CN108283929A - 一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法 - Google Patents

一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法 Download PDF

Info

Publication number
CN108283929A
CN108283929A CN201810085266.9A CN201810085266A CN108283929A CN 108283929 A CN108283929 A CN 108283929A CN 201810085266 A CN201810085266 A CN 201810085266A CN 108283929 A CN108283929 A CN 108283929A
Authority
CN
China
Prior art keywords
reaction
cobalt
preparation
metal hydroxide
nano piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810085266.9A
Other languages
English (en)
Inventor
黄剑锋
刘倩倩
冯亮亮
曹丽云
杨丹
何丹阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201810085266.9A priority Critical patent/CN108283929A/zh
Publication of CN108283929A publication Critical patent/CN108283929A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法,取六水合氯化钴、氯化钒和六亚甲基四胺同时加入去离子水中得溶液A;将溶液A倒入反应内衬后密封,继而将内衬装于外釜中置于均相反应仪中在反应;反应结束,将反应釜自然冷却到室温,将反应后的产物经过水和醇交替清洗后收集产物并真空干燥得到CoV‑LDH纳米片。本发明采用一步水热法合成温度低,产率高,无需后期处理,对环境友好;制备的CoV‑LDH为二维纳米片有利于离子的自由进出,有利于电解液与CoV‑LDH纳米片的充分接触,能够暴露较多的活性位点,继而能够提高其电化学性能且产物化学组成均一,纯度高,形貌均匀,作为电解水电极材料时能够表现出优异的电化学性能,在10mA/cm2的电流密度下,其过电势约为280mV。

Description

一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备 方法
技术领域
本发明属电催化剂技术领域,具体涉及一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法。
背景技术
氢能是一种清洁、高效、无污染的能源,且因其能量密度高而被广泛用作能量载体。将水分解成氢气和氧气被认为是产生氢气最有前景的策略之一。电化学析氧反应(OER)是水分解的效率决定过程。OER是一个多步,四电子、动力学反应缓慢且需要一个较高的超电势的过程。设计高效的OER催化剂可以提高反应动力学,降低过电压。贵金属氧化物(IrO2和RuO2)被认为是最有效的水分解OER催化剂,但它们稀缺且昂贵。最近,层状双氢氧化物(LDHs)因其独特的二维层状结构而被广泛研究,并表现出较高的OER催化活性。LDHs是层状离子晶体,具有带正电的水镁石状主体层和含有阴离子电荷补偿和溶剂分子的层间区域。
目前,LDHs通常是通过共沉淀法、溶胶-凝胶法、水热法、电沉积法和离子交换法等传统方法制备。国内外已有报道的层状双金属氢氧化物,Nickel cobalt hydroxidenanoflakes as catalysts for the hydrogen evolution reaction.Stève Baranto等人采用油包水型微乳液在碳基体上合成了一种NiCo氢氧化物,并研究其作为电极材料对析氢反应的催化作用。Hydrothermal Synthesis of Nanorods and Nanowires of Mg/AlLayered Double Hydroxides.赵等人利用水热法,在190℃下合成出LDH纳米线,产物规整且分散性较好,然而该方法温度较高,耗能较大且具有一定的危险性。
发明内容
本发明的目的在于提供一种操作简单,反应条件温和,耗时短,制备的CoV-LDH产品纯度高,形貌和尺寸均一,且电催化析氧性能优异的钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法。
为达到上述目的,本发明采用的技术方案是:
1)取六水合氯化钴、氯化钒和六亚甲基四胺同时加入到20~40ml去离子水中室温下磁力搅拌得到钴盐浓度为0.0267~0.064mol/L的澄清溶液A;
其中六水合氯化钴:氯化钒:六亚甲基四胺的摩尔比为(1.067~1.28):(0.32~0.53):(0.5~2.5);
2)将步骤1)的澄清溶液A倒入反应内衬后密封,继而将内衬装于外釜中置于均相反应仪中在80~160℃下反应;
3)水热反应结束,将反应釜自然冷却到室温,将反应后的产物经过水和醇交替清洗后收集产物并真空干燥得到CoV-LDH纳米片。
所述步骤2)澄清溶液A倒入反应内衬的填充比为20~80%。
所述步骤2)反应时间为3~24h。
所述步骤3)的真空干燥温度为25~35℃,干燥时间为10~14h。
本发明的效果体现在:
1)该方法采用的是一步水热法,具有低的合成温度,简单的合成路径,不需要大型设备和苛刻的反应条件,原料廉价易得,成本低,产率高,无需后期处理,对环境友好,可以适合大规模生产。
2)该方法制备的CoV-LDH二维纳米片,这种二维结构有利于离子的自由进出,有利于电解液与CoV-LDH纳米片的充分接触,能够暴露较多的活性位点,继而能够提高其电化学性能。
3)该方法制备的产物化学组成均一,纯度高,形貌均匀,其作为电解水电极材料时能够表现出优异的电化学性能,在10mA/cm2的电流密度下,其过电势约为280mV。
附图说明
图1为本发明实施例5制备的CoV-LDH纳米片的X-射线衍射(XRD)图谱;
图2为本发明实施例5制备的CoV-LDH纳米片的扫描电镜(SEM)照片;
图3为本发明实施例5制备的CoV-LDH纳米片的线性扫描伏安(LSV)性能测试图。
具体实施方式:
下面结合附图以及实施例对本发明做进一步详细说明。
实施例1:
1)取六水合氯化钴、氯化钒和六亚甲基四胺同时加入到30ml去离子水中室温下磁力搅拌得到钴盐浓度为0.0426mol/L的澄清溶液A;
其中六水合氯化钴:氯化钒:六亚甲基四胺的摩尔比为1.28:0.32:2;
2)将步骤1)的澄清溶液A按60%的填充比倒入反应内衬后密封,继而将内衬装于外釜中置于均相反应仪中在120℃下反应12h;
3)水热反应结束,将反应釜自然冷却到室温,将反应后的产物经过水和醇交替清洗3次后收集产物并在35℃真空干燥10h得到CoV-LDH纳米片。
实施例2:
1)取六水合氯化钴、氯化钒和六亚甲基四胺同时加入到25ml去离子水中室温下磁力搅拌得到钴盐浓度为0.0276mol/L的澄清溶液A;
其中六水合氯化钴:氯化钒:六亚甲基四胺的摩尔比为1.2:0.4:0.5;
2)将步骤1)的澄清溶液A按20%的填充比倒入反应内衬后密封,继而将内衬装于外釜中置于均相反应仪中在80℃下反应24h;
3)水热反应结束,将反应釜自然冷却到室温,将反应后的产物经过水和醇交替清洗3次后收集产物并在25℃真空干燥12h得到CoV-LDH纳米片。
实施例3:
1)取六水合氯化钴、氯化钒和六亚甲基四胺同时加入到20ml去离子水中室温下磁力搅拌得到钴盐浓度为0.053mol/L的澄清溶液A;
其中六水合氯化钴:氯化钒:六亚甲基四胺的摩尔比为1.067:0.53:1.5;
2)将步骤1)的澄清溶液A按40%的填充比倒入反应内衬后密封,继而将内衬装于外釜中置于均相反应仪中在150℃下反应10h;
3)水热反应结束,将反应釜自然冷却到室温,将反应后的产物经过水和醇交替清洗3次后收集产物并在30℃真空干燥12h得到CoV-LDH纳米片。
实施例4:
1)取六水合氯化钴、氯化钒和六亚甲基四胺同时加入到35ml去离子水中室温下磁力搅拌得到钴盐浓度为0.064mol/L的澄清溶液A;
其中六水合氯化钴:氯化钒:六亚甲基四胺的摩尔比为1.142:0.457:2.5;
2)将步骤1)的澄清溶液A按40%的填充比倒入反应内衬后密封,继而将内衬装于外釜中置于均相反应仪中在160℃下反应3h;
3)水热反应结束,将反应釜自然冷却到室温,将反应后的产物经过水和醇交替清洗3次后收集产物并在25℃真空干燥14h得到CoV-LDH纳米片。
实施例5:
1)取六水合氯化钴、氯化钒和六亚甲基四胺同时加入到35ml去离子水中室温下磁力搅拌得到钴盐浓度为0.064mol/L的澄清溶液A;
其中六水合氯化钴:氯化钒:六亚甲基四胺的摩尔比为1.2:0.4:2;
2)将步骤1)的澄清溶液A按80%的填充比倒入反应内衬后密封,继而将内衬装于外釜中置于均相反应仪中在120℃下反应12h;
3)水热反应结束,将反应釜自然冷却到室温,将反应后的产物经过水和醇交替清洗3次后收集产物并在25℃真空干燥12h得到CoV-LDH纳米片。
从图1中可以看出本发明制备的产物在衍射角度为10.4°、23°、35°和60°现了(003)、(006)、(009)、(110)晶面的衍射,说明产物为具有水滑石结构的钴钒双金属氢氧化物。
从图2的SEM图中可以看出本发明制备的产物的形貌为片状结构,且纳米片分布的很均匀。
从图3的线性扫描伏安图中可以看出,本发明制备的产物在电流密度为10mA/cm2时,它的过电势为280mV,说明该样品具有良好的电催化析氧活性。

Claims (4)

1.一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法,其特征在于:
1)取六水合氯化钴、氯化钒和六亚甲基四胺同时加入到20~40ml去离子水中室温下磁力搅拌得到钴盐浓度为0.0267~0.064mol/L的澄清溶液A;
其中六水合氯化钴:氯化钒:六亚甲基四胺的摩尔比为(1.067~1.28):(0.32~0.53):(0.5~2.5);
2)将步骤1)的澄清溶液A倒入反应内衬后密封,继而将内衬装于外釜中置于均相反应仪中在80~160℃下反应;
3)水热反应结束,将反应釜自然冷却到室温,将反应后的产物经过水和醇交替清洗后收集产物并真空干燥得到CoV-LDH纳米片。
2.根据权利要求1所述的钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法,其特征在于:所述步骤2)澄清溶液A倒入反应内衬的填充比为20~80%。
3.根据权利要求1所述的钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法,其特征在于:所述步骤2)反应时间为3~24h。
4.根据权利要求1所述的钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法,其特征在于:所述步骤3)的真空干燥温度为25~35℃,干燥时间为10~14h。
CN201810085266.9A 2018-01-29 2018-01-29 一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法 Pending CN108283929A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810085266.9A CN108283929A (zh) 2018-01-29 2018-01-29 一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810085266.9A CN108283929A (zh) 2018-01-29 2018-01-29 一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN108283929A true CN108283929A (zh) 2018-07-17

Family

ID=62835969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810085266.9A Pending CN108283929A (zh) 2018-01-29 2018-01-29 一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN108283929A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628179A (zh) * 2020-06-09 2020-09-04 澳门大学 一种电极材料、其制备方法和包含该电极材料的钠–空气电池
CN114558580A (zh) * 2022-01-25 2022-05-31 晋中学院 水滑石基CoNiV复合氧化物催化剂的制备方法及逃逸氨脱除应用
US11542614B2 (en) 2019-10-22 2023-01-03 King Fahd University Of Petroleum And Minerals Fabrication of CoVOx composite thin film electrode via single step AACVD

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944452A (zh) * 2014-03-27 2015-09-30 Scg化学有限公司 高表面积层状双氢氧化物及其制备方法
CN107128879A (zh) * 2017-05-17 2017-09-05 北京师范大学 一种层状双金属氢氧化物的制备方法及其制备的产品
CN107311243A (zh) * 2017-07-25 2017-11-03 陕西科技大学 一种片状的镍钒双金属氢氧化物的制备方法
CN107381658A (zh) * 2017-07-12 2017-11-24 北京化工大学 一种超薄多孔二维层状过渡金属氧化物纳米片阵列材料的拓扑制备方法
CN107522241A (zh) * 2017-08-20 2017-12-29 桂林理工大学 一种镍钴双金属氢氧化物的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944452A (zh) * 2014-03-27 2015-09-30 Scg化学有限公司 高表面积层状双氢氧化物及其制备方法
CN107128879A (zh) * 2017-05-17 2017-09-05 北京师范大学 一种层状双金属氢氧化物的制备方法及其制备的产品
CN107381658A (zh) * 2017-07-12 2017-11-24 北京化工大学 一种超薄多孔二维层状过渡金属氧化物纳米片阵列材料的拓扑制备方法
CN107311243A (zh) * 2017-07-25 2017-11-03 陕西科技大学 一种片状的镍钒双金属氢氧化物的制备方法
CN107522241A (zh) * 2017-08-20 2017-12-29 桂林理工大学 一种镍钴双金属氢氧化物的制备方法及其应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542614B2 (en) 2019-10-22 2023-01-03 King Fahd University Of Petroleum And Minerals Fabrication of CoVOx composite thin film electrode via single step AACVD
US11746429B2 (en) 2019-10-22 2023-09-05 King Fahd University Of Petroleum And Minerals Method for decomposing water into H2 and O2
US11987894B2 (en) 2019-10-22 2024-05-21 King Fahd University Of Petroleum And Minerals Electrochemical water splitting cell
US12091761B2 (en) 2019-10-22 2024-09-17 King Fahd University Of Petroleum And Minerals Electrochemical cell for hydrogen and oxygen production
US12110602B2 (en) 2019-10-22 2024-10-08 King Fahd University Of Petroleum And Minerals Electrochemical cell with carbon electrode
CN111628179A (zh) * 2020-06-09 2020-09-04 澳门大学 一种电极材料、其制备方法和包含该电极材料的钠–空气电池
CN114558580A (zh) * 2022-01-25 2022-05-31 晋中学院 水滑石基CoNiV复合氧化物催化剂的制备方法及逃逸氨脱除应用
CN114558580B (zh) * 2022-01-25 2023-10-27 晋中学院 水滑石基CoNiV复合氧化物催化剂的制备方法及逃逸氨脱除应用

Similar Documents

Publication Publication Date Title
Chen et al. Tuning octahedron sites in MnFe2O4 spinel by boron doping for highly efficient seawater splitting
Ye et al. Cobalt-iron oxide nanoarrays supported on carbon fiber paper with high stability for electrochemical oxygen evolution at large current densities
Yang et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting
Wang et al. Porous nickel–iron selenide nanosheets as highly efficient electrocatalysts for oxygen evolution reaction
Mei et al. Bimetallic MnCo selenide yolk shell structures for efficient overall water splitting
Senthil et al. Nickel foam-supported NiFe layered double hydroxides nanoflakes array as a greatly enhanced electrocatalyst for oxygen evolution reaction
Tan et al. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene
CN107497444A (zh) 一种镍钒双金属氢氧化物纳米片阵列水氧化催化剂的制备方法
Samanta et al. Ni-, Co-, and Mn-doped Fe2O3 nano-parallelepipeds for oxygen evolution
CN109225252B (zh) 一种锰镍双金属氢氧化物双功能电催化剂的制备方法
Xue et al. Phosphorus-doped MoS2 with sulfur vacancy defects for enhanced electrochemical water splitting
Jin et al. Self-supported CoFe LDH/Co 0.85 Se nanosheet arrays as efficient electrocatalysts for the oxygen evolution reaction
Zhang et al. Recent progress in self-supported two-dimensional transition metal oxides and (oxy) hydroxides as oxygen evolution reaction catalysts
Zhang et al. Ion modification of transition cobalt oxide by soaking strategy for enhanced water splitting
Zhao et al. Rapid synthesis of efficient Mo-based electrocatalyst for the hydrogen evolution reaction in alkaline seawater with 11.28% solar-to-hydrogen efficiency
Ye et al. A topological chemical transition strategy of bismuth-based materials for high-efficiency electrocatalytic carbon dioxide conversion to formate
CN108283929A (zh) 一种钴钒双金属氢氧化物纳米片电解水析氧催化剂的制备方法
Ghorbanzadeh et al. CuCo2O4/Ti3C2Tx MXene hybrid electrocatalysts for oxygen evolution reaction of water splitting
Omari et al. Enhancing catalytic activity of NdFeO3 perovskite by tuning A-site cation deficiency for oxygen evolution reaction
Xu et al. Carboxyferrocene modulated Ni/Co bimetallic metal-organic framework for highly efficient electrocatalysis of urea oxidation reaction
CN109569656A (zh) 一种V3S4@rGO的制备及其电催化性能的应用
Zhao et al. Enhanced electrocatalytic activity of FeNi alloy quantum dot-decorated cobalt carbonate hydroxide nanosword arrays for effective overall water splitting
Bao et al. Solution plasma-assisted synthesis of oxyhydroxides for advanced electrocatalytic water splitting
Guo et al. Enhanced catalytic oxidation of hydrazine of CoO/Co3O4 heterojunction on N-doped carbon
Wu et al. NiCo nitride/carbon nanoflakes as low-cost bifunctional electrocatalysts for carbohydrate-assisted electrolytic H2 generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180717