CN108285472A - Zig-Zag型双核环金属铂配合物近红外发光材料的合成及其应用 - Google Patents

Zig-Zag型双核环金属铂配合物近红外发光材料的合成及其应用 Download PDF

Info

Publication number
CN108285472A
CN108285472A CN201810182297.6A CN201810182297A CN108285472A CN 108285472 A CN108285472 A CN 108285472A CN 201810182297 A CN201810182297 A CN 201810182297A CN 108285472 A CN108285472 A CN 108285472A
Authority
CN
China
Prior art keywords
zig
platinum complex
infrared light
bdiq
buph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810182297.6A
Other languages
English (en)
Other versions
CN108285472B (zh
Inventor
朱卫国
阳生熠
王亚飞
谭华
刘煜
朱梦冰
朱美香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201810182297.6A priority Critical patent/CN108285472B/zh
Publication of CN108285472A publication Critical patent/CN108285472A/zh
Application granted granted Critical
Publication of CN108285472B publication Critical patent/CN108285472B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明发展了一类具有Zig‑Zag构型的C^N‑N^C双元二齿环金属配体及其双核环金属铂配合物近红外发光材料。这类Zig‑Zag构型的环金属配体的锯棒是含双氮原子的大稠环杂芳烃,锯齿是芳烃;形成的双核铂配合物,表现了更大的刚性结构、增大的分子共轭、增强的分子自旋轨道耦合作用和抑制的分子间堆积,可广泛应用于有机近红外电致发光器件,降低器件的效率滚降,提高器件的发光效率。

Description

Zig-Zag型双核环金属铂配合物近红外发光材料的合成及其 应用
技术领域
本发明涉及一类Zig-Zag型环金属双核铂(II)配合物近红外发光材料及其在有机电致发光二极管(OLEDs)中的应用,属于近红外电致发光材料领域。
背景技术
近红外发光材料在数据存储、红外探测、红外制导、安全标记、光纤通信、光动力疗法、生物检测等领域具有广泛的应用前景[1-5]。其中,有机近红外发光材料由于具有以下优点:(1)结构易于调整,可通过材料的分子修饰,实现材料的多功能化;(2)合成成本较低;(3)成膜性好、稳定性高,可实现大面积制造;已成为新材料与新能源领域的前沿热点研究之一。
过渡金属配合物,如锇(Os)、铱(Ir)、铂(Pt)配合物,是一类重要的有机近红外发光材料,因其具有强烈的自旋轨道耦合(SOC)作用、内量子效率可达100%,被誉为是近红外有机电致发光材料的发展方向[6-8]。环金属铂(II)配合物是一类典型的平面四边形构型的过渡金属配合物,具有金属-配体电荷转移(MLCT)、金属-金属-配体电荷转移(MMLCT)等多种激发态,理论上较环金属铱(III)配合物更易实现近红外发光。但是,高效发光的环金属铂(II)配合物近红外电致发光材料的报道较少,器件的效率滚降较为严重[9-11]
针对环金属铂(II)配合物近红外发光材料品种少、发光效率低以及器件效率滚降严重等问题,本发明致力于开发一类Zig-Zag构型的C^N-N^C双元二齿环金属配体及其双核环金属铂配合物。这类分子的主要特点在于:(1)C^N-N^C双元二齿环金属配体及其双核环金属铂配合物均具有zig-zag构型,配体的锯棒是含双氮原子的大稠环杂芳烃,锯齿是芳烃。这类zig-zag构型的扭曲结构,能够有效抑制分子间的堆积,减少发光淬灭,提高配合物的发光效率。(2)利用双核铂离子配位锚定分子内C^N-N^C结构,使环金属铂配合物具有更大的共轭平面构型,其发光波长更容易调节至近红外区域。(3)通过铂离子的配位锚定,配合物的分子刚性大大增加,分子的热稳定性更好。(4)相对于单核铂配合物,双核铂配合物具有更强的SOC作用,分子激发态中MLCT所占比重大大增加,因此双核铂配合物的摩尔吸光系数更高,吸收波长红移明显。本发明对于开发新型高效发光的有机环金属铂配合物近红外发光材料,丰富有机近红外发光材料种类,促进有机环金属铂配合物在有机近红外电致发光器件中的应用具有十分重要的意义。
参考文献
[1]Wang,Z Y.CRC Press/Taylor&Francis Group,2013.
[2]Qian,G;Wang,Z Y.Chemistry An Asian Journal,2010,5,1006.
[3]Xiang,H;Cheng,J;Ma,X;et al.Chemical Society Reviews,2013,42,6128.
[4]Xu,G;Zeng,S;Zhang,B;et al.Chemical Reviews,2016,116,12234.
[5]Bennett,M A;Bhargava,S K;Cheng,E C;et al.Journal of the AmericanChemical Society,2010,132,7094.
[6]Liao,J L;Chi,Y;Yeh,C C;et al.Journal of Materials Chemistry C,2015,3,4910.
[7]Cao,X;Miao,J;Zhu,M;et al.Chemistry of Materials,2015,27,96.
[8]Yang,B X;Yao,C;Zhou,G;Platinum Metals Review,2013,57,2.
[9]Ly,K T;Chen,CR W;Lin,H W;et al.Nature Photonics,2016,11,63.
[10]Rossi,E;Murphy,L;Brothwood,P L;et al.Journal of MaterialsChemistry,2011,21,15501.
[11]Borek,C;Hanson,K;Djurovich,P I;et al.Angewandte Chemie,2007,46,1109.
发明内容
针对环金属铂(II)配合物近红外发光材料品种少、发光效率低及其器件效率滚降等问题,发明了一类具有Zig-Zag构型的C^N-N^C双元二齿环金属配体及其双核环金属铂配合物近红外发光材料。这类双核环金属铂配合物近红外发光材料的结构特点是:环金属配体是Zig-Zag构型的C^N-N^C双元二齿配体,它的锯棒是含双氮原子的多元稠杂芳烃,锯齿是芳烃;与金属铂(II)离子配位,可形成同样具有Zig-Zag构型的双核铂配合物,通过调控Ar1、Ar2、Ar3等取代芳烃的结构,可实现配合物发光波长的调控,获得近红外发光。
本发明开发的双核铂配合物近红外发光材料具有优良成膜性和分散性能,能够以简单的溶液加工工艺,与聚合物主体材料共混,获得高效发光的近红外聚合物电致发光器件。
与文献报道的双核铂配合物近红外材料相比,这类Zig-Zag构型的双核铂配合物,具有更大的刚性结构、增强的分子自旋轨道耦合作用和抑制的分子间堆积,因此,这类材料更能有效抑制器件效率滚降等问题,获得高效的近红外发光。
这类Zig-Zag型双核环金属铂配合物近红外发光材料的特征在于具有式1所示结构:
在式1中:Ar1为四元取代芳烃,Ar2为三元取代芳烃,Ar3为二元取代芳烃;其中,Ar1、Ar2、Ar3的结构特征如式2所示。
