CN108273471B - 一种碳纳米管金属有机骨架磁性复合材料及其制备方法 - Google Patents

一种碳纳米管金属有机骨架磁性复合材料及其制备方法 Download PDF

Info

Publication number
CN108273471B
CN108273471B CN201710011011.3A CN201710011011A CN108273471B CN 108273471 B CN108273471 B CN 108273471B CN 201710011011 A CN201710011011 A CN 201710011011A CN 108273471 B CN108273471 B CN 108273471B
Authority
CN
China
Prior art keywords
organic framework
metal organic
carbon
silicon
tetrabromobisphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710011011.3A
Other languages
English (en)
Other versions
CN108273471A (zh
Inventor
梅素容
周廷廷
冯雅倩
陶芸
荆涛
罗丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201710011011.3A priority Critical patent/CN108273471B/zh
Publication of CN108273471A publication Critical patent/CN108273471A/zh
Application granted granted Critical
Publication of CN108273471B publication Critical patent/CN108273471B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种高容量吸附四溴双酚A的碳纳米管金属有机骨架磁性复合材料,由碳纳米管、金属有机骨架材料和包硅修饰的磁性纳米颗粒构成,它是在合成金属有机骨架材料时加入碳纳米管和包硅修饰的磁性纳米颗粒而制成的碳纳米管金属有机骨架磁性复合材料,其制备方法在常温实施,只需一步操作,简便快捷,容易操作。制备得到的复合材料以碳管为刚性结构,增加了金属有机骨架材料的刚性,且碳管本身对四溴双酚A具有一定的吸附能力,进一步提高了复合金属有机骨架材料对四溴双酚A的吸附容量,能实现对环境样品中的四溴双酚A高容量去除与快速分离。

Description

一种碳纳米管金属有机骨架磁性复合材料及其制备方法
技术领域
本发明属于功能性材料领域和环境科学领域,涉及四溴双酚A吸附材料和金属有机骨架材料,具体涉及吸附四溴双酚A的金属有机骨架材料及其制备方法。背景技术
四溴双酚A是目前溴代阻燃剂中产量最大应用最广的一种,年生产量在17万吨,占据溴代阻燃剂市场的60%,且有持续增加的趋势。作为添加型阻燃剂,四溴双酚A广泛应用于纺织、家电、建筑材料、油漆及其他电子产品塑料高聚物中降低其燃烧性能,因此,四溴双酚A在产品生产、使用和报废过程都有可能进入环境中造成污染。研究表明环境介质土壤、水、大气中均检测到四溴双酚A的存在,其中水和土壤中污染较为严重,水中污染水平达到ug/L[曹洋等,吉林广播电视大学学报,2010,4,:9-11],土壤中的污染达到ug/g[Dan Bu,Huisheng Zhuang,Xinchu Zhou,etc,Talanta,2014,120:40-46]的水平。生态学研究表明,四溴双酚A具有水生生物毒害作用,对微囊球藻及海蚤具有慢性毒性作用;动物实验表明,四溴双酚A具有生殖发育毒性,影响动物胚胎的发育,造成早产、死胎等不良发育结局;人群资料研究结果显示,四溴双酚A能与甲状腺激素和雌激素受体结合,引发甲状腺激素和雌激素干扰作。鉴于四溴双酚A污染的广泛性及危害的严重性,快速高效的去除环境样本中的四溴双酚A对于保护水生生物和人体健康具有重要意义。
四溴双酚A的污染普遍存在,而与之对应的现有的去除环境样本中四溴双酚A的方法则研究的较少。已有研究结果显示,四溴双酚A的去除方法主要有氧化去除法和物理吸附去除法,氧化去除法是采用一些强氧化性试剂如高锰酸钾和重铬酸钾等对水样进行处理[Xiyun Cai,Qingquan Liu,Chunlong Xia,etc,Environ.Sci.Technol.,2015,49:9264-9272.],破坏四溴双酚A的结构使其变为无毒无害的物质,然而这种方法需要的氧化试剂数量较多,且强氧化性试剂本身就对人体有害,因此在实际使用中具有一定的局限性;物理吸附法是采用特定的吸附材料对四溴双酚A进行非特异性吸附而达到去除目的的方法,研究表明,已应用在四溴双酚A去除中的吸附材料有羧基碳管、碳管、活性炭等,在以上众多的吸附材料对四溴双酚A吸附能力最强的是羧基碳管,其吸附容量为35mg/g[寇立娟等,色谱,2014,32:817-821.],上述碳材料对环境危害性小且价格相对比较便宜,但其对四溴双酚A的吸附能力较差且吸附缺乏选择性,相对于实际样本中ug级的含量,使用碳管去除,会使碳管的使用量增大且吸附时间长,且吸附完成后吸附材料的去除比较困难,容易造成二次污染,因此碳管在四溴双酚A除去中的应用经济成本较高且环境效益低。随着实验研究的进展,能够实现快速分离的复合碳材料开始应用于四溴双酚A的吸附和去除研究中,LinchengZhou[Lincheng Zhou,Liqin Ji,Peng-Cheng Ma,etc,J.Hazard.Mater,2014,265:104–114.]等运用碳纳米管-氧化铁钴(CNTs-CoFe2O4)对水样中的四溴双酚A进行去除,结果显示其对四溴双酚A最大去除量为42.48mg/g;Liqin Ji[Lincheng Zhou,He Zhang,Liqin Ji,etc,RSC Adv.,2014,4:24900-24908.]采用一步法合成了四氧化三铁-碳纳米管复合材料并对水中四溴双酚A进行去除,研究表明其合成的材料对四溴双酚A最大去除量为27.26mg/g。虽然在上述两种方法中引入了磁性材料,达到了外加磁场下快速分离的效果,但是对四溴双酚A的吸附性能较差,而且碳材料对四溴双酚A的吸附为非特异性吸附,缺乏选择性;在上述两种方法中使用的磁性材料未经抗氧化处理,较易发生氧化,材料的使用寿命一般为7天左右。吸附能力差且缺乏选择性、易氧化使用寿命短使得磁性碳管在四溴双酚A中去除的应用研究中具有一定的局限性。
金属有机骨架化合物(Metal organic frameworks,MOFs)是一种新型的由含氮或氧的有机配体和无机金属离子团簇经过自组装过程形成的多孔晶体材料,因其具有易于制备、比表面积大、孔隙度高、结构多样及孔隙结构可修饰等特点而广泛应用于气体储存、催化、传感等领域。由于金属有机骨架比表面积大,孔径可调,其在环境中有机污染物吸附分离研究中的应用逐渐成为近年来研究的热点[Zubair Hasan,Sung HwaJhung,J.Hazard.Mater,2015,283:329-339]。然而金属有机骨架化合物具有合成温度高(一般在反应釜中进行,温度在250度以上),机械强度低、呈固体粉末状,吸附后需要离心处理过程等缺陷,也使得其在污染物吸附与去除领域中的应用受到了一定程度的限制。
发明内容
本发明的任务是提供一种碳纳米管金属有机骨架磁性复合材料,使其具有对四溴双酚A的高容量选择性吸附性能,能实现对环境样品中四溴双酚A的高容量去除与快速分离等特点,以克服现有技术中存在的吸附剂吸附容量低、选择性差、磁性组分容易氧化及分离速度不理想等不足。本发明的另一个任务是提供这种碳纳米管金属有机骨架磁性复合材料的制备方法。
实现本发明的技术方案是:
本发明提供的这种能高容量吸附四溴双酚A的碳纳米管金属有机骨架磁性复合材料,由碳纳米管、金属有机骨架材料和包硅修饰的磁性纳米颗粒构成,碳纳米管作为金属有机骨架材料的基底贯穿于金属有机骨架材料中,金属有机骨架材料与碳纳米管形成串珠样构型,经包硅修饰的磁性纳米颗粒散布于以碳材料为基底的金属有机骨架材料周边;所述的金属有机骨架材料为沸石咪唑骨架(Zeolitic Imidazole Framework-67,ZIF-67);所述的包硅修饰的磁性纳米颗粒为经包硅修饰的Fe3O4纳米颗粒;所述的作为金属有机骨架材料基底的碳纳米管是羧基碳管;所述的金属有机骨架材料为沸石咪唑骨架(ZeoliticImidazole Framework-67,ZIF-67),所述的包硅修饰的磁性纳米颗粒为经包硅修饰的Fe3O4纳米颗粒,所述的碳纳米管是羧基碳管。
本发明提供的这种能高容量吸附四溴双酚A的碳纳米管金属有机骨架磁性复合材料的制备方法是:在合成金属有机骨架材料时加入碳纳米管和包硅修饰的磁性纳米颗粒,经过自组装过程形成碳纳米管金属有机骨架磁性复合材料,所述的金属有机骨架材料为沸石咪唑骨架(Zeolitic Imidazole Framework-67,ZIF-67),所述的包硅修饰的磁性纳米颗粒为经包硅修饰的Fe3O4纳米颗粒,所述的碳纳米管是羧基碳管;所述的包硅修饰的
Figure BDA0001204552400000034
纳米颗粒是按照以下方法制备得到的产物:将黑色
Figure BDA0001204552400000032
纳米颗粒分散在纯水中,经超声混匀配制成浓度为4~12g/L的
Figure BDA0001204552400000031
纳米颗粒混悬液,将上述混悬液分散到乙醇-纯水的混合溶液中,其中乙醇和纯水的体积比为2:1~4:1,25~35℃条件下持续以200-300r/min机械搅拌10~30min,加入100~300μL硅烷化试剂,所述的硅烷化试剂为三乙氧基硅烷、三甲氧基硅烷、三乙氧基硅烷或三丙氧基硅烷;向反应体系中加入0.5~1.5mL碱或酸溶液,具体可以是氨水、二正丙胺或盐酸溶液;25~35℃条件下持续200-300r/min机械搅拌6~12h,收集反应物,以体积比为1:1的乙醇-纯水混合溶液洗涤产物,得到表面包硅的棕黑色
Figure BDA0001204552400000033
纳米颗粒,即为包硅修饰的
Figure BDA0001204552400000035
纳米颗粒,本专利申请中也称其为Fe3O4@SiO2颗粒。
上述方法中所述的在合成金属有机骨架材料时加入碳纳米管和包硅修饰的磁性纳米颗粒经过自组装过程形成碳纳米管金属有机骨架磁性复合材料的具体方法是:将50-300mg包硅修饰的
Figure BDA0001204552400000036
纳米颗粒分散到100mL甲醇中,同时加入100~500mg羧基碳管和8~16mmoL 2-甲基咪唑,超声分散10~30min,以恒压分液漏斗将溶解了1~8mmoL硝酸钴的100mL甲醇溶液缓慢加入反应体系,10~30min滴完,25~35℃条件下持续以200-300r/min机械搅拌1~4h,得到黑色沉淀物,以无水乙醇在外加磁场的作用下多次清洗所得沉淀产物,用以除去未反应的化学物,将黑色产物置于60℃真空干燥箱中干燥4~8h,之后将真空干燥箱温度升至100℃再干燥12~24h,即得到碳纳米管金属有机骨架磁性复合材料,即高容量吸附四溴双酚A的碳纳米管金属有机骨架磁性复合材料。
本发明提供的对四溴双酚A具有高容量吸附性能的碳纳米管金属有机骨架磁性复合材料,是以具有刚性特性的碳材料作为金属有机骨架的基底,以抗氧化包硅修饰的磁性颗粒为磁性组分,通过“一步法”制备而成的,该复合材料中碳材料贯穿金属有机骨架材料,金属有机骨架材料与碳材料形成串珠样构型,而磁性颗粒则散在分布于金属有机骨架材料周边。
本发明的优点在于:以碳材料为基体,以具有抗氧化能力的Fe3O4@SiO2颗粒为磁性组分,常温下一步合成对四溴双酚A具有高吸附容量的碳纳米管金属有机骨架磁性复合材料,方法简便快速,易于操作。复合金属有机骨架材料引入碳材料作为基体,不但弥补了金属有机骨架材料机械强度低的缺陷,而且碳材料与金属有机骨架材料的联合,使得二者对四溴双酚A的吸附能力得到大的提高(单纯碳管对四溴双酚A的吸附量为32.82mg/g,单纯金属有机骨架为18.64mg/g,复合材料为110.27mg/g);经包硅处理的Fe3O4纳米颗粒具有较强抗氧化的能力,使得复合材料可以不受氧化的影响实现长久保存,另外,该复合材料在对四溴双酚A的去除中表现出了优良的的吸附动力特征,可在10min内达到动态吸附平衡,且该材料对四溴双酚A的吸附具有一定的选择性,加之复合材料所具有的磁分离特性,使得该复合材料在去除环境样本中四溴双酚A的应用中表现出巨大的经济效益和环境效益。本发明提供的制备方法在常温实施,只需一步操作,简便快捷,容易操作。制备得到的复合材料以碳管为刚性结构,增加了金属有机骨架材料的刚性,且碳管本身对四溴双酚A具有一定的吸附能力,进一步提高了复合金属有机骨架材料对四溴双酚A的吸附容量。该方法将有具有刚性结构的碳管以及能够快速分离的磁性材料加入到金属有机骨架材料的合成中,得到对四溴双酚A具有高容量选择性吸附性能且具有刚性的磁性金属有机骨架材料,能实现对环境样品中的四溴双酚A高容量去除与快速分离。表面包硅的磁性颗粒的加入,不仅使得复合材料可以在外加磁场的作用下得以快速分离,而且二氧化硅壳的包覆增强了磁性颗粒抗氧化的能力,使得复合材料的使用寿命明显延长。
附图说明
图1.碳纳米管金属有机骨架磁性复合材料的制备流程及识别机制,其中(1)为Fe3O4纳米颗粒包覆抗氧化硅壳的过程,内部黑色的实心球Fe3O4纳米颗粒,外层的圆环为包覆的硅壳;(2)为磁性金属有机骨架复合材料的合成过程的示意图,右边为合成的磁性金属有机骨架复合材料的构型图;(3)为金属有机骨架材料与四溴双酚A的作用原理示意图,显示二者之间作用力为π-π作用。
图2.碳管(A),金属有机骨架材料(B),Fe3O4(C),Fe3O4@SiO2(D),碳纳米管金属有机骨架磁性复合材料(E和F)的透射电子显微镜照片。适量材料经无水乙醇分散,碳包覆铜网捞取少量样品,室温干燥后由透射电子显微镜(FEI Tecnai G2 20S-TWIN,美国)拍摄得到。
图3.碳管(a),金属有机骨架材料(b),Fe3O4(c),Fe3O4@SiO2(d),碳纳米管金属有机骨架磁性复合材料(e)的傅立叶变换红外谱图。将样品与适量的KBr粉末混合,研磨后取少量压制成均一半透明的球形薄片,彻底干燥后由傅立叶变换红外光谱仪(Bruker Vertex70,德国)测定其在400~4000cm-1范围内的红外吸收峰。
图4.Fe3O4(A),Fe3O4@SiO2(B)和碳纳米管金属有机骨架磁性复合材料(C)的磁滞回线;样品经干燥后其磁性特征由LakeShore 7400振动样品磁强计(配备有740H驱动器和EM4-HVA电磁铁,美国)室温下测定得到,磁场强度控制在-15000Oe到+15000Oe范围内。
图5.碳管(a),金属有机骨架材料(b),Fe3O4@SiO2(c),碳纳米管金属有机骨架磁性复合材料(d)对四溴双酚A的静态吸附曲线(A)和碳纳米管金属有机骨架磁性复合材料对四溴双酚A的吸附动力学特征(B)。
具体实施方式
下面结合实施方式和材料表征对碳纳米管金属有机骨架磁性复合材料的制备方法作出详细说明:
实施例1
对四溴双酚A具有高吸附容量的碳纳米管金属有机骨架磁性复合材料的制备
磁性纳米颗粒表面包硅修饰,具体制备步骤:将一定量的黑色Fe3O4纳米颗粒分散适量在纯水中,经超声混匀配制成浓度为8g/L的Fe3O4纳米颗粒混悬液,将上述混悬液分散到乙醇-纯水的混合溶液中,其中乙醇和纯水的体积比为4:1,25℃条件下持续以300r/min机械搅拌20min,加入200μL硅烷化试剂(三乙氧基硅烷),向反应体系中加入1.0mL碱或酸溶液(氨水),25℃条件下持续300r/min机械搅拌8h,收集反应物,以体积比为1:1的乙醇-纯水混合溶液洗涤产物,即可得表面包硅的棕黑色Fe3O4纳米颗粒,即Fe3O4@SiO2,25℃真空干燥备用;
由图2(C)可以看出,未包硅的每个磁性纳米粒子形貌清晰可见,粒径介于10~20nm之间,包硅后的Fe3O4@SiO2见图2(D),可以看到包硅之后的Fe3O4纳米粒子外面包裹了一层二氧化硅壳,厚度约为2~4nm。图3(c)和(d)592cm-1处吸收峰提示Fe-O伸缩振动,图3(d)在1083cm-1处的吸收峰是由Si-O-Si伸缩振动产生,表明修饰的硅壳在Fe3O4纳米粒子表面存在。由图4(A)和(B)表明修饰硅壳后,磁性纳米粒子的磁饱和量有轻微的下降,这也从侧面说明硅壳修饰的成功。
碳纳米管金属有机骨架磁性复合材料的制备:制备步骤:将100mg制备的Fe3O4@SiO2颗粒分散到100mL甲醇中,同时加入200mg羧基碳管和12mmoL 2-甲基咪唑,超声分散20min,以恒压分液漏斗将溶解了4mmoL硝酸钴的100mL甲醇溶液缓慢加入反应体系,20min滴完,25℃条件下持续以300r/min机械搅拌2h,得到黑色沉淀物,以无水乙醇在外加磁场的作用下多次清洗所得沉淀产物,用以除去未反应的化学物,将黑色产物置于60℃真空干燥箱中干燥6h,之后将真空干燥箱温度升至100℃再干燥12h,即得到碳纳米管金属有机骨架磁性复合材料。
图2(A)透射电镜显示,碳管在电镜下为管状结构,图2(B)显示,单纯的有机骨架材料为六面体形,且尺寸为0.5~1.0μm,图2(E)和(F)为碳管/金属有机骨架磁性复合材料,由该图可以看到该复合材料的三个特点:1,碳纳米管贯穿金属有机骨架材料,形成近似串珠样的构型;2,复合材料中的金属有机骨架材料比单纯的金属有机骨架材料的尺寸要小5~10倍;3,修饰后的磁性纳米颗粒散在分布在金属有机骨架材料的周围。这三个特点使得该复合材料具有比单纯碳管和金属有机骨架材料更小的尺寸,推测这种形貌的改变使得金属有机骨架材料具有更小的比表面积,更适合于吸附目标物四溴双酚A;散在分布的磁性颗粒使得复合材料可以在外加磁场的作用下实现快速的分离,缩短了对目标物四溴双酚A吸附或去除的分离时间。图3(e)红外谱图中1415cm-1,743cm-1和632cm-1均为金属有机骨架的C-N伸缩振动特征峰,且与单纯有机骨架材料位置相同,说明复合材料中金属有机骨架材料的成功合成,复合材料中显示了1083cm-1Si-O-Si和592cm-1Fe-O伸缩振动峰说明包硅的磁性纳米颗粒成功的合成在了复合材料中。图4(C)显示碳纳米管金属有机骨架磁性复合材料的磁性有所降低,但功能性材料的饱和磁化量依然可达15emu/g,加之其良好的超顺磁性,使得复合材料可以在外加磁场的作用下快速分离。
实施例1制备的碳纳米管金属有机骨架磁性复合材料及单一材料对四溴双酚A的静态吸附能力的评价,操作步骤如下:
为了验证碳纳米管金属有机骨架磁性复合材料对四溴双酚A的吸附效果,分别以碳管、单纯金属有机骨架化合物、磁性纳米粒子为吸附材料,对四溴双酚A进行吸附。用乙腈溶液配制浓度分别为0.1,0.2,0.5,1.0,2.0mg/mL的四溴双酚A溶液;各称取5份10mg碳管、金属有机骨架材料、磁性纳米粒子和实施例1制备的碳管/金属有机骨架磁性复合材料于2mL离心管中,取1mL配制的不同浓度的四溴双酚A溶液依次加入到5个管中,常温下振荡孵育12~18h。吸附后,碳管和金属有机骨架材料离心取上清,磁性纳米粒子和碳纳米管金属有机骨架磁性复合材料在外加磁场下分离取上清,将上清过膜后经液相色谱检测定量。根据上清中未被结合的四溴双酚A的量,进而计算得到在该浓度下每单位质量(g)的各吸附材料对四溴双酚A的吸附量(mg),计算公式如下:
Q=(C0-C)V/M,
其中Q为吸附容量,C0为起始浓度,C为上清的浓度,V为吸附溶液的体积,M为所用吸附剂的量。
图5(A)中结果显示,单纯碳管对四溴双酚A的吸附量为32.82mg/g,单纯的金属有机骨架对四溴双酚A的吸附量为18.64mg/g,磁性纳米粒子对四溴双酚A的吸附量为18.01mg/g,而碳纳米管金属有机骨架磁性复合材料对四溴双酚A的吸附量为110.27mg/g,可以看出在碳管、磁性颗粒和金属有机骨架结合后,制备的碳纳米管金属有机骨架磁性复合材料对四溴双酚A的吸附能力得到了很大的提升,这与加入碳管和磁性组分后金属有机骨架形貌的改变有关,推测这种形貌上的改变增加了碳纳米管金属有机骨架磁性复合材料吸附的比表面积,而且使得这种体积变小的金属有机骨架材料可能在内部孔径上更适合于对四溴双酚A的吸附。
碳纳米管金属有机骨架磁性复合材料对四溴双酚A的吸附动力学评价,操作步骤如下:
将四溴双酚A溶解于乙腈(1:9,v/v)混合溶液中,初始浓度为0.1mg/mL。将20mg碳碳纳米管金属有机骨架磁性复合材料与10mL上述溶液混合,常温条件下振荡孵育,分别在0,1,2,5,10,20,30,60,90min时测定溶液中未被结合的四溴双酚A的含量,计算出结合了的四溴双酚A的量,绘制吸附动力曲线。由图5(B)可以看出,四溴双酚A可在10min之内达到扩散平衡,这主要归因于金属有机骨架材料的大的比表面积加快了四溴双酚A在材料表面的吸附,从而可以实现环境样品中四溴双酚A的快速去除或分离。
实施例2
将一定量的Fe3O4纳米颗粒分散适量在纯水中,经超声混匀配制成浓度为4g/L的Fe3O4纳米颗粒混悬液,将上述混悬液分散到乙醇-纯水的混合溶液中,其中乙醇和纯水的体积比为2:1,27℃条件下持续以200r/min机械搅拌10min,加入100μL硅烷化试剂(三甲氧基硅烷),向反应体系中加入0.5mL氨水,27℃条件下持续200r/min机械搅拌6h,收集反应物,以体积比为1:1的乙醇-纯水混合溶液洗涤产物多次去除多余的化学物,即可得表面包硅的棕黑色Fe3O4纳米颗粒,即Fe3O4@SiO2,25℃真空干燥备用;将50mg制备的Fe3O4@SiO2颗粒分散到100mL甲醇中,同时加入100mg羧基碳管和8mmoL 2-甲基咪唑,超声分散5min,以恒压分液漏斗将溶解了1mmoL硝酸钴的100mL甲醇溶液缓慢加入反应体系,5min滴完,27℃条件下持续以200r/min机械搅拌1h,得到黑色沉淀物,以无水乙醇在外加磁场的作用下多次清洗所得沉淀产物,用以除去未反应的化学物,将黑色产物置于60℃真空干燥箱中干燥4h,之后将真空干燥箱温度升至100℃再干燥8h,即得到碳纳米管金属有机骨架磁性复合材料。吸附评价实验显示实施例2制备的复合材料对四溴双酚A的吸附容量为86.85mg/g。
实施例3
将一定量的Fe3O4纳米颗粒分散适量在纯水中,经超声混匀配制成浓度为6g/L的Fe3O4纳米颗粒混悬液,将上述混悬液分散到乙醇-纯水的混合溶液中,其中乙醇和纯水的体积比为3:1,30℃条件下持续以250r/min机械搅拌15min,加入150μL硅烷化试剂(三乙氧基硅烷),向反应体系中加入1.0mL二正丙胺,30℃条件下持续250r/min机械搅拌10h,收集反应物,以体积比为1:1的乙醇-纯水混合溶液洗涤产物多次去除多余的化学物,即可得表面包硅的棕黑色Fe3O4纳米颗粒,即Fe3O4@SiO2,25℃真空干燥备用;将200mg制备的Fe3O4@SiO2颗粒分散到100mL甲醇中,同时加入300mg羧基碳管和10mmoL 2-甲基咪唑,超声分散10min,以恒压分液漏斗将溶解了6mmoL硝酸钴的100mL甲醇溶液缓慢加入反应体系,15min滴完,30℃条件下持续以250r/min机械搅拌2h,得到黑色沉淀物,以无水乙醇在外加磁场的作用下多次清洗所得沉淀产物,用以除去未反应的化学物,将黑色产物置于60℃真空干燥箱中干燥5h,之后将真空干燥箱温度升至100℃再干燥16h,即得到磁性金属有机骨架磁性复合材料。吸附评价实验显示实施例3制备的复合材料对四溴双酚A的吸附容量为93.26mg/g。
实施例4
将一定量的Fe3O4纳米颗粒分散适量在纯水中,经超声混匀配制成浓度为12g/L的Fe3O4纳米颗粒混悬液,将上述混悬液分散到乙醇-纯水的混合溶液中,其中乙醇和纯水的体积比为4:1,35℃条件下持续以400r/min机械搅拌20min,加入300μL硅烷化试剂(三丙氧基硅烷),向反应体系中加入1.5mL稀盐酸,35℃条件下持续400/min机械搅拌12h,收集反应物,以体积比为1:1的乙醇-纯水混合溶液洗涤产物多次去除多余的化学物,即可得表面包硅的棕黑色Fe3O4纳米颗粒,即Fe3O4@SiO2,25℃真空干燥备用;将300mg制备的Fe3O4@SiO2颗粒分散到100mL甲醇中,同时加入500mg羧基碳管和16mmoL 2-甲基咪唑,超声分散30min,以恒压分液漏斗将溶解了8mmoL硝酸钴的100mL甲醇溶液缓慢加入反应体系,20min滴完,35℃条件下持续以400r/min机械搅拌4h,得到黑色沉淀物,以无水乙醇在外加磁场的作用下多次清洗所得沉淀产物,用以除去未反应的化学物,将黑色产物置于60℃真空干燥箱中干燥8h,之后将真空干燥箱温度升至100℃再干燥24h,即得到碳纳米管金属有机骨架磁性复合材料。吸附评价实验显示实施例4制备的复合材料对四溴双酚A的吸附容量为98.53mg/g。
实施例5
按照实施例1的实验条件进行材料制备,将羧基碳管替换为其他碳材料(碳管、羟基碳管、氨基碳管,乙炔黑),分别制备出以这些碳材料为基底的金属有机骨架复合材料(碳管-MOFs、羟基碳管-MOFs、氨基碳管-MOFs、乙炔黑-MOFs),并研究了这些碳材料及其对应的金属有机骨架复合材料对四溴双酚A及另一种环境污染物双酚A的吸附性能,结果如表1所示:
表1.不同碳材料基体的金属有机骨架材料吸附性能比较。
Figure BDA0001204552400000091
表1的结果显示,不同的碳材料及以不同碳材料为基底的金属有机骨架复合物对四溴双酚A及双酚A的吸附能力存在一定的差异。双酚A为环境中存在广泛且含量较高的污染物,与四溴双酚A的结构类似,因此被广泛应用于评价材料对四溴双酚A选择性的研究中。表一的结果显示不同碳材料对四溴双酚A均有一定的吸附能力,其中吸附力最强的是羧基碳管,吸附容量为32.82mg/g,单纯的金属有机骨架材料对四溴双酚A的吸附容量为18.64mg/g,将二者复合之后的复合材料对四溴双酚A的吸附容量为92.27mg/g,引入磁性颗粒后,碳纳米管金属有机骨架磁性复合材料对四溴双酚A的吸附容量为110.27mg/g,表明一步法所制备的碳纳米管金属有机骨架磁性复合材料对四溴双酚A的吸附容量是最大的;与此同时,不同基底材料的金属有机骨架复合物对双酚A的吸附与单纯金属有机骨架及单纯基体材料相比,没有明显变化,有的甚至比单纯材料的吸附还要低,这说明制备的金属有机骨架材料对四溴双酚A的吸收是有选择性的。在研究背景中提到已有的两篇对四溴双酚A进行吸附的研究,其制备的材料对四溴双酚A的吸附容量为42.28和27.26mg/g,远远低于本申请专利所制备的材料对四溴双酚A的吸附,因此本专利制备的碳纳米管金属有机骨架磁性复合材料在四溴双酚A吸附与去除的研究中将会有更广阔的空间。

Claims (6)

1.一种高容量吸附四溴双酚A的碳纳米管金属有机骨架磁性复合材料,由碳纳米管、金属有机骨架材料和包硅修饰的磁性纳米颗粒构成,碳纳米管作为金属有机骨架材料的基底贯穿于金属有机骨架材料中,金属有机骨架材料与碳纳米管形成串珠样构型,经包硅修饰的磁性纳米颗粒分布于以碳材料为基底的金属有机骨架材料周边;所述的金属有机骨架材料为沸石咪唑骨架;所述的包硅修饰的磁性纳米颗粒为经包硅修饰的Fe3O4纳米颗粒;所述的作为金属有机骨架材料基底的碳纳米管是羧基碳管;
所述磁性复合材料是在合成金属有机骨架材料时加入碳纳米管和包硅修饰的磁性纳米颗粒而制成的碳纳米管金属有机骨架磁性复合材料;具体方法是:将50-300mg包硅修饰的Fe3O4纳米颗粒分散到100mL甲醇中,同时加入100~500mg羧基碳管和8~16mmoL 2-甲基咪唑,超声分散10~30min,以恒压分液漏斗将溶解了1~8mmoL硝酸钴的100mL甲醇溶液缓慢加入反应体系,10~30min滴完,25~35℃条件下持续以200-300r/min机械搅拌1~4h,得到黑色沉淀物,以无水乙醇在外加磁场的作用下多次清洗所得沉淀产物,用以除去未反应的化学物,将黑色产物置于60℃真空干燥箱中干燥4~8h,之后将真空干燥箱温度升至100℃再干燥12~24h,即得到碳纳米管金属有机骨架磁性复合材料。
2.权利要求1所述的复合材料的制备方法,其特征在于,在合成金属有机骨架材料时加入碳纳米管和包硅修饰的磁性纳米颗粒,经过自组装过程形成碳纳米管金属有机骨架磁性复合材料。
3.根据权利要求2所述的方法,其特征在于,所述的金属有机骨架材料为沸石咪唑骨架,所述的包硅修饰的磁性纳米颗粒为经包硅修饰的Fe3O4纳米颗粒,所述的碳纳米管是羧基碳管。
4.根据权利要求2或3所述的方法,其特征在于,所述的包硅修饰的Fe3O4纳米颗粒是按照以下方法制备得到的产物:将黑色Fe3O4纳米颗粒分散在纯水中,经超声混匀配制成浓度为4~12g/L的Fe3O4纳米颗粒混悬液,将上述混悬液分散到乙醇-纯水的混合溶液中,其中乙醇和纯水的体积比为2:1~4:1,25~35℃条件下持续以200-300r/min机械搅拌10~30min,加入100~300μL硅烷化试剂,向反应体系中加入0.5~1.5mL碱或酸溶液,25~35℃条件下持续200-300r/min机械搅拌6~12h,收集反应物,以体积比为1:1的乙醇-纯水混合溶液洗涤产物,得到表面包硅的棕黑色Fe3O4纳米颗粒,即为包硅修饰的Fe3O4纳米颗粒。
5.根据权利要求4所述的方法,其特征在于,所述的硅烷化试剂为三乙氧基硅烷、三甲氧基硅烷、三乙氧基硅烷或三丙氧基硅烷;所述的向反应体系中加入的碱或酸溶液是氨水、二正丙胺或盐酸溶液。
6.根据权利要求2或3所述的方法,其特征在于,所述的在合成金属有机骨架材料时加入碳纳米管和包硅修饰的磁性纳米颗粒经过自组装过程形成碳纳米管金属有机骨架磁性复合材料的具体方法是:将50-300mg包硅修饰的Fe3O4纳米颗粒分散到100mL甲醇中,同时加入100~500mg羧基碳管和8~16mmoL 2-甲基咪唑,超声分散10~30min,以恒压分液漏斗将溶解了1~8mmoL硝酸钴的100mL甲醇溶液缓慢加入反应体系,10~30min滴完,25~35℃条件下持续以200-300r/min机械搅拌1~4h,得到黑色沉淀物,以无水乙醇在外加磁场的作用下多次清洗所得沉淀产物,用以除去未反应的化学物,将黑色产物置于60℃真空干燥箱中干燥4~8h,之后将真空干燥箱温度升至100℃再干燥12~24h,即得到碳纳米管金属有机骨架磁性复合材料。
CN201710011011.3A 2017-01-06 2017-01-06 一种碳纳米管金属有机骨架磁性复合材料及其制备方法 Expired - Fee Related CN108273471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710011011.3A CN108273471B (zh) 2017-01-06 2017-01-06 一种碳纳米管金属有机骨架磁性复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710011011.3A CN108273471B (zh) 2017-01-06 2017-01-06 一种碳纳米管金属有机骨架磁性复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108273471A CN108273471A (zh) 2018-07-13
CN108273471B true CN108273471B (zh) 2020-06-26

Family

ID=62801049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710011011.3A Expired - Fee Related CN108273471B (zh) 2017-01-06 2017-01-06 一种碳纳米管金属有机骨架磁性复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108273471B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122555B (zh) * 2018-10-31 2020-11-24 华中科技大学 一种四溴双酚a印记复合材料及其应用
CN109507317B (zh) * 2018-11-19 2021-05-28 中国农业科学院农业质量标准与检测技术研究所 一种镓金属有机骨架材料在检测内分泌干扰物中的传感应用
CN109632985B (zh) * 2018-12-13 2021-07-06 温州医科大学 一种基于金属有机框架纳米材料的萃取技术检测双酚类化合物及其衍生物的方法
CN109622062B (zh) * 2019-01-16 2021-06-04 南京工程学院 一种改性钒酸铋光催化剂及其制备方法
CN110102255B (zh) * 2019-04-03 2021-10-19 广东工业大学 一种掺杂分子筛的磁性碳纳米管复合材料及其制备方法和应用
CN110075808A (zh) * 2019-06-05 2019-08-02 中南大学 磁性碳材料原位生长MOFs的吸附催化复合体的制备方法及吸附催化复合体
CN111170501B (zh) * 2019-12-30 2022-05-24 安徽得奇环保科技股份有限公司 一种利用复合吸附剂处理含镍废水的方法
CN111545175A (zh) * 2020-04-15 2020-08-18 济南大学 一种吸附四溴双酚a的多孔磁性生物吸附剂制备方法
CN112705175B (zh) * 2020-12-22 2021-08-06 青岛大学附属医院 选择性吸附甲氨蝶呤的磁性复合材料及其制备方法和应用
CN114058376A (zh) * 2021-11-10 2022-02-18 崔怡 一种可回收土壤修复剂及其制备方法
CN115029954B (zh) * 2022-07-19 2023-03-24 安徽文峰新材料科技股份有限公司 一种利用纳米复合材料制备磁性吸附纸的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148853A (zh) * 2015-10-12 2015-12-16 武汉大学 一种磁性MOFs固相萃取吸附剂及其制备方法和应用
CN105457602A (zh) * 2015-12-28 2016-04-06 北京林业大学 一种具有微孔结构的新型纳米复合材料、制备及应用
CN105597685A (zh) * 2016-01-12 2016-05-25 郑州轻工业学院 Fe3O4SiO2Zr-MOF的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148853A (zh) * 2015-10-12 2015-12-16 武汉大学 一种磁性MOFs固相萃取吸附剂及其制备方法和应用
CN105457602A (zh) * 2015-12-28 2016-04-06 北京林业大学 一种具有微孔结构的新型纳米复合材料、制备及应用
CN105597685A (zh) * 2016-01-12 2016-05-25 郑州轻工业学院 Fe3O4SiO2Zr-MOF的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"磁性金属有机骨架复合材料对四溴双酚A 的吸附性能研究";周廷廷 等;《中国中西部地区第五届色谱学术交流会暨仪器展览会论文集》;20160430;正文部分 *

Also Published As

Publication number Publication date
CN108273471A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
CN108273471B (zh) 一种碳纳米管金属有机骨架磁性复合材料及其制备方法
Wen et al. Sulphonate functionalized covalent organic framework-based magnetic sorbent for effective solid phase extraction and determination of fluoroquinolones
Huang et al. A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg 2+ from water
CN105148852B (zh) 一种巯基改性磁性MOFs吸附剂及其制备方法和应用
He et al. Advances of covalent organic frameworks based on magnetism: classification, synthesis, properties, applications
Ji et al. Facile synthesis of multiwall carbon nanotubes/iron oxides for removal of tetrabromobisphenol A and Pb (II)
Aghayi‐Anaraki et al. Fe3O4@ MOF magnetic nanocomposites: Synthesis and applications
Jian et al. Click chemistry: a new facile and efficient strategy for the preparation of Fe 3 O 4 nanoparticles covalently functionalized with IDA-Cu and their application in the depletion of abundant protein in blood samples
Sahraei et al. Adsorptive removal of toxic metals and cationic dyes by magnetic adsorbent based on functionalized graphene oxide from water
Li et al. Core–shell magnetic metal–organic framework molecularly imprinted nanospheres for specific adsorption of tetrabromobisphenol A from water
Jiang et al. Facile synthesis of magnetic hybrid Fe3O4/MIL-101 via heterogeneous coprecipitation assembly for efficient adsorption of anionic dyes
Li et al. Highly efficient methylene blue dyes removal from aqueous systems by chitosan coated magnetic mesoporous silica nanoparticles
Zhao et al. Preparation of molecularly imprinted polymers based on magnetic carbon nanotubes for determination of sulfamethoxazole in food samples
Zhao et al. Self-assembly of a surface bisphenol A-imprinted core–shell nanoring amino-functionalized superparamagnetic polymer
Zhang et al. Effective adsorption of malachite green using magnetic barium phosphate composite from aqueous solution
Wei et al. Ionic liquid modified magnetic microspheres for isolation of heme protein with high binding capacity
CN106883411B (zh) 超顺磁性核壳结构介孔分子印迹聚合物的制备及作为固相萃取剂的应用
CN113274981A (zh) 磁性纳米粒及其制备方法
Ma et al. Facile one-pot synthesis of magnetic nitrogen-doped porous carbon for high-performance bilirubin removal from BSA-rich solution
Qiu et al. A new magnetic nanocomposite for selective detection and removal of trace copper ions from water
CN104492378A (zh) 一种吸附全氟化合物的磁性纳米复合材料及其制备方法
CN106732385A (zh) 复合磁性杂化材料Fe3O4/MOFs及其制备方法和应用
Wu et al. Novel polyazamacrocyclic receptor decorated core–shell superparamagnetic microspheres for selective binding and magnetic enrichment of palladium: synthesis, adsorptive behavior and coordination mechanism
Huang et al. Hollow Co-MOF-74 incorporated electrospun nanofiber membranes with hierarchical structures for enhanced removal of polycyclic aromatic hydrocarbons by drain-type adsorption
Zhang et al. Application of Ba 3 (PO 4) 2/Fe 3 O 4 as a novel magnetic adsorbent to remove methyl blue from aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200626