CN108303441B - 一种测定锡及锡合金样品中白锡转变为灰锡比例的方法 - Google Patents

一种测定锡及锡合金样品中白锡转变为灰锡比例的方法 Download PDF

Info

Publication number
CN108303441B
CN108303441B CN201810059761.2A CN201810059761A CN108303441B CN 108303441 B CN108303441 B CN 108303441B CN 201810059761 A CN201810059761 A CN 201810059761A CN 108303441 B CN108303441 B CN 108303441B
Authority
CN
China
Prior art keywords
tin
temperature
sample
change
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810059761.2A
Other languages
English (en)
Other versions
CN108303441A (zh
Inventor
王春青
赵厢汐
籍晓亮
安琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810059761.2A priority Critical patent/CN108303441B/zh
Publication of CN108303441A publication Critical patent/CN108303441A/zh
Application granted granted Critical
Publication of CN108303441B publication Critical patent/CN108303441B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering

Abstract

一种测定锡及锡合金样品中白锡转变为灰锡比例的方法,属于钎料低温可靠性研究技术领域。所述方法为将样品放置于恒温液体介质中测量初始体积、将样品放置于“相变低温环境”下、改变环境温度或放置时间、取出样品待升温至初始温度、将样品在此放回于恒温液体介质中、测量样品在不同温度或不同放置时间后的体积、绘制体积变化曲线、依据变化曲线监测Sn低温相变过程,如转变起始点、转变比例。本发明的优点是:通过利用Sn相变过程中灰锡与白锡的密度变化,能够有效检测样品中锡瘟的发生及灰锡转变的比例,其区别于现有的相变检测方法,具有更高的灵敏度。

Description

一种测定锡及锡合金样品中白锡转变为灰锡比例的方法
技术领域
本发明属于钎料低温可靠性研究技术领域,具体涉及一种测定锡及锡合金样品中白锡转变为灰锡比例的方法。
背景技术
近年来,随着在电子工业领域中铅被禁止使用,人们纷纷研究可取代Sn-Pb焊料的无铅焊料。在此之前,Sn-Pb焊料的广泛使用并未见灰锡问题的发生,而由于被广泛使用的Sn基无铅焊料中所含合金元素的量相对较少,其含Sn量可达95%~99%以上,其成分更接近于纯锡,锡瘟的问题逐渐被重视起来,并且也有一些新的数据可以证实长期处于低温条件下,在无铅焊料中形成灰锡的风险将更大,因此锡瘟问题一直是锡及锡合金低温应用时的严重问题。
纯Sn在13℃时会发生从白色的β-Sn到灰色的α-Sn的同素异形转变。白锡具有体心四方结构,密度为7.28 g/cm3,灰锡具有金刚石结构,其密度为5.75 g/cm3。β-Sn向α-Sn转变过程中伴随有26%~27%的体积膨胀,虽然这种转换很缓慢,但转变可在较低温度下增强。当这种情况发生时,采用锡制作的工件、连接器上会观察到表面裂纹,最终发生损坏、失效。
如何检测锡及其合金中灰锡转变的发生以及转变量,对于科学研究、实际工件安全检测至关重要。基于Sn不同的理化性质,目前已经研究出了很多有用的检测Sn相变的方法:电阻法、微结构法、电气测量法、X射线衍射、SEM/EBS分析法等,但是这些方法普遍存在灵敏度较低的问题,因此一种能够显著检测Sn相变的方法亟待开发。
发明内容
本发明的目的是为了解决现有Sn低温相变检测方法灵敏度低的问题,提供一种测定锡及锡合金样品中白锡转变为灰锡比例的方法,该种方法操作简单,能够显著检测早期Sn相变,从β-Sn到α-Sn的转变是相当缓慢的,过程中Sn需要成核和生长,潜伏期需要数月甚至数年完成,但是基于白锡与灰锡理化性质的不同,尤其是27%体积的变化,能够准确的检测到样品中锡瘟的发生及灰锡转变比例,这不仅有利于Sn低温相变的研究,而且对于科学研究、实际工件安全检测有重要的作用。
为实现上述目的,本发明采取的技术方案如下:
一种测定锡及锡合金样品中白锡转变为灰锡比例的方法,所述方法具体步骤如下:
步骤一:制备边长为1cm的正方体锡或者锡合金样品;
步骤二:在恒温10℃的自来水中测量样品的体积;
步骤三:将样品放入高低温试验箱中,在高低温试验箱中放置10min;
步骤四:取出样品,待升温到9℃时再次放入步骤二所述的恒温10℃的自来水中测量其体积;
步骤五:再次放入高低温试验箱中,降低高低温试验箱一个温度阶梯或增加在高低温试验箱中的放置时间,一个温度梯度为10℃~30℃,放置时间每次增加10分钟;
步骤六:重复步骤三到步骤五,直到需要的最低温或最长时间,最低温为-120℃,最长时间为200小时;
步骤七:绘制不同相变低温环境的温度或处理时间与相应的样品体积曲线关系图;
步骤八:根据曲线的拐点和拐点以后曲线的斜率获知相变发生和相变比例。
本发明相对于现有技术的有益效果是:通过利用Sn相变过程中灰锡与白锡的密度变化,能够有效检测样品中锡瘟的发生及灰锡转变的比例,其区别于现有的相变检测方法,灵敏度可达到27%。
附图说明
图1是测量样品体积过程示意图;
图2是定时降温处理方法流程图;
图3是恒温变时处理方法流程图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
本发明的原理是:白锡转变成灰锡后,由于晶系变化,密度发生很明显的改变,这一改变反映在体积上,这时检测样品的体积变化即可知道样品中灰锡比例。根据变量的不同,检测方法可分为:定时降温方法和恒温变时方法。无论哪种方法,通过最终获得的温度与体积或时间与体积的曲线,均可通过曲线拐点和斜率知道灰锡的转变节点和比例。
Sn及其合金在低温下发生相变,伴随着显著的密度变化。白锡为四方晶系,晶胞参数:a=0.5832nm,c=0.3181nm,晶胞中含4个Sn原子,密度为7.28g/cm3;灰锡为金刚石形立方晶系,晶胞参数:a=0.6489nm,晶胞中含8个Sn原子,密度为5.75g/cm3。灰锡与白锡之间存在的1.53g/cm3密度差,密度大约小21%,差距很明显。那么,一定质量的样品发生部分灰锡转变时其密度必然变化,检测这一变化,就可以知道样品中转变为灰锡的比例。
本发明的检测方法提出了依据Sn及其合金在相变过程中体积曲线随温度或时间的变化来检测灰锡比例的方法,实现对于Sn及其合金中发生的低温相变过程的研究包含将样品放置于恒温液体介质中测量初始体积、将样品放置于“相变低温环境”下、改变环境温度或放置时间、取出样品待升温至初始温度、将样品再次放回于恒温液体介质中、测量样品在不同温度或不同放置时间后的体积、绘制体积变化曲线、依据变化曲线监测Sn低温相变过程,如转变起始点、转变比例。为了消除样品热胀冷缩造成的误差,每次体积测量均在恒温液体介质中。为了提高测量过程的灵敏度,使用精度高的体积测量仪器以及温度传感器。
具体实施方式一:本实施方式记载的是一种测定锡及锡合金样品中白锡转变为灰锡比例的方法,检测方法分为两种,定时降温测量法与恒温变时测量法,两种方法变量为温度、时间与体积的关系,其特征在于:所述方法具体步骤如下:
步骤一:制备边长为1cm的正方体锡或者锡合金样品;
步骤二:在恒温10℃的自来水中测量样品的体积,如图1所示;
步骤三:将样品放入高低温试验箱中,在高低温试验箱中放置10min;高低温试验箱的型号为TGDW-500TA;
步骤四:取出样品,待升温到9℃时再次放入步骤二所述的恒温10℃的自来水中测量其体积;
步骤五:再次放入高低温试验箱中,降低高低温试验箱一个温度阶梯或增加在高低温试验箱中的放置时间,一个温度梯度为10℃~30℃,放置时间每次增加10分钟,操作流程见附图2、附图3;
步骤六:重复步骤三到步骤五,直到需要的最低温或最长时间,最低温为-120℃,最长时间为200小时;
步骤七:绘制不同相变低温环境的温度或处理时间与相应的样品体积曲线关系图;
步骤八:根据曲线的拐点和拐点以后曲线的斜率获知相变发生和相变比例。
具体实施方式二:具体实施方式一所述的一种测定锡及锡合金样品中白锡转变为灰锡比例的方法,步骤三中,所述的低温处理为定时降温或恒温变时,(1)定时降温是将样品在-20℃~-120℃的低温环境中放置10分钟,之后再改变放置环境的温度,降温梯度为20℃;(2)恒温变时是将样品放置在-40℃的低温环境,之后再改变放置时间的长短,每次增加10分钟。
步骤五和步骤六中,降低“相变低温环境”温度一个阶梯,如-10℃到-30℃,直至-120℃;维持“相变低温环境”温度不变,每次增加处理时间如增量10分钟,一直到需要的时间如200小时。步骤八中,当体积曲线出现拐点及拐点之后的曲线上升幅度增大,即斜率忽然增大时,此温度和时间下相变开始发生。相变比例计算方法为:已知白锡
Figure DEST_PATH_IMAGE001
的密度和灰锡的密度
Figure 812769DEST_PATH_IMAGE002
,并且相变前后样品质量M0不发生变化,样品初始体积V0,相变后样品测得体积
Figure DEST_PATH_IMAGE003
。设相变后样品中剩余白锡质量M1,灰锡质量M2,则:
M0=M1+M2 (1)
相变后样品增加的体积
Figure 824719DEST_PATH_IMAGE004
为:
Figure 493598DEST_PATH_IMAGE004
=V-V0=M2/
Figure 549278DEST_PATH_IMAGE002
-M2/
Figure 303608DEST_PATH_IMAGE001
(2)
已知V,V0
Figure 40620DEST_PATH_IMAGE001
Figure 875589DEST_PATH_IMAGE002
,可计算出M2。则样品中相变比例
Figure DEST_PATH_IMAGE005
为:
Figure 367751DEST_PATH_IMAGE005
=M2/M0×100% (3)
实施例1:
本实施例以纯Sn为例进行详细描述(其他的钎料合金类似):
步骤一:制备边长1cm的正方形的规则Sn样品;
步骤二:在恒温10℃的液体介质中测量Sn样品的体积;
步骤三:将Sn样品放入-20℃的“相变低温环境”下处理10分钟;
步骤四:取出样品,待升温到9℃时放入上述恒温10℃的液体介质测量其体积;
步骤五:降低“相变低温环境”温度,每次降低10℃,处理时间仍然为10分钟;
步骤六:重复以上步骤3-5,一直到温度达到-120℃;
步骤七:绘制不同“相变低温环境”温度和相应的样品体积曲线;
步骤八:根据曲线的拐点和拐点以后曲线的斜率获知相变发生和相变比例。
实施例2:
本实施例以纯Sn为例进行详细描述(其他的钎料合金类似):
步骤一:制备边长1cm的正方形的规则Sn样品;
步骤二:在恒温10℃的液体介质中测量Sn样品的体积;
步骤三:将Sn样品放入-40℃的“相变低温环境”下处理20分钟。
步骤四:取出样品,待升温到9℃时放入上述恒温10℃的液体介质测量其体积;
步骤五:维持“相变低温环境”温度不变,每次增加10分钟处理时间;
步骤六:重复以上步骤3-5,一直到时间达到所需要的200小时;
步骤七:绘制不同“相变低温环境”温度和相应的样品体积曲线;
步骤八:根据曲线的拐点和拐点以后曲线的斜率获知相变发生和相变比例。

Claims (2)

1.一种测定锡及锡合金样品中白锡转变为灰锡比例的方法,其特征在于:所述方法具体步骤如下:
步骤一:制备边长为1cm的正方体锡或者锡合金样品;
步骤二:在恒温10℃的自来水中测量样品的体积;
步骤三:将样品放入高低温试验箱中,在高低温试验箱中放置10min;
步骤四:取出样品,待升温到9℃时再次放入步骤二所述的恒温10℃的自来水中测量其体积;
步骤五:再次放入高低温试验箱中,降低高低温试验箱一个温度阶梯或增加在高低温试验箱中的放置时间,一个温度梯度为10℃~30℃,放置时间每次增加10分钟;
步骤六:重复步骤三到步骤五,直到需要的最低温或最长时间,最低温为-120℃,最长时间为200小时;
步骤七:绘制不同相变低温环境的温度或处理时间与相应的样品体积曲线关系图;
步骤八:根据曲线的拐点和拐点以后曲线的斜率获知相变发生和相变比例。
2.根据权利要求1所述的一种测定锡及锡合金样品中白锡转变为灰锡比例的方法,其特征在于:步骤三中,所述的低温处理为定时降温或恒温变时,(1)定时降温是将样品在-20℃~-120℃的低温环境中放置10分钟,之后再改变放置环境的温度,降温梯度为20℃;(2)恒温变时是将样品放置在-40℃的低温环境,之后再改变放置时间的长短,每次增加10分钟。
CN201810059761.2A 2018-01-22 2018-01-22 一种测定锡及锡合金样品中白锡转变为灰锡比例的方法 Expired - Fee Related CN108303441B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810059761.2A CN108303441B (zh) 2018-01-22 2018-01-22 一种测定锡及锡合金样品中白锡转变为灰锡比例的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810059761.2A CN108303441B (zh) 2018-01-22 2018-01-22 一种测定锡及锡合金样品中白锡转变为灰锡比例的方法

Publications (2)

Publication Number Publication Date
CN108303441A CN108303441A (zh) 2018-07-20
CN108303441B true CN108303441B (zh) 2020-11-10

Family

ID=62866199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810059761.2A Expired - Fee Related CN108303441B (zh) 2018-01-22 2018-01-22 一种测定锡及锡合金样品中白锡转变为灰锡比例的方法

Country Status (1)

Country Link
CN (1) CN108303441B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001979B (zh) * 2019-12-04 2021-09-03 广东电网有限责任公司 一种引流板的拆卸方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308546A (zh) * 2013-05-24 2013-09-18 西安交通大学 一种定形相变材料相变函数测量方法
CN103884733A (zh) * 2014-02-25 2014-06-25 重庆科技学院 一种回火过程中组织转变规律的测定方法
WO2015039152A1 (de) * 2013-09-18 2015-03-26 Ing.W.Garhöfer Gesellschaft M.B.H. Abscheidung von cu, sn, zn-beschichtungen auf metallischen substraten
CN104614283A (zh) * 2015-01-05 2015-05-13 上海应用技术学院 一种金属材料热处理加工过程中的所对应物相变化的分析方法
CN104880480A (zh) * 2015-06-16 2015-09-02 北京科技大学 一种计算相变转变体积比的数值微分方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2342369Y (zh) * 1998-09-16 1999-10-06 中国科学院金属研究所 高压高温相变测试设备
CN101928990A (zh) * 2009-06-26 2010-12-29 中国科学院半导体研究所 GeSn合金的外延生长方法
JP5704826B2 (ja) * 2010-03-19 2015-04-22 キヤノン株式会社 振動型アクチュエータの駆動装置
US9260923B1 (en) * 2010-05-11 2016-02-16 Us Synthetic Corporation Superabrasive compact and rotary drill bit including a heat-absorbing material for increasing thermal stability of the superabrasive compact
CN103509525B (zh) * 2012-06-17 2016-02-10 何丽红 一种定形复合相变储能材料及其制备方法
CN103438956B (zh) * 2013-09-24 2016-01-20 哈尔滨工业大学 不同温度条件下无机相变材料体积变化率测定装置的测定方法
US10473366B2 (en) * 2014-09-18 2019-11-12 Carrier Corporation Heat transfer system with phase change composition
CN104561478A (zh) * 2014-12-23 2015-04-29 人本集团有限公司 一种高碳铬轴承钢GCr15下贝氏体热处理工艺
CN104877641A (zh) * 2015-05-28 2015-09-02 中国科学院山西煤炭化学研究所 一种快速低成本制备石蜡/石墨相变复合材料的方法
CN105352990B (zh) * 2015-12-24 2017-11-07 哈尔滨工业大学 一种有机相变储热材料体积变形的测试方法
CN105969316B (zh) * 2016-06-03 2020-11-10 宁海德宝立新材料有限公司 一种用于热敷的相变储热复合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308546A (zh) * 2013-05-24 2013-09-18 西安交通大学 一种定形相变材料相变函数测量方法
WO2015039152A1 (de) * 2013-09-18 2015-03-26 Ing.W.Garhöfer Gesellschaft M.B.H. Abscheidung von cu, sn, zn-beschichtungen auf metallischen substraten
CN103884733A (zh) * 2014-02-25 2014-06-25 重庆科技学院 一种回火过程中组织转变规律的测定方法
CN104614283A (zh) * 2015-01-05 2015-05-13 上海应用技术学院 一种金属材料热处理加工过程中的所对应物相变化的分析方法
CN104880480A (zh) * 2015-06-16 2015-09-02 北京科技大学 一种计算相变转变体积比的数值微分方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Sn-1wt%Ge合金在-20℃下的β→α相变的研究;赵红娥;《辽宁工学院学报》;19991031;第19卷(第5期);第75-77页 *

Also Published As

Publication number Publication date
CN108303441A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
CN108517469B (zh) 具有宽温区零热膨胀效应的(Hf,Ta)Fe2磁相变合金及其应用
Greywall He 3 melting-curve thermometry at millikelvin temperatures
CN108303441B (zh) 一种测定锡及锡合金样品中白锡转变为灰锡比例的方法
Swenson Properties of Indium and Thallium at low temperatures
CN103335589A (zh) 无缝线路钢轨温度应力传感节点的标定方法
CN102253240B (zh) 一种石英挠性加速度计安全使用边界确定方法
Fine et al. Quantitative measurement of energy associated with a moving fatigue crack
Sumino et al. Dynamical state of dislocations in germanium crystals during deformation
Li et al. Measurements of mechanical properties of α-phase in Cu–Sn alloys by using instrumented nanoindentation
Korhonen et al. On the thermoelastic properties of hydrogenated amorphous silicon
CN104101274A (zh) 铝合金零件尺寸的在线检测方法
CN103712946A (zh) 低温红外光谱测定单晶硅中替位碳含量的方法
CN105258677B (zh) 一种高精度倾角仪及智能温补系统
Slifkin et al. The creep of zinc single crystals
CN111855489A (zh) 一种用于测试材料固-液相变体积变化率的方法
Nagase et al. Fatigue gauge utilizing slip deformation of aluminum foil: slip initiation and surface roughening phenomena under uniaxial stressing
Leach et al. Energy relations in cold working an alloy at 78 K and at room temperature
LU502851B1 (en) A New Measuring Method of Elastic Modulus of Sn-Pb Alloy Solder Paste In Reflow Soldering Process
CN113791111B (zh) 一种利用金属材料内耗测定再结晶温度的方法
Li et al. Research on the temperature measurement of C919 aircraft landing gear during heat treatment.
Gibeling et al. Brain rate continuity in aluminum and Al Mg
CN114136302B (zh) 一种能提升光纤陀螺中零偏对称性的光纤环及其测试、评估方法
CN108956938B (zh) 冻融循环岩石变形测量装置及其测量方法
Kondo et al. No pumping at 450° C with electrodeposited copper TSV
CN113959403A (zh) 一种水准仪的温度补偿方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201110