CN108298853B - 一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法 - Google Patents

一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法 Download PDF

Info

Publication number
CN108298853B
CN108298853B CN201810027129.XA CN201810027129A CN108298853B CN 108298853 B CN108298853 B CN 108298853B CN 201810027129 A CN201810027129 A CN 201810027129A CN 108298853 B CN108298853 B CN 108298853B
Authority
CN
China
Prior art keywords
polyvinyl alcohol
epoxy resin
alcohol fiber
fiber
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810027129.XA
Other languages
English (en)
Other versions
CN108298853A (zh
Inventor
郭丽萍
丁聪
柴丽娟
徐燕慧
曹园章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810027129.XA priority Critical patent/CN108298853B/zh
Publication of CN108298853A publication Critical patent/CN108298853A/zh
Application granted granted Critical
Publication of CN108298853B publication Critical patent/CN108298853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/12Multiple coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法,该方法以聚乙烯醇纤维为原料,首先在其表面涂覆一层界面环氧树脂,接着在环氧树脂涂层的表面涂覆一层纳米石墨粉体;本发明的方法既能很好调控聚乙烯醇纤维与水泥基体的界面性能,又可以保证涂层的稳定性,不会对纤维本身造成损伤。

Description

一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性 方法
技术领域
本发明涉及复合材料的改性技术领域,尤其涉及一种用于应变硬化水泥基复合材料的环氧树脂-纳米石墨涂层表面改性聚乙烯醇纤维的方法。
背景技术
1992年美国密西根大学Victor Li与麻省理工大学Christopher Leung共同发表的论文从理论上论证了SHCC拉伸特性,建立了设计水泥基复合材料的物理基础及设计准则,从而开启了SHCC材料的研究和应用。应变硬化水泥基复合材料(Strain HardeningCementitious Composites,简称SHCC)在单轴拉伸荷载作用下具有应变硬化和多微缝开裂特性,极限拉应变可达3%~7%。其优越的抗拉性能和超强韧性显著改变了传统水泥基材料脆性大、易开裂的缺陷,使其成为近年来的研究热点之一。
应变硬化水泥基复合材料基于微观力学、断裂力学以及统计学基本原理通过系统设计和性能优化而制备的。它具有多缝开裂特征和应变硬化特性以及优异的裂缝控制能力。在受到弯曲和拉伸荷载时,由于开裂处纤维的桥联作用以及纤维与基体间传递应力时裂缝能够稳定扩展,使得应变硬化水泥基复合材料表现出明显的多缝开裂特性和应变硬化行为。因此,相对于传统的纤维增强水泥基复合材料具有更好的力学性能和耐久性。
其目前应变硬化水泥基复合材料所用纤维多为PE纤维与PVA纤维,由于PE纤维价格较贵且长期力学性能下降,所以使用较多的是PVA纤维,但是由于聚乙烯醇纤维表面含有大量的羟基,与水泥的亲和性较强,在拉伸作用下由于与水泥基体之间较强的粘接力,在拔出过程中导致聚乙烯醇纤维被拔断,而不是被拔出;从而导致应变硬化水泥基复合材料性能将会受到严重影响。
目前为了调节聚乙烯醇纤维与水泥基体的界面性能,一般对聚乙烯醇纤维表面涂覆油剂(例如中国专利申请号201210468413.3),一方面油剂容易进入水泥基体中,影响水泥基体性能,另一方面纤维表面涂覆油剂在成型搅拌过程中油膜涂层很容易脱落;又例如(中国专利申请号201610375068.7)专利中使用强氧化剂高锰酸钾对聚乙烯醇纤维表面氧化使聚乙烯醇纤维表面粗糙后再涂抹一层疏水物质,这一方面会破坏聚乙烯醇纤维表面,降低纤维的性能,同时疏水涂层只是依靠涂层与纤维表面的物理吸附力,稳定性也无法保证。
发明内容
针对上述存在的问题,本发明目的在于提供一种有效降低聚乙烯醇纤维与水泥基体的化学粘结力,降纤维拔出过程中的界面摩檫力,避免纤维在拔出阶段被拔断,采用环氧树脂-纳米石墨为涂层的表面改性聚乙烯醇纤维的方法。
为了达到上述目的,本发明采用的技术方案如下:一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法,所述的方法以聚乙烯醇纤维为原料,首先在其表面涂覆一层环氧树脂,接着在环氧树脂涂层的表面涂覆一层纳米石墨粉体。
本发明所述的环氧树脂采用溶剂浸泡的方式涂覆在聚乙烯醇纤维的表面,所述环氧树脂的涂覆量为聚乙烯醇纤维质量的5%~15%;本发明使用环氧树脂预处理可以使得石墨与纤维表面粘结性能更强,不容易脱落,且不会影响PVA纤维原有物理力学性能。
本发明所述的纳米石墨粉体采用机械搅拌的方式涂覆在环氧树脂涂层的表面;本发明所述的纳米石墨粉体为疏水型纳米石墨粉体;所述纳米石墨粉体的涂覆量为聚乙烯醇纤维质量的10%~50%;纳米石墨本身的疏水性且具有润滑功能,石墨是惰性材料不会与水泥基体发生反应,大大降低了聚乙烯醇纤维与水泥基体的化学粘接力与界面摩檫力,更好的发挥材料的应变硬化性能。
本发明提供的一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法,包括如下步骤:
1)选用有机溶剂配制环氧树脂的预处理液,其中环氧树脂质量分数为2%~10%;
2)将原料聚乙烯醇纤维浸泡在环氧树脂的预处理液中,浸泡温度为50℃~60℃,浸泡时间为2~3h;
3)步骤2)中处理后的聚乙烯醇纤维取出,用真空干燥箱抽真空烘干至恒重,烘干温度为50℃~60℃,烘干时间为12h~24h;
4)步骤3)中处理后的聚乙烯醇纤维与纳米石墨粉体进行机械搅拌混合,搅拌速率为1000~3000转/分,搅拌时间为2~3h。
本发明所述的步骤1)的操作过程中,有机溶剂选用丙酮、甲苯、苯、酒精中的一种或者几种的混合物。
本发明的优点在于:由于石墨本身的疏水性与润滑性,本发明改性过的聚乙烯醇纤维接触角可以达到130°~150°,同时聚乙烯醇纤维与水泥基体的界面摩檫力大大降低,免纤维在拔出阶段被拔断,使用环氧树脂预处理可以使得石墨与纤维表面粘结性能更强,不容易脱落,且不会影响PVA纤维原有物理力学性能。
附图说明
图1是光学显微镜观察未改性聚乙烯醇纤维表面形貌;
图2是光学显微镜观察改性后聚乙烯醇纤维表面形貌;
图3是改性后聚乙烯醇纤维接触角测试;
图4是未改性纤维在水泥基体中单丝拔出的荷载位移曲线;
图5是改性纤维在水泥基体中单丝拔出的荷载位移曲线。
其中,CA Left代表坐接触角;CA Right代表右接触角。
具体实施方式
下面结合附图说明和具体实施方式对本发明作进一步详细的描述。
实施例1
1)配制环氧树脂预处理液;
配制稀释环氧树脂预处理液,环氧树脂稀释剂选择用酒精,其中环氧树脂质量分数为5%。
2)聚乙烯醇纤维浸泡环氧树脂预处理液;
将未处理的聚乙烯醇纤维浸泡在环氧树脂预处理液中,浸泡温度为50℃,浸泡时间为3h。
3)预处理后聚乙烯醇纤维烘干;
将浸泡环氧树脂预处理液的聚乙烯醇纤维取出,用真空干燥箱抽真空烘干至恒重,烘干温度为50℃。
4)聚乙烯醇纤维表面涂覆纳米石墨
将烘干后的聚乙烯醇纤维与纳米石墨进行机械搅拌混合,采用电动搅拌器进行搅拌混合,搅拌速率为3000转/分,机械搅拌混合时间2h。
改性后的聚乙烯醇纤维接触角可以达到142°,环氧涂层涂覆量为11%,纳米石墨涂层涂覆量达到50%。改性后的聚乙烯醇纤维表面均匀涂覆一层环氧树脂-纳米石墨涂层,可以有效的改善纤维与水泥基体的界面性能。
实施例2
1)配制环氧树脂预处理液;
配制稀释环氧树脂预处理液,环氧树脂稀释剂选择用丙酮,其中环氧树脂质量分数为2%。
2)聚乙烯醇纤维浸泡环氧树脂预处理液;
将未处理的聚乙烯醇纤维浸泡在环氧树脂预处理液中,浸泡温度为60℃,浸泡时间为2h。
3)预处理后聚乙烯醇纤维烘干;
将浸泡环氧树脂预处理液的聚乙烯醇纤维取出,用真空干燥箱抽真空烘干至恒重,烘干温度为60℃。
4)聚乙烯醇纤维表面涂覆疏水纳米石墨
将烘干后的聚乙烯醇纤维与纳米石墨进行机械搅拌混合,采用电动搅拌器进行搅拌混合,搅拌速率为2000转/分,机械搅拌混合时间3h。
改性后的聚乙烯醇纤维接触角可以达到130°,环氧涂层涂覆量为5%,纳米石墨涂层涂覆量达到20%。改性后的聚乙烯醇纤维表面均匀涂覆一层环氧树脂-纳米石墨涂层,可以有效的改善纤维与水泥基体的界面性能。
实施例3
1)配制环氧树脂预处理液;
配制稀释环氧树脂预处理液,环氧树脂稀释剂选择用酒精,其中环氧树脂质量分数为6%。
2)聚乙烯醇纤维浸泡环氧树脂预处理液;
将未处理的聚乙烯醇纤维浸泡在环氧树脂预处理液中,浸泡温度为60℃,浸泡时间为3h。
3)预处理后聚乙烯醇纤维烘干;
将浸泡环氧树脂预处理液的聚乙烯醇纤维取出,用真空干燥箱抽真空烘干至恒重,烘干温度为60℃。
4)聚乙烯醇纤维表面涂覆疏水纳米石墨
将烘干后的聚乙烯醇纤维与纳米石墨进行机械搅拌混合,采用电动搅拌器进行搅拌混合,搅拌速率为1000转/分,机械搅拌混合时间3h。
改性后的聚乙烯醇纤维接触角可以达到140°,环氧涂层涂覆量为12%,纳米石墨涂层涂覆量达到40%。改性后的聚乙烯醇纤维表面均匀涂覆一层环氧树脂-纳米石墨涂层,可以有效的改善纤维与水泥基体的界面性能。
实施例4:
1)配制环氧树脂预处理液;
配制稀释环氧树脂预处理液,环氧树脂稀释剂选择用甲苯,其中环氧树脂质量分数为10%。
2)聚乙烯醇纤维浸泡环氧树脂预处理液;
将未处理的聚乙烯醇纤维浸泡在环氧树脂预处理液中,浸泡温度为60℃,浸泡时间为2h。
3)预处理后聚乙烯醇纤维烘干;
将浸泡环氧树脂预处理液的聚乙烯醇纤维取出,用真空干燥箱抽真空烘干至恒重,烘干温度为60℃。
4)聚乙烯醇纤维表面涂覆疏水纳米石墨
将烘干后的聚乙烯醇纤维与纳米石墨进行机械搅拌混合,采用电动搅拌器进行搅拌混合,搅拌速率为1000转/分,机械搅拌混合时间3h。
改性后的聚乙烯醇纤维接触角可以达到145°,环氧涂层涂覆量为15%,纳米石墨涂层涂覆量达到50%。改性后的聚乙烯醇纤维表面均匀涂覆一层环氧树脂-纳米石墨涂层,可以有效的改善纤维与水泥基体的界面性能。
实施例5
1)配制环氧树脂预处理液;
配制稀释环氧树脂预处理液,环氧树脂稀释剂选择用酒精,其中环氧树脂质量分数为1%。
2)聚乙烯醇纤维浸泡环氧树脂预处理液;
将未处理的聚乙烯醇纤维浸泡在环氧树脂预处理液中,浸泡温度为50℃,浸泡时间为3h。
3)预处理后聚乙烯醇纤维烘干;
将浸泡环氧树脂预处理液的聚乙烯醇纤维取出,用真空干燥箱抽真空烘干至恒重,烘干温度为50℃。
4)聚乙烯醇纤维表面涂覆纳米石墨
将烘干后的聚乙烯醇纤维与纳米石墨进行机械搅拌混合,采用电动搅拌器进行搅拌混合,搅拌速率为3000转/分,机械搅拌混合时间2h。
改性后的聚乙烯醇纤维由于环氧树脂涂层较少,石墨与纤维之间的粘接力不足,导致纳米石墨涂层容易脱落,并不能很好的发挥石墨的疏水与润滑的功能。
实施例6
1)配制环氧树脂预处理液;
配制稀释环氧树脂预处理液,环氧树脂稀释剂选择用酒精,其中环氧树脂质量分数为15%。
2)聚乙烯醇纤维浸泡环氧树脂预处理液;
将未处理的聚乙烯醇纤维浸泡在环氧树脂预处理液中,浸泡温度为50℃,浸泡时间为3h。
3)预处理后聚乙烯醇纤维烘干;
将浸泡环氧树脂预处理液的聚乙烯醇纤维取出,用真空干燥箱抽真空烘干至恒重,烘干温度为50℃。
4)聚乙烯醇纤维表面涂覆纳米石墨
将烘干后的聚乙烯醇纤维与纳米石墨进行机械搅拌混合,采用电动搅拌器进行搅拌混合,搅拌速率为3000转/分,机械搅拌混合时间2h。
改性后的聚乙烯醇纤维接触角可以达到140°,环氧涂层涂覆量为20%,纳米石墨涂层涂覆量达到55%。虽然改性后的聚乙烯醇纤维可以疏水效果,但是由于环氧涂层量过多,导致聚乙烯醇纤维之间过于粘接,难以分散。
实施例6:如图4和5所示,将本发明中的改性纤维与常规的未改性的纤维分别在水泥基体中进行单丝拔出的荷载位移测试。
从测试的结果来看,图4中所示:其为未改性纤维在水泥基体中单丝拔出的荷载位移曲线,单根曲线表示一组数据中的不同试样,不同的试样,其位移的范围仅仅为0.6-1.0mm,其荷载达到0.4-1.0N,而本发明的技术方案如图5所示,其也代表的是一组测试中的不同试样,其位移范围达到了1.5-3.5mm,其荷载仅仅为0.2-0.4N,因此可以得出本发明的产品确实有效降低聚乙烯醇纤维与水泥基体的化学粘结力,降纤维拔出过程中的界面摩檫力,避免纤维在拔出阶段被拔断的问题。
需要说明的是,上述仅仅是本发明的较佳实施例,并非用来限定本发明的保护范围,在上述实施例的基础上所做出的任意组合或等同变换均属于本发明的保护范围。

Claims (4)

1.一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法,其特征在于,所述的方法以聚乙烯醇纤维为原料,首先在其表面涂覆一层环氧树脂涂层,接着在环氧树脂涂层的表面涂覆一层纳米石墨粉体;所述的方法包括如下步骤:
1)选用有机溶剂配制环氧树脂的预处理液,其中环氧树脂质量分数为2%~10%;
2)将原料聚乙烯醇纤维浸泡在环氧树脂的预处理液中,浸泡温度为50℃~60℃,浸泡时间为2~3h;
3)步骤2)中处理后的聚乙烯醇纤维取出,用真空干燥箱抽真空烘干至恒重,烘干温度为50℃~60℃,烘干时间为12h~24h;
4)步骤3)中处理后的聚乙烯醇纤维与纳米石墨粉体进行机械搅拌混合,搅拌速率为1000~3000转/分,搅拌时间为2~3h。
2.如权利要求1所述的用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法,其特征在于,所述环氧树脂的涂覆量为聚乙烯醇纤维质量的5%~15%。
3.如权利要求1所述的用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法,其特征在于,所述的石墨粉体为纳米石墨粉体;所述纳米石墨粉体的涂覆量为聚乙烯醇纤维质量的10%~50%。
4.如权利要求1所述的用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法,其特征在于,所述的步骤1)的操作过程中,有机溶剂选用丙酮、甲苯、苯、酒精中的一种或者几种的混合物。
CN201810027129.XA 2018-01-11 2018-01-11 一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法 Active CN108298853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810027129.XA CN108298853B (zh) 2018-01-11 2018-01-11 一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810027129.XA CN108298853B (zh) 2018-01-11 2018-01-11 一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法

Publications (2)

Publication Number Publication Date
CN108298853A CN108298853A (zh) 2018-07-20
CN108298853B true CN108298853B (zh) 2021-01-12

Family

ID=62868952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810027129.XA Active CN108298853B (zh) 2018-01-11 2018-01-11 一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法

Country Status (1)

Country Link
CN (1) CN108298853B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279582B (zh) * 2020-09-22 2022-08-09 北京建工新型建材有限责任公司 环形大体积防微振换填c15素混凝土及制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7418300A (en) * 1999-09-15 2001-04-17 Georg Gros Agents for producing self-cleaning thin surface coatings and methods suited therefor
CN101323507A (zh) * 2008-06-23 2008-12-17 江苏博特新材料有限公司 多功能型砂浆混凝土用合成纤维及其制备方法
CN104371540A (zh) * 2014-11-17 2015-02-25 武汉理工大学 一种梯度复合结构透明超疏水涂层及其制备方法
CN104420204A (zh) * 2013-09-10 2015-03-18 济南大学 一种碳纤维水溶性环氧树脂上浆剂
CN105544180A (zh) * 2015-12-22 2016-05-04 中国航空工业集团公司济南特种结构研究所 一种含超高分子量聚乙烯纤维涂层处理表面改性的方法
CN106045418A (zh) * 2016-05-31 2016-10-26 湖北工业大学 一种高延性水泥基复合材料用改性聚乙烯醇纤维、改性方法及其复合材料
CN107022279A (zh) * 2017-05-18 2017-08-08 福州大学 一种高透明耐磨超疏水复合涂层的制备方法
CN107201660A (zh) * 2017-07-06 2017-09-26 国网湖南省电力公司带电作业中心 一种应用于pbo 纤维表面的疏水涂层材料及涂层制备方法
CN107382180A (zh) * 2017-06-12 2017-11-24 东南大学 一种高强度高延性高耐水性水泥基复合材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7418300A (en) * 1999-09-15 2001-04-17 Georg Gros Agents for producing self-cleaning thin surface coatings and methods suited therefor
CN101323507A (zh) * 2008-06-23 2008-12-17 江苏博特新材料有限公司 多功能型砂浆混凝土用合成纤维及其制备方法
CN104420204A (zh) * 2013-09-10 2015-03-18 济南大学 一种碳纤维水溶性环氧树脂上浆剂
CN104371540A (zh) * 2014-11-17 2015-02-25 武汉理工大学 一种梯度复合结构透明超疏水涂层及其制备方法
CN105544180A (zh) * 2015-12-22 2016-05-04 中国航空工业集团公司济南特种结构研究所 一种含超高分子量聚乙烯纤维涂层处理表面改性的方法
CN106045418A (zh) * 2016-05-31 2016-10-26 湖北工业大学 一种高延性水泥基复合材料用改性聚乙烯醇纤维、改性方法及其复合材料
CN107022279A (zh) * 2017-05-18 2017-08-08 福州大学 一种高透明耐磨超疏水复合涂层的制备方法
CN107382180A (zh) * 2017-06-12 2017-11-24 东南大学 一种高强度高延性高耐水性水泥基复合材料及其制备方法
CN107201660A (zh) * 2017-07-06 2017-09-26 国网湖南省电力公司带电作业中心 一种应用于pbo 纤维表面的疏水涂层材料及涂层制备方法

Also Published As

Publication number Publication date
CN108298853A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
CN110078515B (zh) 一种氧化石墨烯改性碳纤维增强碳化硅陶瓷基复合材料的制备方法
CN108249798B (zh) 一种用于高延性水泥基复合材料的聚乙烯醇纤维的改性方法
CN109987948B (zh) 一种碳纤维增强陶瓷基复合材料热解碳界面层的制备方法
Mohit et al. Effect of TiC nanoparticles reinforcement in coir fiber based bio/synthetic epoxy hybrid composites: mechanical and thermal characteristics
DE69417384T2 (de) Prepreg, Verfahren zu seiner Herstellung und davon abgeleitete Produkte
Jha et al. A study on erosion and mechanical behavior of jute/e-glass hybrid composite
Pakravan et al. Performance of fibers embedded in a cementitious matrix
CN101200551A (zh) 一种含钛酸钾晶须的车用复合摩擦材料及其制备方法
KR102003506B1 (ko) 고인성 및 자기치유 기능을 가진 내진보강 모르타르 조성물 및 이를 이용한 콘크리트 구조물 보수·보강 공법
CN108298853B (zh) 一种用于应变硬化水泥基复合材料的聚乙烯醇纤维的改性方法
Lima et al. Effect of surface biopolymeric treatment on sisal fiber properties and fiber-cement bond
Peng et al. Improvement of basalt fiber dispersion and its effect on mechanical characteristics of oil well cement
CN115572145A (zh) 一种改性玄武岩纤维增强碱式硫酸镁水泥及其制备方法
CN114057450B (zh) 一种再生玻璃钢-聚乙烯醇混杂纤维高韧性混凝土
Sankar et al. The influence of alkaline treatment on the mechanical performance of geopolymer composites reinforced with Brazilian malva and curaua fibers
Jiao et al. Surface modification of Kevlar improves the mechanical and friction properties of Kevlar/low-carbon steel composite structures
de Souza Castoldi et al. Effect of surface modification of sisal fibers with polyphenols on the mechanical properties, interfacial adhesion and durability in cement-based matrices
CN112979232A (zh) 一种海绵焦和减压渣油改性的高延性混凝土及其制备方法
JPS6319474B2 (zh)
Chakkour et al. Long-term water aging effects on the durability of alkali-treated bamboo fiber reinforced composite
Kagawa et al. A protrusion method for measuring fiber/matrix sliding frictional stresses in ceramic matrix composites
CN110981451B (zh) 一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法
CN111808398A (zh) Zif-67无损改性碳纤维增强复合材料的制备方法
Hülsenberg et al. Damage tolerant, translucent oxide fiber/glass matrix composites
CN111139640A (zh) 一种碳纤维用防老化改性环氧树脂上浆剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant