四阈值且所述缓冲队列前一时刻的数据量大于或等于第四阈值,则所述地面图传模块向所述终端设备发送第一传输指令,以使所述终端设备根据所述第一传输指令将所述缓冲队列对应的数据包的传输速率降低至第一速率范围内。
在第一方面的另一种可能的实现方式中,所述地面图传模块接收终端设备并行发送的至少两个数据包,包括:
所述地面图传模块通过USB通道接收所述终端设备并行发送的至少两个数据包。
第二方面,本发明实施例提供一种无人机系统的数据传输装置,包括:
接收模块,用于接收终端设备并行发送的至少两个数据包,所述至少两 个数据包中的每个数据包对应无人机系统中的一个模块;
发送模块,用于通过与所述无人机系统中数据包对应的模块之间的通信通道,将所述模块对应的数据包传输至所述模块。
在第二方面的一种可能的实现方式中,所述装置还包括:
缓存模块,用于将所述至少两个数据包中的各数据包分别缓存至所述各数据包对应的缓冲队列中;
所述发送模块,具体用于通过与所述无人机系统中数据包对应的模块之间的通信通道,将缓冲队列中的数据包传输至所述数据包对应的模块。
在第二方面的另一种可能的实现方式中,所述发送模块,具体用于根据缓冲队列中缓存的数据包的数据量,向所述终端设备发送传输指令,以使所述终端设备按照所述传输指令调整所述缓冲队列对应的数据包的传输速率。
在第二方面的另一种可能的实现方式中,所述装置还包括:
判断模块,用于判断所述缓冲队列中缓存的数据包的数据量是否大于第一阈值;
所述发送模块,还用于若所述缓冲队列中缓存的数据包的数据量大于或等于所述第一阈值,则所述地面图传模块向所述终端设备发送第一传输指令,以使所述终端设备根据所述第一传输指令将所述缓冲队列对应的数据包的传输速率降低至第一速率范围内。
所述发送模块,还用于若所述缓冲队列中缓存的数据包的数据量小于所述第一阈值,则所述地面图传模块向所述终端设备发送第二传输指令,以使所述终端设备根据所述第二传输指令将所述缓冲队列对应的数据包的传输速率提升至第二速率范围内。
在第二方面的另一种可能的实现方式中,所述判断模块,还用于若所述缓冲队列中缓存的数据包的数据量小于所述第一阈值,判断所述缓冲队列中缓存的数据包的数据量是否大于第二阈值;
所述发送模块,具体用于若所述缓冲队列中缓存的数据包的数据量大于或等于第二阈值,则所述地面图传模块向所述终端设备发送第三传输指令,以使所述终端设备根据所述第三传输指令将所述缓冲队列对应的数据包的传输速率降低至第三速率范围内;其中,所述第二阈值大于所述第一阈值,所 述第三速率范围的最大值小于所述第一速率范围的最小值。
在第二方面的另一种可能的实现方式中,所述判断模块,还用于判断所述缓冲队列中缓存的数据包的数据量与所述缓冲队列中前一时刻的数据量是否处于同一个阈值范围内;若否,判断所述缓冲队列中缓存的数据包的数据量是否大于所述第一阈值。
在第二方面的另一种可能的实现方式中,所述接收模块,具体用于通过USB通道接收所述终端设备并行发送的至少两个数据包。
第三方面,本发明实施例提供一种地面图传模块,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序,以实现如第一方面所述的无人机系统的数据传输方法。
第四方面,本发明实施例提供一种无人机的数据上传系统,其特征在于,包括:通信连接的终端设备和无人机系统,所述无人机系统包括通信连接的地面系统和飞机系统,所述地面系统包括如第三方面所述的地面图传模块。
第五方面,本发明实施例提供一种计算机存储介质,其特征在于,所述存储介质中存储计算机程序,所述计算机程序在执行时实现第一方面所述的无人机系统的数据传输方法。
本发明实施例提供的无人机系统的数据传输方法、装置、系统和地面图传模块,地面图传模块通过接收终端设备并行发送的至少两个数据包,其中至少两个数据包中的每个数据包对应无人机系统中的一个模块;接着,地面图传模块通过与无人机系统中数据包对应的模块之间的通信通道,将该模块对应的数据包传输至该模块。即本实施例,利用终端设备与地面图传模块之间的链路带宽,以及各模块之间的链路带宽,快速实现各模块对应的数据包的传输。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在 不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有的无人机系统的示意图;
图2为本发明实施例一提供的无人机系统的数据传输方法的流程图;
图3为本发明实施例二提供的无人机系统的数据传输方法的流程图;
图4为本发明实施例二涉及的无人机系统的数据传输流程示意图;
图5为本发明实施例二涉及的各模块之间的通道带宽对比示意图;
图6为本发明实施例三提供的无人机系统的数据传输方法的流程图;
图7为本发明实施例四提供的无人机系统的数据传输方法的流程图;
图8为本实施例四涉及的一种缓冲队列的示意图;
图9为本实施例四涉及的另一种缓冲队列的示意图;
图10为本发明实施例五提供的无人机系统的数据传输方法的流程图;
图11为本实施例五涉及的缓冲队列的示意图;
图12为本发明实施例一提供的无人机系统的数据传输装置的结构示意图;
图13为本发明实施例二提供的无人机系统的数据传输装置的结构示意图;
图14为本发明实施例三提供的无人机系统的数据传输装置的结构示意图;
图15为本发明实施例提供的地面图传模块的结构示意图。
图16为本发明实施例提供的无人机的数据上传系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的技术方案,适用于终端设备向无人机系统发送数据的场景。
本实施例的技术方案,地面图传模块直接与终端设备连接,这样,地面图传模块接收终端设备并行发送的无人机系统的各模块的数据包,并通过与各模块的通信通道将数据包发送给对应的模块,进而在最短时间内把各个链路带宽充分利用起来,快速完成数据传输。
同时,本实施例的方法,可以根据当前带宽的状态,实时的选择最佳速率传输数据,传输速率会自动根据当前的带宽波动而变化,且不会引入传输速率切换震荡的问题。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本发明实施例一提供的无人机系统的数据传输方法的流程图。该如图2所示,本实施例的方法可以包括:
S101、地面图传模块接收终端设备并行发送的至少两个数据包,所述至少两个数据包中的每个数据包对应无人机系统中的一个模块。
本实施例的执行主体为无人机系统中的地面图传模块,地面图传模块用于与无人机中的图传模块实现通信连接,以实现向无人机发送指令或信息,或者从无人机接收数据(如图像数据)等。地面图传模块可以配置在地面侧(或称为遥控设备、地面遥控器等)中。
本实施例的终端设备可以是智能手机、台式电脑、笔记本电脑等与无人机系统可以交互的终端设备。终端设备可以通过地面侧的通信接口实现与地面图传模块的通信连接。该通信接口可以是有线或无线通信接口。具体的,地面侧可以通过通信接口接收终端设备传输的数据,进而通信接口可以将该数据传输至地面图传模块。或者,终端设备与地面图传模块直接实现通信连接,在此不予限定。
如图1所示,本实施例的无人机系统可以包括无人机侧,地面侧,地面侧除了包括地面图传模块外,还包括多个模块,例如,遥控面板;无人机侧可以包括飞机图传模块、相机模块等,这些模块可以由硬件结合软件实现。
可选的,本实施例的地面图传模块与终端设备可以通过有线连接,也可以无线连接通信。
本实施例终端设备发送的数据包可以是模块的升级文件数据、配置文件数据等。
本实施例中,一个数据包对应无人机系统中的一个模块,例如,数据包中包括模块的标识,根据该标识可以获知该数据包对应的模块。
本实施例中地面图传模块接收终端设备并行发送的至少两个数据包。
一种实现方式中,终端设备可以与地面图传模块之间可以建立多条通信通道,终端设备与地面图传模块分别建立与通信通道数量相同的线程,以利用多条通信通道并行传输数据。例如,终端设备与地面图传模块可以通过USB连接。终端设备利用多条通信通道可以并行传输多个数据包至地面图传模块,进而提升传输效率。例如,终端设备可以利用多条通信通道分别传输地面图传数据包,遥控面板数据包,飞机图传数据包,相机数据包。其中,每个数据包通过一个通信通道传输。在此,多个是指至少两个。
可选的,本实施例的数据包可以是终端设备从网络端下载的,例如,当需要对无人机系统中的相机进行升级时,则终端设备从网络端下载该相机的最新升级文件数据包,并将该升级文件数据包发送给地面图传模块。
在本实施例的一种可能的实现方式中,上述S101可以包括:
所述地面图传模块通过USB通道接收所述终端设备并行发送的至少两个数据包。
由于USB(Universal Serial Bus,简称通用串行总线)通道的带宽较大,这样终端设备可以通过USB通道向地面图传模块并行发各模块的数据包。
例如,终端设备并行发送无人机系统中的相机、视觉模块、遥控面板和飞控模块4个模块的数据包,此时,地面图传模块可以建立4个线程,在第一线程上接收终端设备发送的相机的数据包,在第二线程上接收终端设备发送的视觉模块的数据包,在第三线程上接收遥控面板的数据包,在第四线程上接收飞控模块的数据包,且上述4个线程并行执行,进而提高了数据包的接收速率,且充分利用了USB通道的带宽优势。
S102、所述地面图传模块通过与所述无人机系统中数据包对应的模块之间的通信通道,将所述模块对应的数据包传输至所述模块。
如图1所示,无人机系统中各模块之间通信连接,例如,相机与飞机图传模块通过以太网通信连接,飞机图传模块与地面图传模块通过无线网络通信连接。
这样,地面图传模块接收到终端设备并行发送至少两个数据包之后,地面图传模块通过与无人机系统中数据包对应的模块之间的通信通道,将该模块的数据包传输至该模块。
例如,地面图传模块接收到终端设备并行发送的相机的数据包和遥控面板的数据包,则地面图传模块通过无线网络通道将相机的数据包发送给飞机图传模块,接着,飞机图传模块将相机的数据包通过以太网通道发送给相机。同时,地面图传模块通过以太网通道将遥控面板的数据包发送给遥控面板,进而实现各数据包的分发。
本发明实施例提供的无人机系统的数据传输方法,地面图传模块通过接收终端设备并行发送的至少两个数据包,其中至少两个数据包中的每个数据包对应无人机系统中的一个模块;接着,地面图传模块通过与无人机系统中数据包对应的模块之间的通信通道,将该模块对应的数据包传输至该模块。即本实施例,利用终端设备与地面图传模块之间的链路带宽,以及各模块之间的链路带宽,快速实现各模块对应的数据包的传输。
图3为本发明实施例二提供的无人机系统的数据传输方法的流程图,图4为本发明实施例二涉及的无人机系统中各模块之间的连接通道示意图,图5为本发明实施例二涉及的各模块之间的通道带宽对比示意图。
如图4所示,本实施例的无人机系统中的模块包括通信连接的地面图传模块、遥控面板、遥控单片机、飞机图传模块、视觉模块、相机和至少一个第一模块,各所述第一模块通过串口与所述飞机图传模块通信连接。
如图4所示,各第一模块可以是云台模块、电调模块、电池模块、超声模块和飞控模块中的任意一个。
如图3所示,此时,如上述的所述地面图传模块通过USB通道接收所述终端设备并行发送的至少两个数据包,可以使用下述S201替换。
S201、所述地面图传模块通过USB通道接收所述终端设备并行发送的相 机数据包、地面图传数据包、飞机图传数据包和遥控面板数据包中的至少两个。
其中,所述地面图传数据包可以包括地面图传模块的数据包和/或所述遥控单片机的数据包,所述飞机图传数据包可以包括所述视觉模块的数据包、所述飞机图像模块的数据包和各所述第一模块的数据包中的至少一种。
具体是,终端设备建立4个线程通过USB通道并行发送4个数据包,分别为相机数据包、地面图传数据包、飞机图传数据包和遥控面板数据包。对应的,地面图传模块建立4个线程并行接收USB通道发送的上述4个文件数据。
对应的上述S102可以包括下述S202、S203、S204和S205,本实施例中S202、S203、S204和S205之间没有先后顺序,可以是并行进行的,相互之间互不干涉。
S202、所述地面图传模块通过无线网络通道将所述飞机图传数据包发送至飞机图传模块的存储设备中,以使所述飞机图传模块通过串口将所述飞机图传数据包中关于所述第一模块的数据包发送给所述第一模块。
S203、所述地面图传模块通过无线网通道络将所述相机数据包发送至飞机图传模块,以使所述飞机图传模块通过以太网通道将所述相机数据包发送至相机。
S204、所述地面图传模块通过以太网通道将所述遥控面板数据包发送至遥控面板。
S205、所述地面图传模块通过串口将所述地面图传数据包中遥控单片机的数据包发送至遥控单片机。
具体的,如图4和图5所示,地面图传模块通过4个线程并行接收来自USB的各数据包之后,地面图传模块可以从地面图传数据包中拆解出地面图传模块的数据包,将地面图传模块的数据包直接存到Flash1中,再从地面图传数据包中拆解出遥控单片机的数据包,通过串口3将遥控单片机的数据包发送给遥控单片机。
地面图传模块通过以太网通道将遥控面板数据包发送给遥控面板,遥控面板接收到遥控面板数据包后直接保存到Flash2中。
地面图传模块通过无线网络通道将飞机图传数据包发送给飞机图传模块,飞机图传模块从该飞机图传数据包中拆解出飞机图传模块的数据包,并将飞机图传模块的数据包保存到Flash3中。接着,飞机图传模块从飞机图传数据包中拆解出视觉模块的数据包,通过串口1将视觉模块的数据包发送视觉模块。同时,飞机图传模块从飞机图传数据包中拆解出云台模块、电调模块、电池模块、超声模块和飞控模块等各第一模块的数据包,通过串口2逐个串行的传输出去。
地面图传模块通过无线网络通道将相机数据包发送给飞机图传模块,飞机图模块通过以太网通道将相机数据包传输给相机,相机将相机数据包保存到相机的Flash4中。
图5中的各Flash即为模块中的存储设备的一种实现方式。
如图5所示,各个通信链路,USB通道带宽最大,以太网次之,无线再次之,串口通路带宽最小。
本实施例,通过如上的方式,可以在最短时间内把各个带宽充分利用起来,快速完成文件传输。
图6为本发明实施例三提供的无人机系统的数据传输方法的流程图,在上述实施例的基础上,本实施例涉及的是对终端设备的传输速率的调整过程。如图6所示,本实施例可以包括:
S301、地面图传模块接收终端设备并行发送的至少两个数据包。
该步骤的具体执行过程参照上述实施例的描述,在此不再赘述。
S302、地面图传模块将所述至少两个数据包中的各数据包分别缓存至所述各数据包对应的缓冲队列中。
本实施例的地面图传模块中包括多个缓冲队列,将终端设备发送的各数据包保存在各数据包对应的缓冲队列中,即一个数据包对应一个缓冲队列。例如,保存至地面图传模块中的FLASH的缓冲队列中。
S303、地面图传模块根据缓冲队列中缓存的数据包的数据量,向所述终端设备发送传输指令,以使所述终端设备按照所述传输指令调整所述缓冲队列对应的数据包的传输速率。
在实际应用中,带宽波动时,如果采样快速的传输方式,会出现丢包的现象,如果传输过慢,则耗时。为了解决该技术问题,则本实施例通过对各缓冲队列中所缓存的数据包的数据量进行统计,根据数据包的数据量向终端设备发送传输指令,以调整终端设备的传输速率。
例如,当缓冲队列中缓存的数据包的数据量大于某一阈值,则说明无人机系统中的带宽紧张,地面图传模块向终端设备发送传输指令,该传输指令用于指示终端设备降低该数据包的传输速率。当缓冲队列中缓存的数据包的数据量小于某一阈值,则说明无人机系统中的带宽充足,地面图传模块向终端设备发送传输指令,该传输指令用于指示终端设备增加该数据包的传输速率。
即本实施例的地面图传模块,可以根据缓冲队列中所缓存的数据包的数据量,调整终端设备传输该数据包的传输速率,以使终端设备选择最合适的速率传输数据包,提高数据包的传输效率。
可选的,本实施例中终端设备调整数据包的传输速率的方式可以是,地面图传模块在传输指令中携带数据包的传输速率,终端设备直接根据传输指令中携带的传输速率来调整数据包的传输速率。可选的,传输指令仅用于表示地面图传模块当前的数据量或者仅用于指示终端设备提高或降低数据包的传输速率,终端设备还可以根据传输指令,确定数据包的传输速率。
S304、地面图传模块通过与所述无人机系统中数据包对应的模块之间的通信通道,将缓冲队列中的数据包传输至所述数据包对应的模块。
具体的,参照上述例子,地面图传模块通过USB通道并行接收所述终端设备发送的相机数据包、地面图传数据包、飞机图传数据包和遥控面板数据包等,并将上述各数据包保存至对应的缓冲队列中,接着,再通过地面图传模块通过与无人机系统中数据包对应的模块之间的通信通道,将缓冲队列中的数据包传输至数据包对应的模块。
例如,地面图传模块建立4个缓冲队列,第一缓冲队列用于缓冲相机数据包,第二缓冲队列用于缓冲地面图传数据包,第三缓冲队列用于缓冲飞机图传数据包,第三缓冲队列用于缓冲遥控面板数据包。
接着,如图4所示,地面图传模块将第一缓冲队列中的相机数据包通过 无线网络通道发送给飞机图传模块,以使飞机图传模块通过以太网通道转发给相机。地面图传模块将第二缓冲队列中的地面图传数据包中的遥控单片机数据包通过串口3发送给遥控单片机。地面图传模块将第三缓冲队列中的飞机图传数据包通过无线网络通道发送给飞机图传模块。地面图传模块将第四缓冲队列中的遥控面板数据包通过以太网通道发送给遥控面板。
本实施例提供的无人机系统的数据传输方法,地面图传模块将至少两个数据包中的各数据包分别缓存至各数据包对应的缓冲队列中;接着,地面图传模块根据缓冲队列中缓存的数据包的数据量,向终端设备发送传输指令,以使终端设备按照所述传输指令调整缓冲队列对应的数据包的传输速率;然后,地面图传模块通过与无人机系统中数据包对应的模块之间的通信通道,将缓冲队列中的数据包传输至数据包对应的模块。即本实施例的方法,地面图传模块中为各数据包设置了缓冲队列,并根据缓冲队列中所缓存的数据量,调整终端设备传输数据包的传输速率,以便终端设备自动实时的选择最合适的速率传输来传输数据包,提高了数据包的传输效率。同时,传输速率会自动根据当前的带宽波动而变化,且不会引入传输速率切换震荡而造成数据丢包的问题。
图7为本发明实施例四提供的无人机系统的数据传输方法的流程图,图8为本实施例四涉及的缓冲队列的示意图。在上述实施例的基础上,本实施例涉及的是地面图传模块根据缓冲队列中缓存的数据包的数据量,向所述终端设备发送传输指令的具体过程中,如图7所示,上述S303可以包括:
S401、判断所述缓冲队列中缓存的数据包的数据量是否大于第一阈值。
S402、若所述缓冲队列中缓存的数据包的数据量大于或等于所述第一阈值,则所述地面图传模块向所述终端设备发送第一传输指令,以使所述终端设备根据所述第一传输指令将所述缓冲队列对应的数据包的传输速率降低至第一速率范围内。
S403、若所述缓冲队列中缓存的数据包的数据量小于第一阈值,则所述地面图传模块向所述终端设备发送第二传输指令,以使所述终端设备根据所述第二传输指令将所述缓冲队列对应的数据包的传输速率提升至第二速率范 围内。
具体的,如图8所示,假设地面图传模块包括4个缓冲队列,每个队列设置1个水线(例如水线L 1)。这样,可以传输速率划分成快(H)、慢(S)两档,依次对应为第一传输速率和第二传输速率。
本实施例以一个缓冲队列为例进行说明,其他缓冲队列参照即可。
地面图传模块统计缓冲队列中所缓存的数据包的数据量n,若数据量n大于第一阈值L1,则说明无人机系统当前带宽紧张,向终端设备发送传输指令,以通知终端设备进入S档,以更慢的速率发送数据。即地面图传模块向终端设备发送的第一传输指令,以使终端设备根据该第一传输指令将所述缓冲队列对应的数据包的传输速率降低至第一速率范围内(即S档对应的速率范围内)。
若缓冲队列中缓存的数据包的数据量n小于第一阈值L1,则说明无人机系统当前带宽充足,通知终端设备进入H档,以更快的速率发送数据。即地面图传模块向终端设备发送的第二传输指令,以使所述终端设备根据所述第二传输指令将所述缓冲队列对应的数据包的传输速率提升至第二速率范围内(即H档对应的速率范围内)。
本实施例中,第二传输速率>第一传输速率。
在本实施例的一种可能的实现方式中,上述S401之后,本实施例的方法还包括:
若所述缓冲队列中的数据量大于所述第一阈值,判断所述缓冲队列中缓存的数据包的数据量是否大于第二阈值。
若所述缓冲队列中缓存的数据包的数据量大于或等于第二阈值,则所述地面图传模块向所述终端设备发送第三传输指令,以使所述终端设备根据所述第三传输指令将所述缓冲队列对应的数据包的传输速率降低至第三速率范围内;其中,所述第二阈值大于所述第一阈值,所述第三速率范围的最大值小于所述第一速率范围的最小值。
具体的,如图9所示,假设地面图传模块包括4个缓冲队列,每个队列设置2个水线(高水线L 2,低水线L 1)。这样,可以传输速率划分成快(H)、 中(M)、慢(S)三档,依次对应为第三传输速率、第二传输速率和第一传输速率。
本实施例以一个缓冲队列为例进行说明,其他缓冲队列参照即可。
地面图传模块统计缓冲队列中所缓存的数据包的数据量n,若数据量n大于第一阈值L1且大于第二阈值L2,则说明无人机系统当前带宽非常紧张,通知终端设备进入S档,以更慢的速率发送数据。即地面图传模块向终端设备发送的第三传输指令,以使所述终端设备根据所述第三传输指令将所述缓冲队列对应的数据包的传输速率降低至第三速率范围内(即S档对应的速率范围)。
若缓冲队列中缓存的数据包的数据量n大于第一阈值L1且小于第二阈值L2,即L2<n<L1,则说明无人机系统当前带宽处于正常状态,通知终端设备进入M档,以第一传输速率发送数据。即如图9所示,当每个队列设置2个水线时,上述的第一传输速率对应M挡。
本实施例中,第二阈值大于第一阈值,第二传输速率>第一传输速率>第三传输速率。
本发明实施例提供的无人机系统的数据传输方法,根据缓冲队列中缓存的数据包的数据量,指示终端设备使用三种不同的传输速率来传输数据包,实现对传输速率的自动调整,进而避免由于带宽波动引起的传输丢包等问题的产生。
图10为本发明实施例五提供的无人机系统的数据传输方法的流程图,图11为本实施例五涉及的缓冲队列的示意图。在上述实施例的基础上,如图10所示,本实施例还包括:
S501、判断所述缓冲队列中缓存的数据包的数据量与所述缓冲队列中前一时刻的数据量是否处于同一个阈值范围内。
本实施例中,可以周期性地统计缓冲队列中数据量,此时,前一时刻可以理解为上一个采样周期。
可选的,本实施例的前一时刻可以为上一次统计缓冲队列中数据量的时间点。
S502、若否,判断所述缓冲队列中缓存的数据包的数据量是否大于所述第一阈值。
S503、若所述缓冲队列中缓存的数据包的数据量大于所述第一阈值,判断所述缓冲队列中缓存的数据包的数据量是否大于第二阈值。
S504、若所述缓冲队列中缓存的数据包的数据量大于第二阈值,且所述缓冲队列中前一时刻的数据量小于或等于第二阈值,则所述地面图传模块向所述终端设备发送第三传输指令,以使所述终端设备根据所述第三传输指令将所述缓冲队列对应的数据包的传输速率降低至第三速率范围内。
S505、若所述缓冲队列中缓存的数据包的数据量小于第一阈值,且所述缓冲队列前一时刻的数据量大于或等于第一阈值,则所述地面图传模块向所述终端设备发送第二传输指令,以使所述终端设备根据所述第二传输指令将所述缓冲队列对应的数据包的传输速率提升至第二速率范围内。
其中,所述第二传输速率大于所述第一传输速率,所述第二阈值小于所述第一阈值。
S506、若所述缓冲队列中缓存的数据包的数据量大于第三阈值,且所述缓冲队列前一时刻的数据量小于或等于第三阈值,或所述缓冲队列中缓存的数据包的数据量小于第四阈值且所述缓冲队列前一时刻的数据量大于等于第四阈值,则所述地面图传模块向所述终端设备发送第一传输指令,以使所述终端设备根据所述第一传输指令将所述缓冲队列对应的数据包的传输速率降低至第一速率范围内。
其中,所述第三传输速率小于所述第一传输速率,所述第三阈值大于所述第一阈值且小于所述第四阈值,所述第四阈值小于所述第二阈值。
具体的,为防止在水线处的反复震荡问题,如图11所示,将图9中的水线L 1、L 2修正为L 1u、L 1d、L 2u、L 2d,其中,L 1d<L 1<L 1u,L 2d<L 2<L 2u。传输速率依然划分成快(H)、中(M)、慢(S)三档。
假设缓冲队列中当前时刻缓存的数据包的数据量为L,缓冲队列中前一时刻缓存的数据包的数据量为L o
本实施例以一个缓冲队列为例进行说明,其他缓冲队列参照即可。
首先,地面图传模块统计缓冲队列当前时刻所缓存的数据包的数据量L 和前一时刻缓存的数据包的数据量L o
若缓冲队列当前时刻的数据量L大于第二阈值L 2u,而缓冲队列前一时刻的数据量L o小于等于L 2u,即L>L 2u且L o≤L 2u,则说明无人机系统当前带宽非常紧张,通知终端设备进入S档,以更慢的速率发送数据。即地面图传模块向终端设备发送的第三传输指令,以使所述终端设备根据所述第三传输指令将所述缓冲队列对应的数据包的传输速率降低至第三速率范围内(即S档对应的速率范围内)。
若缓冲队列当前时刻的数据量L小于第一阈值L 1d,而缓冲队列前一时刻的数据量L o大于等于第一阈值L 1d,即L<L 1d且L o≥L 1d,则说明无人机系统当前带宽充足,通知终端设备进入H档,以更快的速率发送数据。即地面图传模块向终端设备发送的第二传输指令,以使所述终端设备根据所述第二传输指令将所述缓冲队列对应的数据包的传输速率提升至第二速率范围内(即H档对应的速率范围内)。
若缓冲队列当前时刻的数据量L大于第三阈值L 2u,而缓冲队列前一时刻的数据量L o小于等于第三阈值L 2u,即L>L 2u且L o≤L 2u,或者,缓冲队列当前时刻的数据量L小于第四阈值L 1d,而缓冲队列前一时刻的数据量L o大于等于第四阈值L 1d,即L<L 1d且L o≥L 1d,则说明无人机系统当前带宽处于正常状态,通知终端设备进入M档,以中度的速率发送数据。即地面图传模块向终端设备发送的第一传输指令,以使所述终端设备根据所述第一传输指令将所述缓冲队列对应的数据包的传输速率降低至第一速率范围内(即M档对应的速率范围内)。
本实施例中,第二传输速率>第一传输速率>第三传输速率。
上述S501、S502和S503步骤没有先后顺序关系。
本发明实施例提供的无人机系统的数据传输方法,根据缓冲队列当前时刻缓存的数据包的数据量和缓冲队列前一时刻缓存的数据包的数据量,指示终端设备使用三种不同的传输速率来传输数据包,进一步提高了传输速率的调整准确性,避免传输速率切换过程中产生震荡的问题。
图121为本发明实施例一提供的无人机系统的数据传输装置的结构示意 图。如图12所示,本实施例的无人机系统的数据传输装置100可以包括:
接收模块110,用于接收终端设备并行发送的至少两个数据包,所述至少两个数据包中的每个数据包对应无人机系统中的一个模块;
发送模块120,用于通过与所述无人机系统中数据包对应的模块之间的通信通道,将所述模块对应的数据包传输至所述模块。
本发明实施例的无人机系统的数据传输装置,可以用于执行上述所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图13为本发明实施例二提供的无人机系统的数据传输装置的结构示意图。在上述实施例的基础上,如图13所示,本实施例的无人机系统的数据传输装置100还可以包括缓存模块130:
所述缓存模块130,用于将所述至少两个数据包中的各数据包分别缓存至所述各数据包对应的缓冲队列中;
所述发送模块120,具体用于通过与所述无人机系统中数据包对应的模块之间的通信通道,将缓冲队列中的数据包传输至所述数据包对应的模块。
在本实施例一种可能的实现方式中,所述发送模块120,还用于根据各所述缓冲队列中缓存的数据包的数据量,向所述终端设备发送传输指令,以使所述终端设备按照所述传输指令所指示的传输速率传输各所述模块的数据包。
本发明实施例的无人机系统的数据传输装置,可以用于执行上述所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图14为本发明实施例三提供的无人机系统的数据传输装置的结构示意图。在上述实施例的基础上,如图14所示,本实施例的无人机系统的数据传输装置100还可以包括判断模块140:
判断模块,判断所述缓冲队列中缓存的数据包的数据量是否大于第一阈值;
所述发送模块120,具体用于若所述缓冲队列中缓存的数据包的数据量大于或等于所述第一阈值,则所述地面图传模块向所述终端设备发送第一传输指令,以使所述终端设备根据所述第一传输指令将所述缓冲队列对应的数据包的传输速率降低至第一速率范围。
所述发送模块120,还具体用于若所述缓冲队列中缓存的数据包的数据量小于所述第一阈值,则所述地面图传模块向所述终端设备发送第二传输指令,以使所述终端设备根据所述第二传输指令将所述缓冲队列对应的数据包的传输速率提升至第二速率范围内。
在本实施例一种可能的实现方式中,所述判断模块140,还用于若所述缓冲队列中缓存的数据包的数据量小于所述第一阈值,判断所述缓冲队列中缓存的数据包的数据量是否大于第二阈值;
所述发送模块120,还具体用于若所述缓冲队列中缓存的数据包的数据量大于或等于第二阈值,则所述地面图传模块向所述终端设备发送第三传输指令,以使所述终端设备根据所述第三传输指令将所述缓冲队列对应的数据包的传输速率降低至第三速率范围内;其中,所述第二阈值大于所述第一阈值,所述第三速率范围的最大值小于所述第一速率范围的最小值。
在本实施例的另一种可能的实现方式中,所述判断模块140,还用于判断所述缓冲队列中缓存的数据包的数据量与所述缓冲队列中前一时刻的数据量是否处于同一个阈值范围内;若否,判断所述缓冲队列中缓存的数据包的数据量是否大于所述第二阈值。
在本实施例的另一种可能的实现方式中,所述接收模块110,具体用于通过USB通道接收所述终端设备并行发送的至少两个数据包。
本发明实施例的无人机系统的数据传输装置,可以用于执行上述所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图15为本发明实施例提供的地面图传模块的结构示意图,如图15所示,本实施例的地面图传模块30包括:
存储器31,用于存储计算机程序;
处理器32,用于执行所述计算机程序,以实现上述无人机系统的数据传输方法,其实现原理和技术效果类似,此处不再赘述。
图16为本发明实施例提供的无人机的数据上传系统的结构示意图,如图16所示,本实施例的无人机的数据上传系统40包括:
通信连接的终端设备41和无人机系统42,所述无人机系统42包括通信连接的地面系统421和飞机系统422,所述地面系统421包括图14所述的地面图传模块30。
如图16所述,本实施例的终端设备41与地面图传模块30之间通过USB连接,地面图传模块30可以实现上述实施例所述的无人机系统的数据传输方法,其实现原理和技术效果类似,此处不再赘述。
进一步的,当本发明实施例中无人机系统的数据传输方法的至少一部分功能通过软件实现时,本发明实施例还提供一种计算机存储介质,计算机存储介质用于储存为上述无人机的数据上传的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述方法实施例中各种可能的无人机系统的数据传输方法。在计算机上加载和执行所述计算机执行指令时,可全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机指令可以存储在计算机存储介质中,或者从一个计算机存储介质向另一个计算机存储介质传输,所述传输可以通过无线(例如蜂窝通信、红外、短距离无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如SSD)等。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种无人机系统的数据传输方法,其特征在于,包括:
    地面图传模块接收终端设备并行发送的至少两个数据包,所述至少两个数据包中的每个数据包对应无人机系统中的一个模块;
    所述地面图传模块通过与所述无人机系统中数据包对应的模块之间的通信通道,将所述模块对应的数据包传输至所述模块。
  2. 根据权利要求1所述的方法,其特征在于,所述地面图传模块接收终端设备并行发送的至少两个数据包之后,所述方法还包括:
    所述地面图传模块将所述至少两个数据包中的各数据包分别缓存至所述各数据包对应的缓冲队列中;
    所述地面图传模块通过与所述无人机系统中数据包对应的模块之间的通信通道,将所述模块对应的数据包传输至所述模块,包括:
    所述地面图传模块通过与所述无人机系统中数据包对应的模块之间的通信通道,将缓冲队列中的各数据包传输至所述数据包对应的模块。
  3. 根据权利要求2所述的方法,其特征在于,所述地面图传模块将所述至少两个数据包中的各数据包分别缓存至所述各数据包对应的缓冲队列中之后,所述方法还包括:
    所述地面图传模块根据缓冲队列中缓存的数据包的数据量,向所述终端设备发送传输指令,以使所述终端设备按照所述传输指令调整所述缓冲队列对应的数据包的传输速率。
  4. 根据权利要求3所述的方法,其特征在于,所述地面图传模块根据缓冲队列中缓存的数据包的数据量,向所述终端设备发送传输指令,包括:
    判断所述缓冲队列中缓存的数据包的数据量是否大于第一阈值;
    若所述缓冲队列中缓存的数据包的数据量大于或等于所述第一阈值,则所述地面图传模块向所述终端设备发送第一传输指令,以使所述终端设备根据所述第一传输指令将所述缓冲队列对应的数据包的传输速率降低至第一速率范围内;
    若所述缓冲队列中缓存的数据包的数据量小于所述第一阈值,则所述地面图传模块向所述终端设备发送第二传输指令,以使所述终端设备根据所述 第二传输指令将所述缓冲队列对应的数据包的传输速率提升至第二速率范围内。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    若所述缓冲队列中缓存的数据包的数据量大于所述第一阈值,判断所述缓冲队列中缓存的数据包的数据量是否大于第二阈值;
    若所述缓冲队列中缓存的数据包的数据量大于或等于第二阈值,则所述地面图传模块向所述终端设备发送第三传输指令,以使所述终端设备根据所述第三传输指令将所述缓冲队列对应的数据包的传输速率降低至第三速率范围内;其中,所述第二阈值大于所述第一阈值,所述第三速率范围的最大值小于所述第一速率范围的最小值。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:判断所述缓冲队列中缓存的数据包的数据量与所述缓冲队列中前一时刻的数据量是否处于同一个阈值范围内;
    若否,判断所述缓冲队列中缓存的数据包的数据量是否大于所述第一阈值。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述缓冲队列中缓存的数据包的数据量小于第一阈值,且所述缓冲队列前一时刻的数据量大于等于第一阈值,则所述地面图传模块向所述终端设备发送第二传输指令,以使所述终端设备根据所述第二传输指令将所述缓冲队列对应的数据包的传输速率提升至第二速率范围内。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述缓冲队列中缓存的数据包的数据量大于第三阈值,且所述缓冲队列前一时刻的数据量小于或等于第三阈值,或所述缓冲队列中缓存的数据包的数据量小于第四阈值且所述缓冲队列前一时刻的数据量大于或等于第四阈值,则所述地面图传模块向所述终端设备发送第一传输指令,以使所述终端设备根据所述第一传输指令将所述缓冲队列对应的数据包的传输速率降低至第一速率范围内。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述地面图传模块接收终端设备并行发送的至少两个数据包,包括:
    所述地面图传模块通过USB通道接收所述终端设备并行发送的至少两个数据包。
  10. 一种地面图传模块,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序,以实现如权利要求1-9中任一项所述的无人机系统的数据传输方法。
  11. 一种无人机的数据上传系统,其特征在于,包括:通信连接的终端设备和无人机系统,所述无人机系统包括通信连接的地面系统和飞机系统,所述地面系统包括如权利要求10所述的地面图传模块。
  12. 一种计算机存储介质,其特征在于,所述存储介质中存储计算机程序,所述计算机程序在执行时实现如权利要求1-9中任一项所述的无人机系统的数据传输方法。
PCT/CN2018/109465 2018-07-13 2018-10-09 无人机系统的数据传输方法、装置、系统和地面图传模块 WO2020010730A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18925852.8A EP3806349A4 (en) 2018-07-13 2018-10-09 METHOD, DEVICE AND SYSTEM FOR DATA TRANSMISSION FOR UNPILOT AIR VEHICLE SYSTEM, AND GROUND IMAGE TRANSMISSION MODULE
US17/142,674 US11792129B2 (en) 2018-07-13 2021-01-06 Data transmission method, device and system of unmanned aerial vehicle system and ground image transmission module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810772483.5A CN109004972B (zh) 2018-07-13 2018-07-13 无人机系统的数据传输方法、装置、系统和地面图传模块
CN201810772483.5 2018-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/142,674 Continuation US11792129B2 (en) 2018-07-13 2021-01-06 Data transmission method, device and system of unmanned aerial vehicle system and ground image transmission module

Publications (1)

Publication Number Publication Date
WO2020010730A1 true WO2020010730A1 (zh) 2020-01-16

Family

ID=64599009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109465 WO2020010730A1 (zh) 2018-07-13 2018-10-09 无人机系统的数据传输方法、装置、系统和地面图传模块

Country Status (4)

Country Link
US (1) US11792129B2 (zh)
EP (1) EP3806349A4 (zh)
CN (1) CN109004972B (zh)
WO (1) WO2020010730A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112636792A (zh) * 2020-12-14 2021-04-09 南京航空航天大学 一种基于空间调制的无人机中继系统的性能分析方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004972B (zh) * 2018-07-13 2020-09-15 深圳市道通智能航空技术有限公司 无人机系统的数据传输方法、装置、系统和地面图传模块
CN110933380A (zh) * 2019-12-17 2020-03-27 深圳市道通智能航空技术有限公司 一种图传控制方法、系统及无人机
CN111491201B (zh) * 2020-04-08 2023-04-25 深圳市昊一源科技有限公司 调整视频码流的方法及视频丢帧处理方法
CN113892273A (zh) * 2020-04-22 2022-01-04 深圳市大疆创新科技有限公司 无人飞行器的数据传输方法、芯片、控制设备、飞行控制系统、存储介质及计算机程序产品
CN113268075A (zh) * 2021-06-10 2021-08-17 合肥工业大学 一种无人机控制方法及系统
US11985186B1 (en) * 2023-02-10 2024-05-14 Nanjing University Of Posts And Telecommunications Method of drone-assisted caching in in-vehicle network based on geographic location

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941745A (zh) * 2014-03-07 2014-07-23 国家电网公司 用于无人机输电线路巡检的移动子站及工作方法
US20140254693A1 (en) * 2013-03-05 2014-09-11 The Boeing Company Aircraft data transmission modules
CN105527954A (zh) * 2016-02-02 2016-04-27 铱格斯曼航空科技集团有限公司 一种无人机远程控制系统
WO2016116841A1 (en) * 2015-01-23 2016-07-28 Paradox Engineering Sagl Guidance system of a drone
CN105827384A (zh) * 2016-05-13 2016-08-03 黄剑锋 一种无人机宽带无线综合数传方法与系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030081582A1 (en) * 2001-10-25 2003-05-01 Nikhil Jain Aggregating multiple wireless communication channels for high data rate transfers
US7536477B2 (en) * 2003-02-25 2009-05-19 Iowa State University Research Foundation, Inc. Access mechanisms for efficient sharing in a network
US9815684B2 (en) * 2013-11-01 2017-11-14 Brian Kamradt Fueling station for unmanned aerial vehicle of the vertical takeoff types
WO2016026128A1 (en) * 2014-08-21 2016-02-25 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle communications methods and systems
US10554761B2 (en) * 2015-12-12 2020-02-04 At&T Intellectual Property I, Lp Methods and apparatus to improve transmission of a field data set to a network access point via parallel communication sessions
CN205320116U (zh) * 2015-12-14 2016-06-15 深圳市高巨创新科技开发有限公司 一种无人机上网的系统
CN108091122A (zh) * 2017-12-29 2018-05-29 深圳创动科技有限公司 无人机及其通信方法、控制系统和具有存储功能的装置
WO2019180700A1 (en) * 2018-03-18 2019-09-26 Liveu Ltd. Device, system, and method of autonomous driving and tele-operated vehicles
CN109004972B (zh) * 2018-07-13 2020-09-15 深圳市道通智能航空技术有限公司 无人机系统的数据传输方法、装置、系统和地面图传模块
US10958587B2 (en) * 2018-07-24 2021-03-23 Intel Corporation Transmission latency reduction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140254693A1 (en) * 2013-03-05 2014-09-11 The Boeing Company Aircraft data transmission modules
CN103941745A (zh) * 2014-03-07 2014-07-23 国家电网公司 用于无人机输电线路巡检的移动子站及工作方法
WO2016116841A1 (en) * 2015-01-23 2016-07-28 Paradox Engineering Sagl Guidance system of a drone
CN105527954A (zh) * 2016-02-02 2016-04-27 铱格斯曼航空科技集团有限公司 一种无人机远程控制系统
CN105827384A (zh) * 2016-05-13 2016-08-03 黄剑锋 一种无人机宽带无线综合数传方法与系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112636792A (zh) * 2020-12-14 2021-04-09 南京航空航天大学 一种基于空间调制的无人机中继系统的性能分析方法

Also Published As

Publication number Publication date
US20210126868A1 (en) 2021-04-29
US11792129B2 (en) 2023-10-17
CN109004972B (zh) 2020-09-15
EP3806349A1 (en) 2021-04-14
EP3806349A4 (en) 2021-08-18
CN109004972A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
WO2020010730A1 (zh) 无人机系统的数据传输方法、装置、系统和地面图传模块
US10594606B2 (en) Wired data-connection aggregation
US8214552B2 (en) Transmission apparatus, transmission method, communication apparatus, and program
US10979509B2 (en) Aircraft and external device of the aircraft, communication method, device and system
WO2019242551A1 (zh) 数据传输方法、装置及系统、飞行器和控制设备
US10735554B1 (en) System for controlling use of a network
WO2022001175A1 (zh) 数据包发送的方法、装置
US9152459B2 (en) Adjusting thread priority to improve throughput between peer-to-peer (P2P) devices
US20160294986A1 (en) Data Transmission Method And Device
EP3262517A1 (en) Protocol adaptation layer data flow control for universal serial bus
US11165705B2 (en) Data transmission method, device, and computer storage medium
CN111064788A (zh) 信号传输方法、机器人及计算机可读存储介质
US10164888B2 (en) Quality of service for a universal serial bus
CN111817830B (zh) 传输、接收控制方法、终端及网络侧设备
EP2798881B1 (en) Shaping data packet traffic
EP3214876A1 (en) Power control apparatus, network side device, user equipment and power control method
WO2023119511A1 (ja) 通信装置、通信システム、及び通信方法
US11245767B1 (en) Multi-route communication system and route selection system
WO2024098757A1 (zh) 网络集群系统、报文传输方法及网络设备
WO2017054473A1 (zh) 一种处理报文的方法、sdn控制器及网元
WO2023119512A1 (ja) 中継装置、通信システム、及び中継方法
WO2022206649A1 (zh) 拥塞控制方法、装置及通信设备
CN115314945A (zh) 一种业务处理方法、装置、服务器及存储介质
KR20140136705A (ko) 초고속 통신 모듈을 탑재한 전송장치 및 그것을 이용한 초고속 데이터 전송 방법
KR20150124796A (ko) 무선 환경에서 usb 통신을 위한 데이터 전송을 제어하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018925852

Country of ref document: EP

Effective date: 20210107