上述Zig-Zag构型的双核铂配合物近红外发光材料,包括下面式3中的Zig-Zag构型环金属配体的任何衍生物所形成的双核铂配合物。
为了得到上述双核铂配合物,本发明的合成方案如下:通过Suzuki偶联反应和Bischler–Napieralski环化反应,合成得到Zig-Zag构型的C^N-N^C环金属配体。通过桥联和去桥联反应,合成得到双核铂配合物近红外发光材料。
本发明的目的还在于发展了所述Zig-Zag型双核环金属铂配合物近红外发光材料在聚合物电致发光器件的应用。将其作为单一活性发光材料掺杂在主体材料中,通过溶液旋涂法获得发光层,及其性能优良的聚合物近红外电致发光器件。
近红外聚合物电致发光器件包括氧化铟锡(ITO)导电玻璃衬底阳极,空穴注入层,发光层,电子传输层和阴极;其中,空穴注入层为聚二氧乙基噻吩(PEDOT)以及聚苯乙烯磺酸(PSS)涂层,电子传输层为聚[双(4-苯基)(4-丁基苯基)胺](poly-TPD)涂层,发光层为单一发光材料和主体材料的共混涂层,阴极为钡和铝的沉积层。
主体材料由聚(9-乙烯咔唑)(PVK)和2,2'-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-恶二唑](OXD-7)组成,它们的质量分数为PVK:OXD-7=7:3;发光层中发光材料与主体材料的质量百分比分别为1~8%,92~99%。
附图说明
图1为本发明实施例1中配合物(BuPh-BDIQ)Pt2(dpm)2的单晶结构及其分子间的堆积图
图2为本发明实施例1中配合物(BuPh-BDIQ)Pt2(dpm)2的Zig-Zag构型(a)及其叔丁基苯基(BuPh)所在平面与二苯并啡啶(BDIQ)所在平面的二面角(b)
图3为本发明实施例1中配合物(BuPh-BDIQ)Pt2(dpm)2中辅助配体2,2,6,6-四甲基-3,5-丁二酮(dpm)所在平面与BDIQ所在平面的二面角
图4为本发明实施例1(BuPh-BDIQ)Pt2(dpm)2的热重分析曲线图
图5为本发明实施例1(BuPh-BDIQ)Pt2(dpm)2固体薄膜的循环伏安曲线图
图6为本发明实施例1(BuPh-BDIQ)Pt2(dpm)2以及环金属配体BuPh-BDIQ在甲苯溶液(10-5M)中的紫外-可见吸收光谱图
图7为本发明实例1(BuPh-BDIQ)Pt2(dpm)2固体薄膜的紫外-可见吸收光谱图
图8为本发明实例1(BuPh-BDIQ)Pt2(dpm)2在甲苯溶液(10-5M排氧条件下)以及固体薄膜的光致发光光谱图
图9为本发明实例1(BuPh-BDIQ)Pt2(dpm)2的发光寿命图
图10为本发明实例1(BuPh-BDIQ)Pt2(dpm)2掺杂聚合物电致发光器件在不同掺杂浓度下的电致发光光谱图
图11为本发明实例1(BuPh-BDIQ)Pt2(dpm)2掺杂聚合物电致发光器件在不同掺杂浓度下的EQE-J图
图12为本发明实例1(BuPh-BDIQ)Pt2(dpm)2掺杂聚合物电致发光器件在不同掺杂浓度的J-V-R曲线图
具体实施方案
以下具体实施例旨在对本发明作进一步说明,但这些具体实施方案不以任何方式限制本发明的保护范围。
实施例1
Zig-Zag型双核环金属铂配合物近红外发光材料(BuPh-BDIQ)Pt2(dpm)2的制备路线如下:
中间体2的合成
将2,5-二溴-1,4-对苯二胺(200mg,0.59mmol)加入到100mL单口圆底烧瓶中,用重蒸的四氢呋喃(THF)溶解,然后加入0.5mL三乙胺作为缚酸剂,冰浴条件下,滴加10mL对叔丁基苯甲酰氯(0.26mL,1.29mmol)的THF溶液,搅拌反应10min,移至室温,搅拌反应12h。反应混合液用乙醚萃取,收集的有机层通过水洗、无水MgSO4干燥、过滤。滤液通过旋转蒸发仪蒸馏除去溶剂,剩余物以石油醚(PE)和二氯甲烷(DCM)混合溶剂为洗脱剂(5:1,V:V),通过硅胶柱色谱分离得110mg白色固体,产率为31.9%。1H NMR(400MHz,CDCl3)δ(ppm):8.94(s,1H),8.43(s,1H),7.87(d,J=8.4Hz,2H),7.55(d,J=8.4Hz,2H),1.37(s,9H).MALDI-TOF-MS(m/z):calcd for C28H30Br2N2O2:586.065;found,587.040[M+1]+.
中间体3的合成
将中间体2(200mg,0.34mmol)、对叔丁基苯硼酸(135mg,0.76mmol)、四(三苯基膦)合钯(20mg,0.017mmol)、碳酸钾(2.5mmol,2mol/L)加入到50mL单口圆底烧瓶中,N2保护下,加热至80℃,搅拌反应24h,冷却至室温。反应混合液用DCM萃取,收集的有机层通过水洗、无水MgSO4干燥、过滤。滤液通过旋转蒸发仪蒸馏除去溶剂,剩余物以PE:DCM混合溶剂为洗脱剂(1:1,V:V),通过硅胶柱色谱分离得180mg白色固体,产率为76.3%。1H NMR(400MHz,CDCl3)δ(ppm):8.56(s,1H),8.10(s,1H),7.57(s,2H),7.55(s,2H),7.49(d,J=8.4Hz,2H),7.39(d,J=8.5Hz,2H),1.41(s,9H),1.31(s,9H).MALDI-TOF-MS(m/z):calcd forC48H56N2O2:692.434;found,693.407[M+1]+.
配体BuPh-BDIQ的合成
将中间体3(100mg,0.14mmol)、五氧化二磷(92mg,0.65mmol)加入到50mL单口圆底烧瓶中,用三氯氧磷溶解,N2保护下,加热至110℃,搅拌反应24h。冷却至室温,将反应液倒入冰水中,氢氧化钠溶液调节pH=9后,用DCM萃取。收集的有机层通过水洗、无水MgSO4干燥、过滤。滤液通过旋转蒸发仪蒸馏除去溶剂,剩余物用DCM作为洗脱剂,通过硅胶柱色谱分离得90mg白色固体,产率为94.7%。1H NMR(400MHz,CDCl3)δ(ppm):9.40(s,1H),8.83(d,J=8.6Hz,1H),8.25(s,1H),8.01(d,J=8.3Hz,1H),7.81(d,J=7.9Hz,2H),7.63(d,J=7.9Hz,2H),1.45(s,9H),1.41(s,9H).MALDI-TOF-MS(m/z):calcd for C48H52N2,656.413;found,657.403[M+1]+.
配合物(BuPh-BDIQ)Pt2(dpm)2的合成
将BuPh-BDIQ(100mg,0.152mmol)、氯亚铂酸钾(140mg,0.335mmol)、H2O(5mL)和冰醋酸(60mL)加入到100mL单口圆底烧瓶中,N2保护下,加热到140℃,搅拌反应36h。待反应结束,冷却至室温,析出橙黄色固体,加水30mL,抽滤,真空干燥,得氯桥连产物,直接用作下一步原料。
将上述所得氯桥连产品(174mg)、无水碳酸钠(190mg,1.8mmol)、2,2,6,6-四甲基-3,5-庚二酮(dpm)(133mg,0.73mmol)、THF(50mL)和MeOH(20mL),加入到100mL单口圆底烧瓶中,N2保护下,加热至100℃,搅拌反应24h,冷却至室温,旋转蒸发仪蒸馏出THF和MeOH,冷却后再用DCM萃取。收集的有机层通过水洗、无水MgSO4干燥、过滤。滤液通过旋转蒸发仪蒸馏除去溶剂,剩余物以石油醚(PE):DCM混合溶剂为洗脱剂(5:1,V:V),通过硅胶柱色谱分离得25mg(BuPh-BDIQ)Pt2(dpm)2深红色固体,产率为8.6%。1H NMR(400MHz,CDCl3)δ(ppm):10.04(s,1H),8.81(s,1H),8.68(d,J=8.7Hz,1H),8.06(d,J=1.8Hz,1H),7.96(t,J=8.6Hz,2H),7.29(dd,J=8.4,1.8Hz,1H),5.88(s,1H),1.48(s,9H),1.44(s,9H),1.38(s,9H),0.95(s,9H).MALDI-TOF-MS(m/z):calcd for C70H88N2O4Pt2,1410.604;found,1411.145[M+1]+.
实施例2
实施例1中的配合物(BuPh-BDIQ)Pt2(dpm)2的单晶结构及其分子间的堆积情况如图1所示。由图1(a)可知,(BuPh-BDIQ)Pt2(dpm)2的Pt-C和Pt-N键长分别为1.953和由图1(b)可知,(BuPh-BDIQ)Pt2(dpm)2的堆积方式为“边对边”堆积,分子间的垂直距离为与单核铂配合物相比,其分子间的堆积以及相互作用减弱。
如图2(a)所示,实施例1中的配合物(BuPh-BDIQ)Pt2(dpm)2具有zig-zag构型;如图2(b)所示,锯齿BuPh所在平面与锯棒BDIQ所在平面构成的二面角为34.37°,进一步说明双核铂配合物具有Zig-Zag构型。如图3所示,配合物(BuPh-BDIQ)Pt2(dpm)2中辅助配体dpm所在平面与BDIQ所在平面的二面角为39.04°。由此可知,该类zig-zag构型双核铂配合物具有更大的刚性结构,增大的共轭结构和更大的空间位阻结构。
实施例3
实例1中的配合物BuPh-BDIQ)Pt2(dpm)2的热稳定性能测试。
在氮气流保护下,测试了配合物BuPh-BDIQ)Pt2(dpm)2的热稳定性,其热失重曲线如图4所示。由图可知,配合物BuPh-BDIQ)Pt2(dpm)2热失重5%时的热分解温度为364℃,这说明该类Zig-Zag型配合物有良好的热稳定性。
实施例4
实施例1中配合物BuPh-BDIQ)Pt2(dpm)2的电化学性能测试。
如图5所示。通过计算,可得到其HOMO-LUMO能级及其电化学带隙,具体数据如表1所示。BuPh-BDIQ)Pt2(dpm)2的氧化还原电位分别为1.13/-0.83(V/V),通过计算,得到其HOMO-LUMO能级分别为-5.45/-3.49eV。
表1.配合物(BuPh-BDIQ)Pt2(dpm)2的电化学数据与热稳定性数据.
a:Onset oxidation and reduction potentials measured by cyclicvoltammetry in solid film.b:EHOMO=[-(Eox–0.48)-4.8]eV,ELUMO=[-(Ered–0.48)-4.8]eV,where 0.48V is the value for ferrocenevs Ag/AgCl and 4.8eV is the energylevel of Ag/AgCl to the vacuum energy level.
实施例5
实施例1中配合物BuPh-BDIQ)Pt2(dpm)2溶液的紫外-可见吸收光谱测试。
将BuPh-BDIQ)-Pt2(dpm)2及其环金属配体BuPh-BDIQ)分别配成10-5M的甲苯溶液,测试其溶液的紫外-可见吸收光谱,如图6所示,具体数据如表2所示。
由图6可知,配合物呈现了两个特征吸收带,其中,350nm以下的高能吸收带归属于与主配体BuPh-BDIQ相关的π-π*以及n-π*的跃迁吸收,425-550nm的低能吸收带归属于金属到配体的电荷转移(MLCT)和配体中心自旋禁止的(3LC)的电子跃迁吸收。
(BuPh-BDIQ)Pt2(dpm)2相对于BuPh-BDIQ,其摩尔消光系数大大增加,吸收光谱明显红移,对应的金属到配体的跃迁吸收(MLCT)也大大加强。图7为(BuPh-BDIQ)Pt2(dpm)2在固体薄膜的紫外-可见吸收光谱图,从图7可知,配合物在固体薄膜时的紫外-可见吸收光谱相较于溶液的紫外-可见吸收光谱有一些红移,通过其计算得到配合物的光学带隙为2.17eV,与前面的电化学带隙相吻合,说明双核铂的引入,可以调节配合物光学性质。
实施例6
实施例1中的(BuPh-BDIQ)Pt2(dpm)2的光致发光光谱测试。
图8为(BuPh-BDIQ)Pt2(dpm)2在甲苯溶液(10-5M)和固体薄膜中的光致发光光谱,由图8可知,(BuPh-BDIQ)Pt2(dpm)2溶液的最大发射峰为718nm,其肩峰位置达到774nm,双核铂的引入,使配合物的发光光谱发生显著红移;与溶液发光光谱相比较,该配合物在薄膜状态下的发光光谱基本相同,说明(BuPh-BDIQ)Pt2(dpm)2在固态下的堆积都受到一定程度抑制,这与其zig-zag构型对分子堆积的影响相一致。
实施例7
实施例1中(BuPh-BDIQ)Pt2(dpm)2的发光寿命和荧光量子产率(PLQY)测试。
通过爱丁堡FLS 980在氮气保护下测试了(BuPh-BDIQ)Pt2(dpm)2的发光寿命。它在甲苯溶液(10-5mol/L)中的发光寿命为1.71μs,
通过QM/TM/IM稳态瞬时时间分辨光谱(PTI,美国)和贝克曼80mm积分球测试了(BuPh-BDIQ)Pt2(dpm)2在甲苯溶液(10-5mol/L)中的发光量子效率,如图9所示。它在甲苯溶液(10-5mol/L)中的PLQY为3.64%。
表2.配合物(BuPh-BDIQ)Pt2(dpm)2的光物理数据
aIn dilute toluene solution(εmax/104L mol-1cm-1).bAbsorption edges ofthe films.cOpticalbandgaps were determined using the equation Egfilm,opt=1240/λonset,film.dLifetimes and emission quantum yield were estimated at 298K.
实施例8
实施例1中(BuPh-BDIQ)Pt2(dpm)2掺杂聚合物电致发光器件的制备。
器件的结构为:ITO(110nm)/PEDOT:PSS(40nm)/PVK:OXD(7:3):dopant,45nm)/TmPyPB(55nm)/Ba(4nm)/Al(100nm),发光器件包括以下部分:氧化铟锡(ITO)玻璃基底,聚二氧乙基噻吩(PEDOT)和聚苯乙烯磺酸钠(PSS)空穴注入层,发光层,3,3'-[5'-[3-(3-吡啶基)苯基](TmPyPB)电子传输层,Al(100nm)和Ba(4nm)阴极。其中,发光层包含主体材料和掺杂材料,主体材料由空穴传输材料PVK和电子传输材料OXD-7组成(质量比为7:3),掺杂材料为实例1中的(BuPh-BDIQ)Pt2(dpm)2,掺杂质量百分数为1%,2%,4%,8%。
实施例9
实施例1(BuPh-BDIQ)Pt2(dpm)2掺杂器件的电致发光性能测试
(BuPh-BDIQ)Pt2(dpm)2掺杂器件在不同掺杂浓度下的电致发光性能的具体数据汇总于表3,配合物的电致发光光谱如图10所示。研究发现,(BuPh-BDIQ)Pt2(dpm)2的电致发光光谱的主峰位于718nm,肩峰为785nm,能量从主体材料到客体材料传输完全,随着配合物掺杂浓度的增加,器件的电致发光光谱主峰均未见明显红移。
配合物的外量子效率-电流密度(EQE-J)特性如图11所示,(BuPh-BDIQ)Pt2(dpm)2在掺杂浓度为2%时,其EQEmax达到0.97%,且当电流密度达到100mAcm-2时,(BuPh-BDIQ)Pt2(dpm)2器件的EQE值为0.76%,这说明该Zig-Zag构型配合物器件的外量子效率滚降得到有效抑制。
配合物的电流密度-电压-辐照度(J-V-R)特性如图12所示,(BuPh-BDIQ)Pt2(dpm)2掺杂器件在掺杂浓度2%时的启动电压为11.2V,最大辐照度为146μW/cm2
表3.配合物(BuPh-BDIQ)Pt2(dpm)2掺杂器件在掺杂浓度2%时的电致发光性能
a:turn-on voltage.b:Current densityatmaximum EQE.c:the maximum ELemission peak.d:Radiant intensity.e:the maximum external quantum efficiency.f:EQE value at 100mA cm-2
尽管结合了优选实施例对本发明进行了说明,但本发明并不局限于上述实施案例,应当理解所附权利要求概括了本发明的范围。在本发明构思的指导下,本领域的技术人员应当意识到,对本发明的各实施例方案所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。

Claims (2)

1.Zig-Zag型双核环金属铂配合物近红外发光材料,其特征在于具有式1所示结构:
在式1中:Ar1为四元取代芳烃,Ar2为三元取代芳烃,Ar3为二元取代芳烃。其中,Ar1、Ar2、Ar3的结构如式2所示。
通过Suzuki偶联反应以及Bischler–Napieralski环化反应,形成zig-zag构型的环金属配体。通过调控Ar1、Ar2、Ar3结构,实现配合物发光波长的调控,获得近红外发光。
2.本发明开发了所述的Zig-Zag型双核环金属铂配合物近红外发光材料在聚合物电致发光器件中的应用。将其作为单一活性发光材料掺杂在主体材料中,通过溶液加工法制备获得器件的发光层,其掺杂质量百分比为1%~8%。
聚合物电致发光器件包括以下组成部分:玻璃基底、氧化铟锡(ITO)阳极,聚二氧乙基噻吩(PEDOT)和聚苯乙烯磺酸钠(PSS)组成的空穴注入层,铂配合物近红外发光材料和主体材料组成的发光层,3,3'-[5'-[3-(3-吡啶基)苯基](TmPyPB)电子传输层,钡/铝组成的阴极。其中主体材料由空穴传输层PVK和OXD-7组成,其质量比7:3,。
CN201810182297.6A 2018-03-06 2018-03-06 Zig-Zag型双核环金属铂配合物近红外发光材料的合成及其应用 Active CN108285472B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810182297.6A CN108285472B (zh) 2018-03-06 2018-03-06 Zig-Zag型双核环金属铂配合物近红外发光材料的合成及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810182297.6A CN108285472B (zh) 2018-03-06 2018-03-06 Zig-Zag型双核环金属铂配合物近红外发光材料的合成及其应用

Publications (2)

Publication Number Publication Date
CN108285472A true CN108285472A (zh) 2018-07-17
CN108285472B CN108285472B (zh) 2020-08-14

Family

ID=62833211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810182297.6A Active CN108285472B (zh) 2018-03-06 2018-03-06 Zig-Zag型双核环金属铂配合物近红外发光材料的合成及其应用

Country Status (1)

Country Link
CN (1) CN108285472B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619045A (zh) * 2009-08-12 2010-01-06 湘潭大学 一类双核环金属铂配合物近红外发光材料及其应用
CN101973933A (zh) * 2010-10-22 2011-02-16 湘潭大学 一类二(吡啶苯基)芴衍生物及其双核环金属铂配合物液晶偏振发光材料
CN106008608A (zh) * 2016-05-24 2016-10-12 湘潭大学 一种具有D-A-A构型π共轭体系的不对称双核环金属铂(II)配合物及其应用
CN107400147A (zh) * 2017-08-01 2017-11-28 常州大学 一类含不同共轭桥的双核环金属铂(ii)配合物近红外电致磷光材料的合成及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619045A (zh) * 2009-08-12 2010-01-06 湘潭大学 一类双核环金属铂配合物近红外发光材料及其应用
CN101973933A (zh) * 2010-10-22 2011-02-16 湘潭大学 一类二(吡啶苯基)芴衍生物及其双核环金属铂配合物液晶偏振发光材料
CN106008608A (zh) * 2016-05-24 2016-10-12 湘潭大学 一种具有D-A-A构型π共轭体系的不对称双核环金属铂(II)配合物及其应用
CN107400147A (zh) * 2017-08-01 2017-11-28 常州大学 一类含不同共轭桥的双核环金属铂(ii)配合物近红外电致磷光材料的合成及应用

Also Published As

Publication number Publication date
CN108285472B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
Chi et al. Metal complexes with pyridyl azolates: Design, preparation and applications
Wu et al. Synthesis, structure, and electroluminescence of BR2q (R= Et, Ph, 2-naphthyl and q= 8-hydroxyquinolato)
CN104804045B (zh) 近红外发光材料及有机电致发光器件
CN109791981A (zh) 用于有机光电子元件的组合物、有机光电子元件及显示器件
Su et al. Near-infrared emission from binuclear platinum (II) complexes containing pyrenylpyridine and pyridylthiolate units: Synthesis, photo-physical and electroluminescent properties
CN109232661B (zh) 一类聚集诱导发光和压致变色发光的近红外离子型铱(iii)配合物及应用
CN107400147A (zh) 一类含不同共轭桥的双核环金属铂(ii)配合物近红外电致磷光材料的合成及应用
CN109134550A (zh) 基于芳基并喹喔啉的d-a-d型环金属铱配合物近红外发光材料与应用
Ni et al. Vapor-, thermo-, and mechanical-grinding-triggered tri-stimuli-responsive luminescence switching of cycloplatinated (II) complex bearing 8-quinolinol derivatives
Martínez-Junquera et al. Multistimuli-responsive properties of aggregated isocyanide cycloplatinated (II) complexes
Guven et al. Tuning of electrochromic properties of electrogenerated polythiophenes through Ru (II) complex tethering and backbone derivatization
Hao et al. Dual phosphorescence emission of dinuclear platinum (II) complex incorporating cyclometallating pyrenyl-dipyridine-based ligand and its application in near-infrared solution-processed polymer light-emitting diodes
Turkoglu et al. Fluorescent small molecules with alternating triarylamine-substituted selenophenothiophene and triarylborane: synthesis, photophysical properties and anion sensing studies
Wang et al. Blue thermally activated delayed fluorescence based on tristriazolotriazine core: Synthesis, property and the application for solution-processed OLEDs
CN106831874B (zh) 基于膦杂芳基衍生物的热激发延迟荧光主体材料及其制备方法和应用
CN107445996A (zh) 蝶烯修饰的哒嗪类铱配合物磷光材料及其制备方法和应用
Chu et al. A cyanostilbene derivative containing–CF3: Synthesis and applications in sensors, information rewritable, encryption and LED
Shan et al. Self-assembly and luminescent properties of one novel tetranuclear Cd (II) complex based on 8-hydroxyquinolinate ligand
JP6146214B2 (ja) ベンゾビスチアゾール化合物
Xu et al. The effects of different solvents and excitation wavelength on the photophysical properties of two novel Ir (III) complexes based on phenylcinnoline ligand
CN104961746A (zh) 醌式近红外荧光化合物及其制备方法和应用
CN108285472A (zh) Zig-Zag型双核环金属铂配合物近红外发光材料的合成及其应用
Zhu et al. A Highly Efficient Red‐Emitting Ruthenium Complex with 3, 5‐Difluorophenyl Substituents
CN108299510B (zh) 一类含有氮杂芳烃辅助配体的铱配合物及其制备方法与应用
CN107880031A (zh) 以氮杂苯为核心的化合物及其在有机电致发光器件上的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant