CN108303752B - 砂砾岩有效储层常规测井定量识别方法 - Google Patents

砂砾岩有效储层常规测井定量识别方法 Download PDF

Info

Publication number
CN108303752B
CN108303752B CN201810141075.XA CN201810141075A CN108303752B CN 108303752 B CN108303752 B CN 108303752B CN 201810141075 A CN201810141075 A CN 201810141075A CN 108303752 B CN108303752 B CN 108303752B
Authority
CN
China
Prior art keywords
reservoir
effective
glutenite
value
identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810141075.XA
Other languages
English (en)
Other versions
CN108303752A (zh
Inventor
宋亮
高秋菊
王延光
阎丽艳
王楠
张秀娟
王宗家
毕丽飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Geophysical Research Institute of Sinopec Shengli Oilfield Co
Original Assignee
China Petroleum and Chemical Corp
Geophysical Research Institute of Sinopec Shengli Oilfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Geophysical Research Institute of Sinopec Shengli Oilfield Co filed Critical China Petroleum and Chemical Corp
Priority to CN201810141075.XA priority Critical patent/CN108303752B/zh
Publication of CN108303752A publication Critical patent/CN108303752A/zh
Application granted granted Critical
Publication of CN108303752B publication Critical patent/CN108303752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明提供一种砂砾岩有效储层常规测井定量识别方法,该砂砾岩有效储层常规测井定量识别方法包括:步骤1,校正测井资料环境影响;步骤2,明确有效储层测井响应特征,优选敏感测井曲线;步骤3,计算储层识别参数R;步骤4,计算粒度指示参数G;步骤5,计算有效空间参数P;步骤6,构建储层有效性指数的计算模型E;步骤7,结合试油情况,建立有效储层定量划分标准。该砂砾岩有效储层常规测井定量识别方法融合多种常规测井曲线建立了有效储层的定量公式和划分识别标准,提高了砂砾岩有效储层的定量识别精度,可在成像、核磁测井资料缺乏的情况下,为复杂砂砾岩油藏中有效储层的划分识别和试油层段优选提供重要参考依据。

Description

砂砾岩有效储层常规测井定量识别方法
技术领域
本发明涉及砂砾岩油藏地质勘探领域中的测井评价技术领域,特别是涉及到一种砂砾岩有效储层常规测井定量识别方法。
背景技术
砂砾岩油藏岩性复杂多变、储层非均质强,有效储层的判识制约了砂砾岩油藏的高效勘探开发。成像、核磁测井资料可直接对有效储层进行识别,但在实际的勘探实践中,这类资料较少,无法推广应用。因此,需要研究建立针对复杂砂砾岩油藏中有效储层的常规测井定量识别方法。
目前,已有国内外学者对砂砾岩有效储层的测井识别方法开展了较多的研究和论述。其中,大多数文献采用的仍是传统的砂砾岩测井解释评价方法,如《东营凹陷盐222块沙四段上亚段有效储层识别》(张清,2008),《苏里格地区有效储层测井识别方法研究》(张海涛,2010)。该方法仅将储集层作为研究对象,通过建立“四性”(岩性、物性、电性、含油气性)关系的测井解释模型,采用交会图分析确定各项参数下限的半定量识别方法识别砂砾岩有效储层。但这种方法受人为因素影响和不同地区沉积条件变化的限制,对有效储层的判识准确率不高,往往造成误判,甚至会遗漏产油层段,延误勘探进程。也有学者注意到成像、核磁测井资料的优势,结合多种信息,建立了更为准确的有效储层识别模式,如《考虑岩石结构的砂砾岩有效储层测井判识方法》(闫建平等,2011)。但该方法仅限于具有成像、核磁测井资料的单井有效储层识别,无法推广至全区。为此我们发明了一种新的砂砾岩有效储层常规测井定量识别方法,解决了以上技术问题。
发明内容
本发明的目的是提供一种适用于成像、核磁测井资料缺乏的情况下,利用多种常规测井资料建立计算模型,实现定量识别砂砾岩有效储层的方法。
本发明的目的可通过如下技术措施来实现:砂砾岩有效储层常规测井定量识别方法,该砂砾岩有效储层常规测井定量识别方法包括:步骤1,校正测井资料环境影响;步骤2,明确有效储层测井响应特征,优选敏感测井曲线;步骤3,计算储层识别参数R;步骤4,计算粒度指示参数G;步骤5,计算有效空间参数P;步骤6,构建储层有效性指数的计算模型E;步骤7,结合试油情况,建立有效储层定量划分标准。
本发明的目的还可通过如下技术措施来实现:
在步骤1中,以砂砾岩的实测密度、声波时差值为反演的约束条件,针对不同系列的测井仪器,优选相应的环境影响校正图版,将图版读值拟合成校正公式的基础上进行自动可视化校正处理,并考虑到图版法的局限性,采用非线性数学方法来迭代反演砂砾岩的真实密度、声波时差、自然伽马这些测井信息。
在步骤2中,明确了砂砾岩储层在常规测井曲线上具有两高两低一变化的特征,即中高电阻、高密度、低声波、低中子,自然伽马随砂砾岩母岩成分的不同而变化;优选自然伽马曲线识别储层发育程度,优选声波时差和电阻率曲线识别岩石粒度大小,选择声波时差和统计的孔隙度下限值判断有效储集空间发育程度。
在步骤3中,储层识别参数R反映了砂砾岩储层的发育程度,R值越大,砂砾岩储层越发育;反之,砂砾岩储层越不发育;采用自然伽马计算不同砾石成分的储层识别参数R。
在步骤3中,对于灰岩砾石,具有低自然伽马特征,采用公式(1)计算储层识别参数R:
Figure BDA0001577613070000021
式中,R为储层识别参数,无量纲;GR为实测的自然伽马值,API;GRshale为纯泥岩的自然伽马值;GRgravel-h为纯灰岩砾石的自然伽马值,API。
在步骤3中,对于片麻岩砾石,具有高自然伽马特征,采用公式(2)计算储层识别参数R:
Figure BDA0001577613070000031
式中,R为储层识别参数,无量纲;GR为实测的自然伽马值,API;GRgravel-p为纯片麻岩砾石的自然伽马值,API。
在步骤4中,粒度指示参数G与岩石的粒度大小成正比,G值越大,砂砾岩的岩石粒度越大;受到岩石骨架声波时差和电阻率的影响,与岩石骨架声波时差成反比,与电阻率成正比。
在步骤4中,粒度指示参数G的计算公式(3)为:
Figure BDA0001577613070000032
其中:
Figure BDA0001577613070000033
式中,G为粒度指示参数,无量纲;Rt为实测电阻率值,Ω·m;Δtma为岩石骨架声波时差,us/ft;△tf为流体声波时差,取180us/ft;△tAC为实测声波时差,us/ft;φCNL为实测补偿中子孔隙度值,%。
在步骤5中,有效空间参数P定义为储层孔隙度与孔隙度下限的差值,P值越大,砂砾岩有效储集空间越发育;先采用试油法、束缚水饱和度法、最小有效孔喉半径法、分布函数曲线法,求取不同埋深下有效储层的孔隙度下限值,拟合有效储层孔隙度下限与埋深的关系。
在步骤5中,储层孔隙度下限值的计算公式(4)为:
φL=-7.99×In(depth)+69.965(4)
式中,φL为储层孔隙度下限值;depth为埋深,m;
有效空间参数P定义为储层孔隙度与孔隙度下限的差值,即公式(5):
P=φ-φL(5)
其中,
Figure BDA0001577613070000041
式中,P为有效空间参数,无量纲;φ为储层孔隙度;Δtma为岩石骨架声波时差,us/ft;△tf为流体声波时差,取180us/ft;△t为实测声波时差,us/ft;Cp为压实校正系数,取值1;φL为储层孔隙度下限值。
在步骤6中,构建的储层有效性指数的计算模型,即公式(6)为:
E=R×G×P(6)
储层有效性指数E越大,表明砂砾岩储层的各类沉积和储集条件有利,成藏及产能情况较好。
在步骤7中,将储层有效性指数计算模型应用于不同典型井中,得到典型井的储层有效性指数值,计算特定埋深的单井极限初产油流,确定优质储层日产油量,结合实际井段的试油情况,建立有效储层的定量划分标准。
在步骤7中,建立的有效储层的定量划分标准为:E值大于0.25时,成藏条件最好,不采取措施或压裂后稳产,为I类储层;E值介于0.25至0.1之间时,成藏条件较好,经酸化压裂后增产明显,为II类储层;E值介于0.1至0.05之间时,成藏条件较差,经酸化压裂后效果较差,为I II类储层;E值介于0至0.05之间时,成藏条件最差,酸化压裂无效,为IV类储层;依据此标准实现对砂砾岩有效储层的定量识别。
本发明中的砂砾岩有效储层常规测井定量识别方法,在明确砂砾岩有效储层常规测井响应特征基础上,优选测井曲线分别计算了储层识别参数、粒度指示参数和有效空间参数,并构建了储层有效性指数的计算模型;最终结合试油情况,建立有效储层划分识别标准,达到了定量识别砂砾岩有效储层的目的。这种砂砾岩有效储层常规测井定量识别方法以典型井试油井段的测井响应特征为依据,融合多种常规测井曲线,建立了有效储层的定量公式和划分识别标准,提高了砂砾岩有效储层的定量识别精度,可在成像、核磁测井资料缺乏的情况下,为复杂砂砾岩油藏中有效储层的划分识别和试油层段优选提供重要参考依据,具有良好的应用效果和推广前景。
附图说明
图1为本发明的砂砾岩有效储层常规测井定量识别方法的一具体实施例的流程图;
图2为本发明的一具体实施例中储层识别参数R在D7井3880~4060m的识别效果图;
图3为本发明的一具体实施例中不同岩石粒度的电阻率与岩石骨架的交会分析图;
图4为本发明的一具体实施例中粒度指示参数G在C6井4340~4380m的识别效果与成像测井对比图;
图5为本发明的一具体实施例中实施例地区中有效储层孔隙度下限与深度关系图;
图6为本发明的一具体实施例中有效空间参数P在D7井3900~4070m的识别效果图;
图7为本发明的一具体实施例中Ⅰ类储层的储层有效性指数E的储层定量识别成果图;
图8为本发明的一具体实施例中Ⅱ类储层的储层有效性指数E的储层定量识别成果图;
图9为本发明的一具体实施例中Ⅲ类储层的储层有效性指数E的储层定量识别成果图;
图10为本发明的一具体实施例中Ⅳ类储层的储层有效性指数E的储层定量识别成果图。
具体实施方式
为使本发明的上述和其他目的、特征和优点能更明显易懂,下文特举出较佳实施例,并配合附图所示,作详细说明如下。
如图1所示,图1为本发明的砂砾岩有效储层常规测井定量识别方法的流程图。
在步骤101,对测井资料环境影响进行校正,保证用于有效储层定量识别的测井资料真实可靠。以砂砾岩的实测密度、声波时差值为反演的约束条件,针对不同系列的测井仪器,优选相应的环境影响校正图版,将图版读值拟合成校正公式的基础上进行计算机自动可视化校正处理,并考虑到图版法的局限性,采用非线性数学方法来迭代反演砂砾岩的真实密度、声波时差、自然伽马等测井信息,以保障用于有效储层定量识别参数计算的测井资料真实可靠。流程进入到步骤102。
在步骤102,明确砂砾岩有效储层的常规测井响应特征,优选敏感测井曲线。在此实施例中,砂砾岩储层在常规测井曲线上具有“两高两低一变化”的特征,即中高电阻、高密度、低声波、低中子,自然伽马随砂砾岩母岩成分的不同而变化。最终,优选自然伽马曲线识别储层发育程度,优选声波时差和电阻率曲线识别岩石粒度大小,选择声波时差和统计的孔隙度下限值判断有效储集空间发育程度。流程进入到步骤103。
在步骤103,计算储层识别参数R,该参数主要反映了砂砾岩储层的发育程度,R值越大,砂砾岩储层越发育;反之,砂砾岩储层越不发育。主要采用自然伽马计算不同砾石成分的储层识别参数R。对于灰岩砾石,具有低自然伽马特征,采用公式(1)计算储层识别参数R:
Figure BDA0001577613070000061
对于片麻岩砾石,具有高自然伽马特征,采用公式(2)计算储层识别参数R:
Figure BDA0001577613070000062
式中,R为储层识别参数,无量纲;GR为实测的自然伽马值,API;GRshale为纯泥岩的自然伽马值;GRgravel-h为纯灰岩砾石的自然伽马值,API;
GRgravel-p为纯片麻岩砾石的自然伽马值,API。流程进入到步骤104。
在步骤104,计算粒度指示参数G,该参数与岩石的粒度大小成正比,G值越大,砂砾岩的岩石粒度越大。主要受到岩石骨架声波时差和电阻率的影响,与岩石骨架声波时差成反比,与电阻率成正比,即公式(3):
Figure BDA0001577613070000071
其中:
Figure BDA0001577613070000072
式中,G为粒度指示参数,无量纲;Rt为实测电阻率值,Ω·m;Δtma为岩石骨架声波时差,us/ft;△tf为流体声波时差,取180us/ft;△tAC为实测声波时差,us/ft;φCNL为实测补偿中子孔隙度值,%。流程进入到步骤105。
在步骤105,计算有效空间参数P,该参数定义为储层孔隙度与孔隙度下限的差值,P值越大,砂砾岩有效储集空间越发育。需要先采用试油法、束缚水饱和度法、最小有效孔喉半径法、分布函数曲线法,求取不同埋深下有效储层的孔隙度下限值,拟合有效储层孔隙度下限与埋深的关系,即公式(4):
φL=-7.99×In(depth)+69.965(4)
式中,φL为储层孔隙度下限值;depth为埋深,m。
有效空间参数P定义为储层孔隙度与孔隙度下限的差值,即公式(5):
P=φ-φL(5)
其中,
Figure BDA0001577613070000073
式中,P为有效空间参数,无量纲;φ为储层孔隙度;Δtma为岩石骨架声波时差,us/ft;△tf为流体声波时差,取180us/ft;△t为实测声波时差,us/ft;Cp为压实校正系数,取值1;φL为储层孔隙度下限值。流程进入到步骤106。
在步骤106,构建储层有效性指数的计算模型,即公式(6):
E=R×G×P(6)
储层有效性指数E越大,表明砂砾岩储层的各类沉积和储集条件有利,成藏及产能情况较好。流程进入到步骤107。
在步骤107,结合试油情况,建立有效储层定量划分标准。将储层有效性指数计算模型应用于不同典型井中,得到典型井的储层有效性指数值。依据中华人民共和国地质矿产行业标准(DZ/T 0217-2005)石油天然气储量计算规范,依据实施例地区所用成本油价、钻井投资、地面投资等计算实施例地区埋深3000~4500m的单井极限初产油为2.5~3t/d,将初产油大于10t/d定为优质储层。据此,结合实际井段的试油情况,可建立有效储层的定量划分标准:
E值大于0.25时,成藏条件最好,试油日产大于10吨,往往不采取措施或压裂后稳产,为I类储层;E值介于0.25至0.1之间时,成藏条件较好,试油日产大于10吨,经酸化压裂后增产明显,为I I类储层;E值介于0.1至0.05之间时,成藏条件较差,试油日产在0.5~10吨,经酸化压裂后效果较差,为I I I类储层;E值介于0至0.05之间时,成藏条件最差,试油日产小于0.5吨,酸化压裂无效,为IV类储层。依据此标准可实现对砂砾岩有效储层的定量识别。
图2是储层识别参数R在D7井3880~4060m的识别效果图,该参数可有效区分片麻岩砾石(硅质含量较多)和灰岩砾石(灰质含量较多)。图3是不同岩石粒度的电阻率与岩石骨架的交会分析图,该图表明岩石粒度的大小主要与岩石骨架声波时差成反比,与电阻率成正比。图4是粒度指示参数G在C6井4340~4380m的识别效果与成像测井对比图,可以看出岩石粒度定量识别结果与实测的成像测井具有较好的对应关系。图5是实施例地区中有效储层孔隙度下限与深度关系图,图6是有效空间参数P在D7井3900~4070m的识别效果图。图5和图6表明通过计算孔隙度和统计的孔隙度下限两者相结合,可以有效识别储层中的有效储集空间。图7-10是储层有效性指数E的四类储层定量识别成果图,利用建立的分类识别标准推广至全区中判别精度达到80%以上,实际应用效果较好,实现了砂砾岩有效储层的常规测井定量识别。
本说明书中采用的表示方法,是本领域技术人员习惯用法,本领域技术人员熟知,不做更详细解释。
如上所述,对本发明的实施例进行了详细地说明,并非用于限定本发明的保护范围。只要实质上没有脱离本发明的发明点及效果可以有很多的变形,这对本领域的技术人员来说是显而易见的。因此,这样的变形例也全部包含在本发明的保护范围之内。

Claims (10)

1.砂砾岩有效储层常规测井定量识别方法,其特征在于,该砂砾岩有效储层常规测井定量识别方法包括:
步骤1,校正测井资料环境影响;
步骤2,明确有效储层测井响应特征,选择敏感测井曲线;
步骤3,计算反映储层发育程度的储层识别参数R;
步骤4,计算反映岩石粒度大小的粒度指示参数G;
步骤5,计算反映有效储集空间的有效空间参数P;
步骤6,构建储层有效性指数的计算模型E;
步骤7,结合试油情况,建立有效储层定量划分标准;
在步骤3中,储层识别参数R反映了砂砾岩储层的发育程度,R值越大,砂砾岩储层越发育;反之,砂砾岩储层越不发育;采用自然伽马计算不同砾石成分的储层识别参数R;
在步骤3中,对于灰岩砾石,具有低自然伽马特征,采用公式(1)计算储层识别参数R:
Figure FDA0002883862900000012
式中,R为储层识别参数,无量纲;GR为实测的自然伽马值,API;GRshale为纯泥岩的自然伽马值;GRgravel-h为纯灰岩砾石的自然伽马值,API;
在步骤3中,对于片麻岩砾石,具有高自然伽马特征,采用公式(2)计算储层识别参数R:
Figure FDA0002883862900000011
式中,R为储层识别参数,无量纲;GR为实测的自然伽马值,API;GRgravel-p为纯片麻岩砾石的自然伽马值,API。
2.根据权利要求1所述的砂砾岩有效储层常规测井定量识别方法,其特征在于,在步骤1中,以砂砾岩的实测密度、声波时差值为反演的约束条件,针对不同系列的测井仪器,选择相应的环境影响校正图版,将图版读值拟合成校正公式的基础上进行自动可视化校正处理,并考虑到图版法的局限性,采用非线性数学方法来迭代反演砂砾岩的真实密度、声波时差、自然伽马这些测井信息。
3.根据权利要求1所述的砂砾岩有效储层常规测井定量识别方法,其特征在于,在步骤2中,明确了砂砾岩储层在常规测井曲线上具有两高两低一变化的特征,即中高电阻、高密度、低声波、低中子,自然伽马随砂砾岩母岩成分的不同而变化;选择自然伽马曲线识别储层发育程度,选择声波时差和电阻率曲线识别岩石粒度大小,选择声波时差和统计的孔隙度下限值判断有效储集空间发育程度。
4.根据权利要求1所述的砂砾岩有效储层常规测井定量识别方法,其特征在于,在步骤4中,粒度指示参数G与岩石的粒度大小成正比,G值越大,砂砾岩的岩石粒度越大;受到岩石骨架声波时差和电阻率的影响,与岩石骨架声波时差成反比,与电阻率成正比。
5.根据权利要求4所述的砂砾岩有效储层常规测井定量识别方法,其特征在于,在步骤4中,粒度指示参数G的计算公式(3)为:
Figure FDA0002883862900000021
其中:
Figure FDA0002883862900000022
式中,G为粒度指示参数,无量纲;Rt为实测电阻率值,Ω·m;Δtma为岩石骨架声波时差,us/ft;△tf为流体声波时差,取180us/ft;△tAC为实测声波时差,us/ft;φCNL为实测补偿中子孔隙度值,%。
6.根据权利要求1所述的砂砾岩有效储层常规测井定量识别方法,其特征在于,在步骤5中,有效空间参数P定义为储层孔隙度与孔隙度下限的差值,P值越大,砂砾岩有效储集空间越发育;先采用试油法、束缚水饱和度法、最小有效孔喉半径法、分布函数曲线法,求取不同埋深下有效储层的孔隙度下限值,拟合有效储层孔隙度下限与埋深的关系。
7.根据权利要求6所述的砂砾岩有效储层常规测井定量识别方法,其特征在于,在步骤5中,储层孔隙度下限值的计算公式(4)为:
φL=-7.99×In(depth)+69.965 (4)
式中,φL为储层孔隙度下限值;depth为埋深,m;
有效空间参数P定义为储层孔隙度与孔隙度下限的差值,即公式(5):
P=φ-φL (5)
其中,
Figure FDA0002883862900000031
式中,P为有效空间参数,无量纲;φ为储层孔隙度;Δtma为岩石骨架声波时差,us/ft;△tf为流体声波时差,取180us/ft;△tAC为实测声波时差,us/ft;Cp为压实校正系数,取值1;φL为储层孔隙度下限值。
8.根据权利要求1所述的砂砾岩有效储层常规测井定量识别方法,其特征在于,在步骤6中,构建的储层有效性指数的计算模型,即公式(6)为:
E=R×G×P (6)
储层有效性指数E越大,表明砂砾岩储层的各类沉积和储集条件有利,成藏及产能情况较好。
9.根据权利要求1所述的砂砾岩有效储层常规测井定量识别方法,其特征在于,在步骤7中,将储层有效性指数计算模型应用于不同典型井中,得到典型井的储层有效性指数值,计算特定埋深的单井极限初产油流,确定优质储层日产油量,结合实际井段的试油情况,建立有效储层的定量划分标准。
10.根据权利要求9所述的砂砾岩有效储层常规测井定量识别方法,其特征在于,在步骤7中,建立的有效储层的定量划分标准为:E值大于0.25时,成藏条件最好,不采取措施或压裂后稳产,为I类储层;E值介于0.25至0.1之间时,成藏条件较好,经酸化压裂后增产明显,为II类储层;E值介于0.1至0.05之间时,成藏条件较差,经酸化压裂后效果较差,为III类储层;E值介于0至0.05之间时,成藏条件最差,酸化压裂无效,为IV类储层;依据此标准实现对砂砾岩有效储层的定量识别。
CN201810141075.XA 2018-02-11 2018-02-11 砂砾岩有效储层常规测井定量识别方法 Active CN108303752B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810141075.XA CN108303752B (zh) 2018-02-11 2018-02-11 砂砾岩有效储层常规测井定量识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810141075.XA CN108303752B (zh) 2018-02-11 2018-02-11 砂砾岩有效储层常规测井定量识别方法

Publications (2)

Publication Number Publication Date
CN108303752A CN108303752A (zh) 2018-07-20
CN108303752B true CN108303752B (zh) 2021-03-23

Family

ID=62865421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810141075.XA Active CN108303752B (zh) 2018-02-11 2018-02-11 砂砾岩有效储层常规测井定量识别方法

Country Status (1)

Country Link
CN (1) CN108303752B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111173505B (zh) * 2018-10-23 2023-08-22 中国石油天然气股份有限公司 确定储集层下限的方法和装置
CN110334376A (zh) * 2019-04-26 2019-10-15 中国石油集团西部钻探工程有限公司 致密油甜点储层的识别方法
CN111997581B (zh) * 2019-05-27 2022-08-30 中国石油天然气股份有限公司 非均质油藏开发方法、装置及电子设备
CN110469327B (zh) * 2019-08-02 2022-12-02 中国石油天然气集团有限公司 一种五步逼近式碳酸盐岩储层测井立体评价方法
CN112443321B (zh) * 2019-08-15 2023-12-26 中国石油天然气股份有限公司 基于储层品质指数的油层识别方法及装置
CN111487691B (zh) * 2020-01-19 2022-06-24 西北大学 一种致密砂岩储层岩性及砂体结构定量识别方法
CN111537417B (zh) * 2020-04-17 2021-02-02 中国科学院力学研究所 一种岩样孔隙发育状况评估方法
CN113219544B (zh) * 2020-05-18 2023-07-25 中国海洋石油集团有限公司 基于相对含氢指数的变质岩岩石成分测井识别方法
CN111622750B (zh) * 2020-05-25 2023-07-25 中国石油天然气集团有限公司 一种常规测井资料评价砂砾岩储层有效性的计算方法
CN113805246B (zh) * 2020-06-15 2023-09-26 中国石油天然气股份有限公司 一种碳酸盐岩储层连通性评价图版及其生成方法和应用
CN111766637B (zh) * 2020-07-09 2021-10-01 中国地质大学(北京) 一种致密储层岩性识别的岩性定量谱方法
CN114075965B (zh) * 2020-08-05 2024-05-07 中国石油化工股份有限公司 一种河道砂岩粒度的确定方法
CN111983702B (zh) * 2020-08-18 2023-05-05 中海石油(中国)有限公司 一种基于电成像测井的油砂隔夹层定量识别方法及系统
CN112696197B (zh) * 2020-12-30 2024-05-14 中国石油天然气集团有限公司 一种油田储层指数曲线构建方法、系统、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278436A (zh) * 2013-02-01 2013-09-04 西安石油大学 特低渗透双重介质砂岩油藏微观孔隙结构的定量表征方法
WO2013149623A1 (fr) * 2012-04-01 2013-10-10 Entreprise Nationale De Geophysique Enageo Methode pour evaluer quantitativement la tortuosite fluide et les caracteristiques du solide et des fluides dans un reservoir heterogene
CN104914482A (zh) * 2014-03-13 2015-09-16 中国石油化工股份有限公司 一种复杂砂砾岩岩相组合类型定量识别方法
CN105651966A (zh) * 2016-01-18 2016-06-08 山东科技大学 一种页岩油气优质储层评价方法及参数确定方法
CN106096249A (zh) * 2016-06-02 2016-11-09 中国石油大学(北京) 一种裂缝性油气储层的定量评价方法
CN106842301A (zh) * 2016-12-22 2017-06-13 中国石油天然气股份有限公司 一种凝灰质砂岩有利储层的定量识别与预测方法
CN107605471A (zh) * 2017-07-21 2018-01-19 中国石油天然气股份有限公司 一种湖相碳酸盐岩岩性测井定量识别方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151531A1 (en) * 2012-04-02 2013-10-10 Halliburton Energy Services, Inc. Acoustic logging systems and methods employing multi-mode inversion for anisotropy and shear slowness
EP2932312A4 (en) * 2013-12-19 2016-04-20 Halliburton Energy Services Inc MAGNETIC CORE RESONANCE POROSITY INTEGRATION INTO A PROBABILISTIC MULTILOG INTERPRETATION METHODOLOGY

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149623A1 (fr) * 2012-04-01 2013-10-10 Entreprise Nationale De Geophysique Enageo Methode pour evaluer quantitativement la tortuosite fluide et les caracteristiques du solide et des fluides dans un reservoir heterogene
CN103278436A (zh) * 2013-02-01 2013-09-04 西安石油大学 特低渗透双重介质砂岩油藏微观孔隙结构的定量表征方法
CN104914482A (zh) * 2014-03-13 2015-09-16 中国石油化工股份有限公司 一种复杂砂砾岩岩相组合类型定量识别方法
CN105651966A (zh) * 2016-01-18 2016-06-08 山东科技大学 一种页岩油气优质储层评价方法及参数确定方法
CN106096249A (zh) * 2016-06-02 2016-11-09 中国石油大学(北京) 一种裂缝性油气储层的定量评价方法
CN106842301A (zh) * 2016-12-22 2017-06-13 中国石油天然气股份有限公司 一种凝灰质砂岩有利储层的定量识别与预测方法
CN107605471A (zh) * 2017-07-21 2018-01-19 中国石油天然气股份有限公司 一种湖相碳酸盐岩岩性测井定量识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
准噶尔盆地西北缘玛北地区百口泉组砂砾岩储层评价;邹妞妞 等;《天然气地球科学》;20151130;第26卷;第63-72页 *
辫状河相砾质砂岩储层微观特征及对产能的影响;陈国成;《石油地质与工程》;20170930;第31卷(第5期);第56-60页 *

Also Published As

Publication number Publication date
CN108303752A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
CN108303752B (zh) 砂砾岩有效储层常规测井定量识别方法
Xiao et al. A fracture identification method for low-permeability sandstone based on R/S analysis and the finite difference method: A case study from the Chang 6 reservoir in Huaqing oilfield, Ordos Basin
US6721661B2 (en) Method of distinguishing types of geologic sedimentation
CN110517794A (zh) 一种建立页岩气藏的埋藏-热演化史图的方法
CN104278991A (zh) 盐湖相烃源岩有机碳和生烃潜量的多元测井计算方法
CN109138975B (zh) 一种基于时移测井数据的求解相渗特征曲线的新方法
CN103993871A (zh) 针对薄互层地层的测井资料标准化处理方法及装置
CN105467438A (zh) 一种基于三模量的泥页岩地应力三维地震表征方法
Mitra et al. Application of lithofacies models to characterize unconventional shale gas reservoirs and identify optimal completion intervals
Feng et al. Accurate determination of water saturation in tight sandstone gas reservoirs based on optimized Gaussian process regression
CN114183121B (zh) 裂缝有效性定量评价方法、装置、电子设备及存储介质
AU2013334868B2 (en) Distributing petrofacies using analytical modeling
George et al. Estimation of aquifer hydraulic parameters via complementing surfacial geophysical measurement by laboratory measurements on the aquifer core samples
Evans et al. A geological approach to permeability prediction in clastic reservoirs
CN114060015B (zh) 一种致密砂岩含气性的评价方法及装置
Alavi Determination of Reservoir Permeability Based on Irreducible Water Saturation and Porosity from Log Data and Flow Zone Indicator (FZI) from Core Data
CN114428365A (zh) 一种基于含气特征的致密砂岩气层测井识别方法及装置
CN112228050A (zh) 一种定量评价致密油储层宏观非均质性的方法及其应用
CN112784404A (zh) 一种基于常规测井资料的砂砾岩束缚水饱和度计算方法
CN112346147A (zh) 一种基于中子密度孔隙度差的储层评价方法
CN113720745A (zh) 含碳屑碎屑岩储层地球物理测井计算孔隙度的方法
CN114059999B (zh) 一种重力流沉积成因测井识别方法
Gandhi et al. Low resistivity petrophysical mapping expands the terry (sussex) play in wattenberg field, Colorado
Alam Estimation of reservoir heterogeneity from the depositional environment in reservoir characterization of a CHOPS Field
CN107808229A (zh) 阵列感应、侧向测井的砂岩储层可动水饱和度定量评价方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant