CN108269929B - 一种正置顶发射qled器件及其制备方法 - Google Patents

一种正置顶发射qled器件及其制备方法 Download PDF

Info

Publication number
CN108269929B
CN108269929B CN201611256948.9A CN201611256948A CN108269929B CN 108269929 B CN108269929 B CN 108269929B CN 201611256948 A CN201611256948 A CN 201611256948A CN 108269929 B CN108269929 B CN 108269929B
Authority
CN
China
Prior art keywords
quantum dot
radial direction
qled device
precursor
energy level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611256948.9A
Other languages
English (en)
Other versions
CN108269929A (zh
Inventor
曹蔚然
杨一行
刘政
钱磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Technology Group Co Ltd
Original Assignee
TCL Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCL Technology Group Co Ltd filed Critical TCL Technology Group Co Ltd
Priority to CN201611256948.9A priority Critical patent/CN108269929B/zh
Priority to PCT/CN2017/080618 priority patent/WO2018120514A1/zh
Publication of CN108269929A publication Critical patent/CN108269929A/zh
Application granted granted Critical
Publication of CN108269929B publication Critical patent/CN108269929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission

Abstract

本发明公开了一种正置顶发射QLED器件及其制备方法,其中,所述正置顶发射QLED器件包括依次叠层设置的衬底、反射阳极、空穴传输层、量子点发光层、电子传输层及透明阴极,所述量子点发光层采用具有量子阱能级结构的量子点材料制备而成,所述量子点材料包括至少一个在径向方向上依次排布的量子点结构单元,所述量子点结构单元为径向方向上能级宽度变化的渐变合金组分结构或径向方向上能级宽度一致的均一组分结构,可实现具有高效电荷注入、高发光亮度、低驱动电源以及高器件效率等优异性能的高效QLED器件。

Description

一种正置顶发射QLED器件及其制备方法
技术领域
本发明涉及量子点技术领域,特别涉及一种正置顶发射QLED器件及其制备方法。
背景技术
量子点是一种在三个维度尺寸上均被限制在纳米数量级的特殊材料,这种显著的量子限域效应使得量子点具有了诸多独特的纳米性质:发射波长连续可调、发光波长窄、吸收光谱宽、发光强度高、荧光寿命长以及生物相容性好等。这些特点使得量子点在平板显示、固态照明、光伏太阳能、生物标记等领域均具有广泛的应用前景。尤其是在平板显示应用方面,基于量子点材料的量子点电致发光二极管器件(Quantum dot light-emittingdiodes,QLED)借助于量子点纳米材料的特性和优化,已经在显示画质、器件性能、制造成本等方面展现出了巨大的潜力。虽然近年来QLED器件在各方面的性能不断得到提升,但无论是在器件效率还是在器件工作稳定性等基本器件性能参数上还与产业化应用的要求有相当的差距,这也大大阻碍了量子点电致发光显示技术的发展和应用。另外,不仅限于QLED器件,在其他领域中,量子点材料相对于传统材料的特性也被逐渐重视,例如光致发光器件、太阳能电池、显示器件、光电探测器、生物探针以及非线性光学器件等等,以下仅以QLED器件为例进行说明。
虽然量子点作为一种经典的纳米材料已经被研究和开发超过30年,但是利用量子点的优良发光特性并将其作为发光材料应用在QLED器件及相应的显示技术中的研究时间还很短;因此目前绝大部分的QLED器件的开发和研究均是基于已有经典结构体系的量子点材料,相应的量子点材料的筛选和优化的标准还基本是从量子点自身的发光性能例如量子点的发光峰宽、溶液量子产率等出发。将以上量子点直接应用于QLED器件结构中从而获得相应的器件性能结果。
但QLED器件及相应的显示技术作为一套复杂的光电器件体系,有诸多方面的因素会影响器件的性能。单从作为核心发光层材料的量子点材料出发,所需权衡的量子点性能指标就会复杂得多。
首先,量子点在QLED器件中是以量子点发光层固态薄膜的形式存在的,因此量子点材料原本在溶液中所得到的各项发光性能参数在形成固态薄膜后会表现出明显的差异:例如在固态薄膜中发光峰波长会有不同程度的红移(向长波长移动)、发光峰宽度会变大、量子产率会有不同程度的降低,也就是说量子点材料在溶液中的优良发光性能并不能完全被继承至QLED器件的量子点固态薄膜中。因此在设计和优化量子点材料的结构和合成配方时,需同时考虑量子点材料自身的发光性能最优化以及量子点材料在固态薄膜状态下的发光性能继承最大化。
其次,在QLED器件中量子点材料的发光是通过电致激发来实现的,即分别从QLED器件的阳极和阴极通电注入空穴和电子,空穴和电子通过QLED器件中相应功能层的传输在量子点发光层复合后,通过辐射跃迁的方式发射光子即实现发光。从以上过程可以看出,量子点自身的发光性能例如发光效率只是影响上述过程中辐射跃迁的效率,而QLED器件的整体发光效率还会同时受到上述过程中空穴和电子在量子点材料中的电荷注入和传输效率、空穴和电子在量子点材料中的相对电荷平衡、空穴和电子在量子点材料中的复合区域等的影响。因此在设计和优化量子点材料的结构尤其是量子点的精细核壳纳米结构时,还需重点考虑量子点形成固态薄膜以后的电学性能:例如量子点的电荷注入和传导性能、量子点的精细能带结构、量子点的激子寿命等。
最后,考虑到QLED器件及相应显示技术未来将通过极具生产成本优势的溶液法例如喷墨打印法进行制备,因此量子点的材料设计和开发需要考虑量子点溶液的加工性能,例如量子点溶液或打印墨水的可分散溶解性、胶体稳定性、打印成膜性等。同时,量子点材料的开发还要与QLED器件其他功能层材料以及器件的整体制备工艺流程和要求作协同。
总之,传统的仅从提升量子点自身发光性能考虑出发的量子点结构设计是无法满足QLED器件及相应显示技术对于量子点材料在光学性能、电学性能、加工性能等多方面的综合要求的。需要针对QLED器件及相应显示技术的要求,对量子点发光材料的精细核壳结构、组分、能级等进行量身定制。
由于量子点的高表面原子比率,未与表面配体(Ligand)形成非共价键(Danglingbond)的原子将以表面缺陷态存在,这种表面缺陷态将会引起非辐射途径的跃迁从而使得量子点的发光量子产率大幅被降低。为解决这一问题,可以在原量子点外层表面生长包含另一种半导体材料的半导体壳层,形成量子点的核壳(core-shell)结构,可以显著改善量子点的发光性能,同时增加量子点的稳定性。
可应用于高性能QLED器件开发的量子点材料主要为具有核壳结构的量子点,其核和壳成分分别固定且核壳具有明确边界,例如具有CdSe/ZnS核壳结构的量子点 (J. Phys.Chem., 1996, 100 (2), 468–471)、具有CdSe/CdS核壳结构的量子点 (J. Am. Chem.Soc. 1997, 119, (30), 7019-7029)、具有CdS/ZnS核壳结构的量子点、具有CdS/CdSe/CdS核+多层壳层结构的量子点 (Patent US 7,919,012 B2)、具有CdSe/CdS/ZnS核+多层壳层结构的量子点 (J. Phys. Chem. B, 2004, 108 (49), 18826–18831)等。在这些核壳结构的量子点中,通常来说核和壳的组成成分是固定并且不同的,且一般是由一种阳离子和一种阴离子组成的二元化合物体系。在这种结构中,由于核和壳的生长是独立分别进行的,因此核和壳之间的边界是明确,即核和壳可以区分的。这种核壳结构量子点的开发提升了原先单一成分量子点的发光量子效率、单分散性以及量子点稳定性。
以上所述核壳结构的量子点虽然部分提高了量子点性能,但无论从设计思路还是从优化方案上均还是基于提升量子点自身的发光效率方面考虑,其发光性能还有待提高,另外也未综合考虑QLED器件对于量子点材料的其他方面特殊要求。
因而现有技术还有待改进和提高。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种正置顶发射QLED器件及其制备方法,通过采用具有量子阱能级结构的量子点材料实现高效稳定的QLED器件。
为了达到上述目的,本发明采取了以下技术方案:
一种正置顶发射QLED器件,包括依次叠层设置的衬底、反射阳极、空穴传输层、量子点发光层、电子传输层及透明阴极,其中,所述量子点发光层采用具有量子阱能级结构的量子点材料制备而成,所述量子点材料包括至少一个在径向方向上依次排布的量子点结构单元,所述量子点结构单元为径向方向上能级宽度变化的渐变合金组分结构或径向方向上能级宽度一致的均一组分结构。
所述的正置顶发射QLED器件中,还包括在所述反射阳极与空穴传输层之间设置的空穴注入层。
所述的正置顶发射QLED器件中,所述量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且在径向方向上相邻的量子点结构单元的能级是连续的。
所述的正置顶发射QLED器件中,所述量子点材料包括至少三个在径向方向上依次排布的量子点结构单元,其中,所述至少三个量子点单元中,位于中心和表面的量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;位于中心和表面的量子点结构单元之间的一个量子点结构单元为均一组分结构。
所述的正置顶发射QLED器件中,所述量子点材料包括两种类型的量子点结构单元,其中一种类型的量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,另一种类型的量子点结构单元为径向方向上越向外能级宽度越窄的渐变合金组分结构,所述两种类型的量子点结构单元沿径向方向依次交替分布,且在径向方向上相邻的量子点结构单元的能级是连续的。
所述的正置顶发射QLED器件中,所述量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且相邻的量子点结构单元的能级是不连续的。
所述的正置顶发射QLED器件中,所述量子点结构单元均为径向方向上越向外能级宽度越窄的渐变合金组分结构,且相邻的量子点结构单元的能级是不连续的。
所述的正置顶发射QLED器件中,所述量子点材料包括两种量子点结构单元,其中一种量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,另一种量子点结构单元为均一组分结构,所述量子点材料的内部包括一个或一个以上的渐变合金组分结构的量子点结构单元,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;所述量子点材料的外部包括一个或一个以上的均一组分结构的量子点结构单元。
所述的正置顶发射QLED器件中,所述量子点材料包括两种量子点结构单元,其中一种量子点结构单元为均一组分结构,另一种量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,所述量子点材料的内部包括一个或一个以上的均一组分结构的量子点结构单元,所述量子点材料的外部包括一个或一个以上的渐变合金组分结构的量子点结构单元,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的。
所述的正置顶发射QLED器件中,所述量子点结构单元为包含II族和VI族元素的渐变合金组分结构或均一合金组分结构。
所述的正置顶发射QLED器件中,所述量子点结构单元包括2-20层单原子层,或者所述量子点结构单元包含1-10层的晶胞层。
所述的正置顶发射QLED器件中,所述量子点材料的发光峰波长范围为400纳米至700纳米。
所述的正置顶发射QLED器件中,所述量子点材料的发光峰的半高峰宽为12纳米至80纳米。
所述的正置顶发射QLED器件中,所述量子点发光层的厚度为10-100nm。
所述的正置顶发射QLED器件中,所述反射阳极为铝电极或银电极,所述反射阳极的厚度为30-800nm。
所述的正置顶发射QLED器件中,所述透明阴极为ITO或薄层金属电极,所述ITO的厚度为20-300nm,所述薄层金属电极的厚度为5-50nm。
所述的正置顶发射QLED器件中,所述空穴注入层的材料为PEDOT:PSS、MoO3、VO2或WO3中的至少一种。
所述的正置顶发射QLED器件中,所述空穴注入层的厚度为10-150nm。
所述的正置顶发射QLED器件中,所述空穴传输层的材料为TFB、poly-TPD、PVK、NiO、MoO3、NPB、CBP中的至少一种。
所述的正置顶发射QLED器件中,所述空穴传输层的厚度为10-150nm。
所述的正置顶发射QLED器件中,所述电子传输层的材料为LiF、CsF、Cs2CO3、ZnO、Alq3中的至少一种。
所述的正置顶发射QLED器件中,其特征在于,所述电子传输层的厚度为10-150nm。
一种如上所述的正置顶发射QLED器件的制备方法,其特征在于,包括如下步骤:
A、提供一衬底,在所述衬底上形成反射阳极;
B、在所述反射阳极上依次沉积空穴传输层、量子点发光层及电子传输层;
C、在所述电子传输层上沉积一透明阴极,制得正置顶发射QLED器件。
所述的正置顶发射QLED器件的制备方法中,所述空穴传输层、量子点发光层及电子传输层通过溶液加工法或真空蒸镀法进行沉积。
相较于现有技术,本发明提供的正置顶发射QLED器件及其制备方法中,所述正置顶发射QLED器件包括依次叠层设置的衬底、反射阳极、空穴传输层、量子点发光层、电子传输层及透明阴极,其中,所述量子点发光层采用具有量子阱能级结构的量子点材料制备而成,所述量子点材料包括至少一个在径向方向上依次排布的量子点结构单元,所述量子点结构单元为径向方向上能级宽度变化的渐变合金组分结构或径向方向上能级宽度一致的均一组分结构,可实现具有高效电荷注入、高发光亮度、低驱动电源以及高器件效率等优异性能的高效QLED器件。
附图说明
图1 为本发明提供的正置顶发射QLED器件结构示意图。
图2 为本发明提供的正置顶发射QLED器件优选实施例的结构示意图。
图3 为本发明提供的正置顶发射QLED器件中量子点材料具体结构1的能级结构曲线。
图4 为本发明提供的正置顶发射QLED器件中量子点材料具体结构2的能级结构曲线。
图5 为本发明提供的正置顶发射QLED器件中量子点材料具体结构3的能级结构曲线。
图6 为本发明提供的正置顶发射QLED器件中量子点材料具体结构4的能级结构曲线。
图7 为本发明提供的正置顶发射QLED器件中量子点材料具体结构5的能级结构曲线。
图8 为本发明提供的正置顶发射QLED器件中量子点材料具体结构6的能级结构曲线。
图9 为本发明提供的正置顶发射QLED器件中量子点材料具体结构7的能级结构曲线。
图10 为本发明提供的正置顶发射QLED器件实施例33的结构示意图。
图11 为本发明提供的正置顶发射QLED器件的制备方法的流程图。
具体实施方式
鉴于现有技术中QLED器件性能有待提高等缺点,本发明的目的在于提供一种正置顶发射QLED器件及其制备方法,通过采用具有量子阱能级结构的量子点材料实现高效稳定的QLED器件。
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1,本发明提供的正置顶发射QLED器件包括依次叠层设置的衬底11、反射阳极12、空穴传输层14、量子点发光层15、电子传输层16及透明阴极17,其中,所述量子点发光层15采用具有量子阱能级结构的量子点材料制备而成,所述量子点材料包括至少一个在径向方向上依次排布的量子点结构单元,所述量子点结构单元为径向方向上能级宽度变化的渐变合金组分结构或径向方向上能级宽度一致的均一组分结构,所述每个量子点结构单元均包括2-20层单原子层。
也就是说本发明提供的正置顶发射QLED器件所采用的量子点材料中,每个量子点结构单元内部从内至外沿径向方向上任一位置上的一层单原子层或一层以上的单原子层范围内均为具有合金组分的结构。
进一步,在本发明中,所述量子点结构单元包含II族和VI族元素。所述II族元素包括但不限于Zn、Cd、Hg、Cn等;所述VI族元素包括但不限于O、S、Se、Te、Po、Lv等。具体地,每个量子点结构单元的合金组分组成为CdxZn1-xSeyS1-y,其中0≤x≤1, 0≤y≤1,并且x和y不同时为0和不同时为1。需说明的是上述情况是优选情况,对于渐变合金组分结构的量子点结构单元而言,其组分均为合金组分;而对于均一组分结构的量子点结构单元而言,其组分可以是合金组分,也可以是非合金组分,但本发明优选的是合金组分,即所述均一组分结构为均一合金组分结构,更优选的是,包含II族和VI族元素,本发明后续实施例均以均一合金组分结构为例进行说明,但显然,对于非合金的均一组分结构同样可以实施。
此处的径向方向是指从量子点材料的中心向外的方向,例如假设本发明的量子点材料为球形或类似球形结构,那么该径向方向即指沿半径的方向,量子点材料的中心(或内部)即指其物理结构的中心,量子点材料的表面(或外部)即指其物理结构的表面。通过采用所述具有渐变合金组分结构的量子点材料实现更加高效稳定的正置顶发射QLED器件。本实施例中,所述量子点发光层15的厚度优选为10-100nm。
本发明实施例中对衬底11的选择没有明确限制,可以采用硬质的玻璃基板,或者柔性的PET基板实现柔性器件的制备。
进一步地,请参阅图2,本发明优选实施例中在所述反射阳极12与空穴传输层14之间设置有空穴注入层13,通过加入空穴注入层13以提高空穴注入效率及迁移率,平衡空穴与电子之间的迁移率,使载流子发生辐射复合的几率大大增加,从而提高QLED发光亮度以及发光效率。
具体实施时,所述空穴注入层13的材料为PEDOT:PSS、MoO3、VO2或WO3,所述空穴注入层13的厚度为10-150nm,优选为30-50nm。
所述空穴传输层14的材料为TFB、poly-TPD、PVK、NiO、MoO3、NPB、CBP中的至少一种,还可采用铜,铁,铝,镍掺杂的氧化钼,氧化镍,氧化钨,氧化钒等,所述空穴传输层14的厚度为10-150nm。
所述电子传输层16的材料为LiF、CsF、Cs2CO3、ZnO、TiO2、WO3、SnO2、AlZnO、ZnSnO、InSnO等无机材料以及Alq3、TPBI(1,3,5-三(N-苯基苯并咪唑-2-基)苯)或TAZ(3-(4-联苯基)-4-苯基-5-叔-丁基苯基-1,2,4-三唑) 等有机材料中的至少一种,还可采用NDN1掺杂的NET5,OXD-7,以及铝,锂,镧,铟,钆,镁等掺杂的无机氧化物ZnO,TiO2等,所述电子传输层16的厚度为10-150nm。
优选地,本发明提供的正置顶发射QLED器件中,所述反射阳极12为铝电极或银电极,所述反射阳极12的厚度为30-800nm,优选为100-200nm,所述透明阴极17为ITO或薄层金属电极,所述ITO的厚度为20-300nm,所述薄层金属电极的厚度为5-50nm,当然,所述ITO还可采用其他透明导电薄膜如AZO、IZO等。
下面对本发明量子点材料存在的结构做详细的说明:
具体地,如图3所示,本发明提供了一种具有漏斗型能级结构的量子点材料,位于所述量子点材料内部的量子点结构单元合金组成成分对应能级宽度小于位于外部的量子点结构单元合金组成成分对应能级宽度;具体地说,本发明提供的量子点材料包括至少一个在径向方向上依次排布的量子点结构单元,所述量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;后续实施例中将图3所示量子点材料的结构称为具体结构1。图3中的量子点材料,各个相邻的量子点结构单元的能级宽度具有连续结构,即各个相邻的量子点结构单元的能级宽度具有连续变化的特点,而非突变结构,也就是说量子点的合成组分也是具有连续性,后续的连续结构原理相同。
进一步,在径向方向上相邻的量子点结构单元中,靠近中心的量子点结构单元的能级宽度小于远离中心的量子点结构单元的能级宽度;也就是说,所述的量子点材料中,从中心到表面的能级宽度是逐渐变宽的,从而形成开口逐渐变大的漏斗型结构,其中的开口逐渐变大是指如图3所示的能级结构中,从量子点材料中心到量子点材料表面的能级是连续的。同时,本发明中的量子点材料,各个相邻的量子点结构单元的能级是连续的,也就是说量子点的合成组分也具有连续变化的特性,这种特性更有利于实现高的发光效率。
也就是说,所述的量子点材料的具体结构1是具有从内到外沿径向方向的连续渐变合金组分的量子点结构;这种量子点结构在组成成分上具有从内到外沿径向方向连续变化的特点;相应的,在能级分布上也上具有从内到外沿径向方向连续变化的特点;这种量子点结构在组成成分上和能级分布上连续变化的特点,相对于具有明确边界的量子点核和壳的关系,本发明的量子点材料不仅有利于实现更高效的发光效率,同时也更能满足半导体器件及相应显示技术对量子点材料的综合性能要求,是一种适合半导体器件及显示技术的理想量子点发光材料。
进一步,如图3所提供的量子点材料中,A点的合金组分为Cdx0 AZn1-x0 ASey0 AS1-y0 A,B点的合金组分为Cdx0 BZn1-x0 BSey0 BS1-y0 B,其中A点相对于B点更靠近量子点材料中心,且A点和B点的组成满足:x0 Ax0 By0 Ay0 B。也就是说,对于量子点材料中的任意两点A点和B点,且A点相对于B点更靠近量子点材料中心,那么x0 Ax0 By0 Ay0 B,即A点的Cd含量大于B点的Cd含量,A点的Zn含量小于B点的Zn含量,A点的Se含量大于B点的Se含量,A点的S含量小于B点的S含量。这样,在该量子点材料中,就在径向方向上形成了渐变结构,并且由于在径向方向上,越向外(即远离量子点材料中心)则Cd和Se含量越低,Zn和S含量越高,那么根据这几种元素的特性,其能级宽度将会越宽。
后续不同具体结构的量子点材料中,若量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,则其合金组分均优选为Cdx0Zn1-x0Sey0S1-y0,其中,A点的合金组分为Cdx0 AZn1-x0 ASey0 AS1-y0 A,B点的合金组分为Cdx0 BZn1-x0 BSey0 BS1-y0 B,其中A点相对于B点更靠近量子点材料中心,且A点和B点的组成满足:x0 A>x0 By0 A >y0 B。若量子点结构单元为径向方向上越向外能级宽度越窄的渐变合金组分结构,则其合金组分均优选为Cdx0Zn1-x0Sey0S1-y0,其中,C点的合金组分为Cdx0 CZn1-x0 CSey0 CS1-y0 C,D点的合金组分为Cdx0 DZn1-x0 DSey0 DS1-y0 D,其中C点相对于D点更靠近量子点材料中心,且C点和D点的组成满足:x0 Cx0 Dy0 Cy0 D。若量子点结构单元为均一合金组分结构(即径向方向上能级宽度一致),则其合金组分均优选为Cdx0Zn1-x0Sey0S1-y0,其中,E点的合金组分为Cdx0 EZn1-x0 ESey0 ES1-y0 E,F点的合金组分为Cdx0 FZn1-x0 FSey0 FS1-y0 F,其中E点相对于F点更靠近量子点材料中心,且E点和F点的组成满足:x0 E=x0 Fy0 E=y0 F
进一步,如图4所示,本发明还提供一种具有内部合金组成成分对应能级宽度不大于外部合金组成成分对应能级宽度、且量子点结构最中心和最外部区域之间含有至少一层均一合金组分结构的量子点结构单元的量子点材料;也就是说,本发明提供的量子点材料包括至少三个在径向方向上依次排布的量子点结构单元,其中,所述至少三个量子点结构单元中,位于中心和表面的量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的,位于中心和表面的量子点结构单元之间的一个量子点结构单元为均一合金组分结构。后续实施例中将图4所示量子点材料的结构称为具体结构2。
具体地,如图4提供的量子点材料中,所述位于中心和表面的量子点结构单元之间的一层均一合金组分结构的量子点结构单元上,任一点的合金组分为Cdx1Zn1-x1Sey1S1-y1,其中0≤x1≤1,0≤y1≤1,并且x1和y1不同时为0和不同时为1,且x1和y1为固定值。例如某一点的合金组分为Cd0.5Zn0.5Se0.5S0.5,而径向方向上另一点的合金组分也应为Cd0.5Zn0.5Se0.5S0.5;又例如某一均一合金组分结构的量子点结构单元内某一点的均一组分为Cd0.7Zn0.3S,而该量子点结构单元内另一点的合金组分也应为Cd0.7Zn0.3S;又例如某一均一合金组分结构的量子点结构单元内某一点的均一组分为CdSe,而该量子点结构单元内另一点的合金组分也应为CdSe。
进一步,如图4提供的量子点材料中,位于中心和表面的量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;即在所述具有渐变合金组分结构的量子点结构单元中,沿径向方向上任一点的合金组成成分对应的能级宽度均要大于相邻的且更靠近量子点结构中心另一点的合金组成成分对应的能级宽度。所述具有渐变合金组分结构的量子点结构单元中的合金组分组成为Cdx2Zn1-x2Sey2S1-y2,其中0≤x2≤1,0≤y2≤1,并且x2和y2不同时为0和不同时为1。例如某一点的合金组分为Cd0.5Zn0.5Se0.5S0.5,而另一点的合金组分为Cd0.3Zn0.7Se0.4S0.6
进一步,如图5所示,本发明还提供一种具有量子阱结构的全渐变合金组分的量子点材料;也就是说,本发明提供的量子点材料包括两种类型的量子点结构单元(A1类型和A2类型),其中A1类型的量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,A2类型的量子点结构单元为径向方向上越向外能级宽度越窄的渐变合金组分结构,所述两种量子点结构单元沿径向方向依次交替分布,且在径向方向上相邻的量子点结构单元的能级是连续的。也就是说,所述量子点材料的量子点结构单元分布可以是:A1、A2、A1、A2、A1…,也可以是A2、A1、A2、A1、A2…,即起始的量子点结构单元可以是A1类型,也可以是A2类型。在A1类型的量子点结构单元中,其能级宽度是越向外越宽,在A2类型的量子点结构单元中,其能级宽度是越向外越窄,这两种能级结构均犹如波浪线的形式在径向方向上延伸,后续实施例中将图5所示量子点材料的结构称为具体结构3。
进一步,如图6所示,本发明还提供一种具有能级突变的量子阱结构的合金组分的量子点材料,具体地,所述量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且相邻的量子点结构单元的能级是不连续的,即各个相邻的量子点结构单元的能级宽度具有非连续变化的特点,即突变特点,也就是说量子点的合金组分也是具有突变性,后续的突变结构原理相同;后续实施例中将图6所示量子点材料的结构称为具体结构4。
具体地,图6所述的量子点材料,是由多个量子点结构单元通过突变的方式依次排布构成,这些量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构。进一步,所述量子点材料中,靠近中心的量子点结构单元的能级宽度小于远离中心的量子点结构单元的能级宽度。也就是说,所述的量子点材料中,从中心到表面的能级宽度是逐渐变宽的,从而形成间断的开口逐渐变大的漏斗型结构,当然,所述的量子点材料中,也并不限于上述方式,即远离中心的量子点结构单元的能级宽度也可以小于靠近中心的量子点结构单元的能级宽度,这种结构中,相邻的量子点结构单元的能级宽度有交错重叠的地方。
进一步,如图7所示,本发明还提供另一种具有能级突变的量子阱结构的合金组分的量子点材料,具体地,所述量子点结构单元均为径向方向上越向外能级宽度越窄的渐变合金组分结构,且相邻的量子点结构单元的能级是不连续的,即各个相邻的量子点结构单元的能级宽度具有非连续变化的特点,即突变特点,也就是说量子点的合金组分也是具有突变性,后续的突变结构原理相同;后续实施例中将图7所示量子点材料的结构称为具体结构5。
具体地,图7所述的量子点材料,是由多个量子点结构单元通过突变的方式依次排布构成,这些量子点结构单元均为径向方向上越向外能级宽度越窄的渐变合金组分结构。进一步,所述量子点材料中,靠近中心的量子点结构单元的能级宽度大于远离中心的量子点结构单元的能级宽度。也就是说,所述的量子点材料中,从中心到表面的能级宽度是逐渐变窄的,从而形成间断的开口逐渐变小的漏斗型结构,当然,所述的量子点材料中,也并不限于上述方式,即远离中心的量子点结构单元的能级宽度也可以大于靠近中心的量子点结构单元的能级宽度,这种结构中,相邻的量子点结构单元的能级宽度有交错重叠的地方。
进一步,如图8所示,本发明还提供一种量子点材料,位于所述量子点材料内部的合金组成成分的能级宽度由中心到外部逐渐变大,且量子点结构最外部区域为均一合金组分;具体地,所述量子点材料包括两种量子点结构单元(A3类型和A4类型),其中,A3类型的量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,A4类型的量子点结构单元为均一合金组分结构,所述量子点材料的内部包括一个或一个以上的渐变合金组分结构的量子点结构单元,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;所述量子点材料的外部包括一个或一个以上的均一合金组分结构的量子点结构单元;后续实施例中将图8所示量子点材料的结构称为具体结构6。
具体地,如图8所示的量子点材料中,其量子点结构单元的分布为A3…A3A4…A4,即所述量子点材料的内部是由A3类型的量子点结构单元组成,所述量子点材料的外部是由A4类型的量子点结构单元组成,且A3类型的量子点结构单元的数量和A4类型的量子点结构单元的数量均大于等于1。
进一步,如图9所示,本发明还提供另一种量子点材料,位于所述量子点材料内部的合金组成成分的能级宽度为均一的,位于所述量子点外部的合金组成成分的能级宽度由中心到外部为逐渐变大;具体地,所述量子点材料包括两种量子点结构单元(A5类型和A6类型),其中,A5类型的量子点结构单元为均一合金组分结构,A6类型的量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,所述量子点材料的内部包括一个或一个以上的均一合金组分结构的量子点结构单元,所述量子点材料的外部包括一个或一个以上的渐变合金组分结构的量子点结构单元,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;后续实施例中将图9所示量子点材料的结构称为具体结构7。
具体地,如图9所示的量子点材料中,其单原子层的分布为A5…A5A6…A6,即所述量子点材料的内部是由A5类型的量子点结构单元组成,所述量子点材料的外部是由A6类型的量子点结构单元组成,且A5类型的量子点结构单元的数量和A6类型的量子点结构单元的数量均大于等于1。
进一步,本发明所提供的量子点结构单元包括2-20层的单原子层。优选的,所述量子点结构单元包括2-5个单原子层,优选的层数能够保证量子点实现良好的发光量子产率以及高效的电荷注入效率。
进一步,所述量子点发光单元包括1-10层晶胞层,优选2-5层晶胞层;所述晶胞层为最小结构单元,即每一层的晶胞层其合金组分均是固定的,即每一晶胞层内具有相同晶格参数和元素,每一量子点结构单元均为晶胞层连接而构成的封闭晶胞曲面,相邻晶胞层之间的能级宽度具有连续结构或者突变结构。
本发明采用上述结构的量子点材料,能够实现的发光量子产率范围为1%至100%,优选的发光量子产率范围为30%至100%,优选的发光量子产率范围内能够保证量子点的良好应用性。
其中,所述量子点材料的发光峰波长范围为400纳米至700纳米。
本发明采用上述结构的量子点材料,能够实现的发光峰波长范围为400纳米至700纳米,优选的发光峰波长范围为430纳米至660纳米,优选的量子点发光峰波长范围能够保证量子点材料在此范围内实现大于30%的发光量子产率。
进一步,在本发明中,所述量子点材料的发光峰的半高峰宽为12纳米至80纳米。
本发明所采用的量子点材料具有如下有益效果:第一,有助于最大程度上减少不同合金组分的量子点晶体间的晶格张力并缓解晶格失配,从而减少了界面缺陷的形成,提高了量子点的发光效率。第二,本发明所提供的量子点材料所形成的能级结构更有利于对量子点中电子云的有效束缚,大大减少电子云向量子点表面的扩散几率,从而极大地抑制了量子点无辐射跃迁的俄歇复合损失,减少量子点闪烁并提高量子点发光效率。第三,本发明所提供的量子点材料所形成的能级结构更有利于提高 QLED器件中量子点发光层电荷的注入效率和传输效率;同时能够有效避免电荷的聚集以及由此产生的激子淬灭。第四,本发明所提供的量子点材料所形成的易于控制的多样性能级结构能够充分满足并配合器件中其他功能层的能级结构,以实现器件整体能级结构的匹配,从而有助于实现高效的QLED器件。
本发明还提供一种如上所述的量子点材料的制备方法,其中,包括步骤:
在预定位置处合成第一种化合物;
在第一种化合物的表面合成第二种化合物,所述第一种化合物与所述第二种化合物的合金组分相同或者不同;
使第一种化合物和第二种化合物体之间发生阳离子交换反应形成量子点材料,所述量子点的发光峰波长出现蓝移、红移和不变中的一种或多种。
本发明的制备方法将量子点SILAR合成法结合量子点一步合成法生成量子点,具体为利用量子点SILAR合成法精确控制量子点逐层生长以及利用量子点一步合成法形成渐变组分过渡壳。即在预定位置处先后形成两层具有相同或者不同合金组分的化合物薄层,通过使两层化合物之间发生阳离子交换反应,从而实现在预定位置处的合金组分分布。重复以上过程可以不断实现在径向方向预定位置处的合金组分分布。
所述的第一种化合物和第二种化合物可以是二元或者二元以上化合物。
进一步,当所述量子点的发光峰波长出现蓝移时,说明发光峰向短波方向移动,能级宽度变宽;当所述量子点的发光峰波长出现红移时,代表发光峰向长波方向移动,能级宽度变窄;当所述量子点的发光峰波长不变时,说明能级宽度不变。
所述第一种化合物和/或所述第二种化合物的阳离子前驱体包括:Zn的前驱体,所述Zn的前驱体为二甲基锌(dimethyl Zinc)、二乙基锌(diethyl Zinc)、醋酸锌(Zincacetate)、乙酰丙酮锌(Zinc acetylacetonate)、碘化锌(Zinc iodide)、溴化锌(Zincbromide)、氯化锌(Zinc chloride)、氟化锌(Zinc fluoride)、碳酸锌(Zinc carbonate)、氰化锌(Zinc cyanide)、硝酸锌(Zinc nitrate)、氧化锌(Zinc oxide)、过氧化锌(Zincperoxide)、高氯酸锌(Zinc perchlorate)、硫酸锌(Zinc sulfate)、油酸锌(Zinc oleate)或硬脂酸锌(Zinc stearate)等中的至少一种,但不限于此。
所述第一种化合物和/或所述第二种化合物的阳离子前驱体包括Cd的前驱体,所述Cd的前驱体为二甲基镉(dimethyl cadmium)、二乙基镉(diethyl cadmium)、醋酸镉(cadmium acetate)、乙酰丙酮镉(cadmium acetylacetonate)、碘化镉(cadmium iodide)、溴化镉(cadmium bromide)、氯化镉(cadmium chloride)、氟化镉(cadmium fluoride)、碳酸镉(cadmium carbonate)、硝酸镉(cadmium nitrate)、氧化镉(cadmium oxide)、高氯酸镉(cadmium perchlorate)、磷酸镉(cadmium phosphide)、硫酸镉(cadmium sulfate)、油酸镉(cadmium oleate)或硬脂酸镉(cadmium stearate)等中的至少一种,但不限于此。
所述第一种化.合物和/或所述第二种化合物的阴离子前驱体包括Se的前驱体,例如Se与一些有机物任意组合所形成的化合物,具体是Se-TOP (selenium-trioctylphosphine)、Se-TBP (selenium-tributylphosphine)、Se-TPP (selenium-triphenylphosphine)、Se-ODE (selenium-1-octadecene)、Se-OA (selenium-oleicacid)、Se-ODA (selenium-octadecylamine)、Se-TOA (selenium-trioctylamine)、Se-ODPA (selenium-octadecylphosphonic acid)或Se-OLA (selenium-oleylamine)等中的至少一种,但不限于此。
所述第一种化合物和/或所述第二种化合物的阴离子前驱体包括S的前驱体,例如S与一些有机物任意组合所形成的化合物,具体是S-TOP(sulfur-trioctylphosphine,)、S-TBP(sulfur-tributylphosphine) 、S-TPP(sulfur-triphenylphosphine)、S-ODE(sulfur-1-octadecene) 、S-OA (sulfur-oleic acid)、S-ODA(sulfur-octadecylamine)、S-TOA(sulfur-trioctylamine) 、S-ODPA(sulfur-octadecylphosphonic acid)或S-OLA(sulfur-oleylamine)等中的至少一种,但不限于此;所述S的前驱体为烷基硫醇(alkylthiol),所述烷基硫醇是己硫醇(hexanethiol)、辛硫醇(octanethiol)、癸硫醇(decanethiol)、十二烷基硫醇(dodecanethiol)、十六烷基硫醇(hexadecanethiol) or 巯丙基硅烷(mercaptopropylsilane)等中的至少一种,但不限于此。
所述第一种化合物和/或所述第二种化合物的阴离子前驱体还包括Te的前驱体,所述Te的前驱体为Te-TOP、Te-TBP、Te-TPP、Te-ODE、Te-OA、Te-ODA、Te-TOA、Te-ODPA或Te-OLA中的至少一种。
在本发明的制备方法中,发生阳离子交换反应的条件是进行加热反应,例如加热温度在100℃至400℃之间,优选的加热温度为150℃至380℃之间。加热时间在2s至24h之间,优选的加热时间为5min至4h之间。
上述阳离子前躯体和阴离子前驱体可以根据最终的纳米晶体组成来确定选择其中的一种或几种:例如需要合成CdxZn1-xSeyS1-y的纳米晶体时,则需要Cd的前驱体、Zn的前驱体、Se的前驱体、S的前驱体;如需要合成CdxZn1-xS的纳米晶体时,则需要Cd的前驱体、Zn的前驱体、S的前驱体;如需要合成CdxZn1-xSe的纳米晶体时,则需要Cd的前驱体、Zn的前驱体、Se的前驱体。
加热温度越高,阳离子交换反应的速率越快,阳离子交换的厚度范围和交换程度也越大,但厚度和程度范围会逐渐达到相对饱和的程度;类似的,加热时间越长,阳离子交换的厚度范围和交换程度也越大,但厚度和程度范围也会逐渐达到相对饱和的程度。阳离子交换的厚度范围和程度直接决定了所形成的渐变合金组分分布。阳离子交换所形成的渐变合金组分分布同时也由各自所形成的二元或者多元化合物纳米晶体的厚度所决定。
在形成各层化合物时,阳离子前驱体与阴离子前驱体的摩尔比可以为100:1到1:50(具体为阳离子与阴离子的摩尔投料比),例如在形成第一层化合物时,阳离子前驱体与阴离子前驱体的摩尔比为100:1到1:50;在形成第二层化合物时,阳离子前驱体与阴离子前驱体的摩尔比为100:1到1:50,优选的比例为20:1到1:10,优选的阳离子前驱体与阴离子前驱体的摩尔比例可以保证反应速率在易于控制的范围内。
通过上述制备方法所制备的量子点材料,其发光峰波长范围为400纳米至700纳米,优选的发光峰波长范围为430纳米至660纳米,优选的量子点发光峰波长范围能够保证量子点在此范围内实现大于30%的发光量子产率。
以上制备方法所制备的量子点材料,发光量子产率范围为1%至100%,优选的发光量子产率范围为30%至100%,优选的发光量子产率范围内能够保证量子点的良好应用性。
进一步,在本发明中,所述量子点材料的发光峰的半高峰宽为12纳米至80纳米。
除了按照上述制备方法制备本发明的量子点材料之外,本发明还提供另外一种如上所述的量子点材料的制备方法,其包括步骤:
在径向方向上预定位置处加入一种或一种以上阳离子前驱体;在一定条件下同时加入一种或一种以上的阴离子前驱体,使阳离子前驱体与阴离子前驱体进行反应形成量子点材料,并且所述量子点材料的发光峰波长在反应过程中出现蓝移、红移和不变中的一种或几种,从而实现在预定位置处的合金组分分布。
对于此种方发法与前一种方法的不同在于,前一种是先后形成两层化合物,然后发生阳离子交换反应,从而实现本发明所需合金组分分布,而后一种方法是直接控制在预定位置处加入所需合成合金组分的阳离子前驱体和阴离子前驱体,进行反应形成量子点材料,从而实现本发明所需合金组分分布。对于后一种方法,反应原理是反应活性高的阳离子前驱体和阴离子前驱体先发生反应,反应活性低的阳离子前驱体和阴离子前驱体后发生反应,并且在反应过程中,不同的阳离子发生阳离子交换反应,从而实现本发明所需合金组分分布。至于阳离子前驱体与阴离子前驱体的种类在前述方法中已有详述。至于反应温度、反应时间和配比等可根据具体所需合成的量子点材料不同而有所不同,其与前述的前一种方法大体相同,后续以具体实施例进行说明。
以下举具体实施例对本发明提供的正置顶发射QLED器件及其采用的量子点材料进行进一步说明。
实施例1:基于CdZnSeS/CdZnSeS量子点的制备
先将阳离子Cd的前驱体、阳离子Zn的前驱体、阴离子Se的前驱体和阴离子S的前驱体注入到反应体系中,形成CdyZn1-ySebS1-b层(其中0≤y≤1,0≤b≤1);继续将阳离子Cd的前驱体、阳离子Zn的前驱体、阴离子Se的前驱体和阴离子S的前驱体注入到反应体系中,在上述CdyZn1-ySebS1-b层表面形成CdzZn1-zSecS1-c层(其中0≤z≤1,且z不等于y,0≤c≤1);在一定的加热温度和加热时间等反应条件下,发生内外层纳米晶体(即上述两层化合物)中Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdyZn1-ySebS1-b层与CdzZn1-zSecS1-c层的界面附近形成Cd含量和Zn含量的渐变合金组分分布,即CdxZn1-xSeaS1-a,其中0≤x≤1,0≤a≤1。
实施例2:基于CdZnS/CdZnS量子点的制备
先将阳离子Cd的前驱体、阳离子Zn的前驱体以及阴离子S的前驱体注入到反应体系中,先形成CdyZn1-yS层(其中0≤y≤1);继续将阳离子Cd的前驱体、阳离子Zn的前驱体以及阴离子S的前驱体注入到反应体系中,会在上述CdyZn1-yS层表面形成CdzZn1-zS层(其中0≤z≤1,且z不等于y);在一定的加热温度和加热时间等反应条件下,发生内外层纳米晶体(即上述两层化合物)中Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdyZn1-yS层与CdzZn1-zS层的界面附近形成Cd含量和Zn含量的渐变合金组分分布,即CdxZn1-xS,其中0≤x≤1。
实施例3:基于CdZnSe/CdZnSe量子点的制备
先将阳离子Cd的前驱体、阳离子Zn的前驱体以及阴离子Se的前驱体注入到反应体系中先形成CdyZn1-ySe层(其中0≤y≤1);继续将阳离子Cd的前驱体、阳离子Zn的前驱体以及阴离子Se的前驱体注入到反应体系中,会在上述CdyZn1-ySe层表面形成CdzZn1-zSe层(其中0≤z≤1,且z不等于y);在一定的加热温度和加热时间等反应条件下,发生内外层纳米晶体中Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdyZn1-ySe层与CdzZn1-zSe层的界面附近形成Cd含量和Zn含量的渐变合金组分分布,即CdxZn1-xSe,其中0≤x≤1。
实施例4:基于CdS/ZnS量子点的制备
先将阳离子Cd的前驱体和阴离子S的前驱体注入到反应体系中,先形成CdS层;继续将阳离子Zn的前驱体和阴离子S的前驱体注入到反应体系中,会在上述CdS层表面形成ZnS层;在一定的加热温度和加热时间等反应条件下,外层的Zn阳离子会逐渐向内层迁移,并与Cd阳离子发生阳离子交换反应,即Cd离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdS层与ZnS层的界面附近形成Cd含量沿着径向向外逐渐减少、Zn含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1-xS,其中0≤x≤1且x自内向外(径向方向)从1单调递减为0。
实施例5:基于CdSe/ZnSe量子点的制备
先将阳离子Cd的前驱体和阴离子Se的前驱体注入到反应体系中先形成CdSe层;继续将阳离子Zn的前驱体和阴离子Se的前驱体注入到反应体系中,会在上述CdSe层表面形成ZnSe层;在一定的加热温度和加热时间等反应条件下,外层的Zn阳离子会逐渐向内层迁移,并与Cd阳离子发生阳离子交换反应,即Cd离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdSe层与ZnSe层的界面附近形成Cd含量沿着径向向外逐渐减少、Zn含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1-xSe,其中0≤x≤1且x自内向外(径向方向)从1单调递减为0。
实施例6:基于CdSeS/ZnSeS量子点的制备
先将阳离子Cd的前驱体、阴离子Se的前驱体以及阴离子S的前驱体注入到反应体系中先形成CdSebS1-b层(其中0≤b≤1);继续将阳离子Zn的前驱体、阴离子Se的前驱体以及阴离子S的前驱体注入到反应体系中,会在上述CdSebS1-b层表面形成ZnSecS1-c层(其中0≤c≤1);在一定的加热温度和加热时间等反应条件下,外层的Zn阳离子会逐渐向内层迁移,并与Cd阳离子发生阳离子交换反应,即Cd离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在CdSebS1-b层与ZnSecS1-c层的界面附近形成Cd含量沿着径向向外逐渐减少、Zn含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1-xSeaS1-a,其中0≤x≤1且x自内向外(径向方向)从1单调递减为0,0≤a≤1。
实施例7:基于ZnS/CdS量子点的制备
先将阳离子Zn的前驱体和阴离子S的前驱体注入到反应体系中先形成ZnS层;继续将阳离子Cd的前驱体和阴离子S的前驱体注入到反应体系中,会在上述ZnS层表面形成CdS层;在一定的加热温度和加热时间等反应条件下,外层的Cd阳离子会逐渐向内层迁移,并与Zn阳离子发生阳离子交换反应,即Zn离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在ZnS层与CdS层的界面附近形成Zn含量沿着径向向外逐渐减少、Cd含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1-xS,其中0≤x≤1且x自内向外(径向方向)从0单调递增为1。
实施例8:基于ZnSe/CdSe量子点的制备
先将阳离子Zn的前驱体和阴离子Se的前驱体注入到反应体系中先形成ZnSe层;继续将阳离子Cd的前驱体和阴离子Se的前驱体注入到反应体系中,会在上述ZnSe层表面形成CdSe层;在一定的加热温度和加热时间等反应条件下,外层的Cd阳离子会逐渐向内层迁移,并与Zn阳离子发生阳离子交换反应,即Zn离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在ZnSe层与CdSe层的界面附近形成Zn含量沿着径向向外逐渐减少、Cd含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1-xSe,其中0≤x≤1且x自内向外(径向方向)从0单调递增为1。
实施例9:基于ZnSeS/CdSeS量子点的制备
先将阳离子Zn的前驱体、阴离子Se的前驱体以及阴离子S的前驱体注入到反应体系中先形成ZnSebS1-b层(其中0≤b≤1);继续将阳离子Cd的前驱体、阴离子Se的前驱体以及阴离子S的前驱体注入到反应体系中,会在上述ZnSebS1-b层表面形成CdSecS1-c层(其中0≤c≤1);在一定的加热温度和加热时间等反应条件下,外层的Cd阳离子会逐渐向内层迁移,并与Zn阳离子发生阳离子交换反应,即Zn离子向外层迁移,发生了Cd与Zn离子的互换;由于阳离子的迁移距离有限且越远的迁移距离发生迁移的机率就越小,因此会在ZnSebS1-b层与CdSecS1-c层的界面附近形成Zn含量沿着径向向外逐渐减少、Cd含量沿着径向向外逐渐增加的渐变合金组分分布,即CdxZn1-xSeaS1-a,其中0≤x≤1且x自内向外从0单调递增为1,0≤a≤1。
实施例10:具有具体结构1的蓝色量子点的制备
油酸镉和油酸锌前驱体制备:将1 mmol氧化镉(CdO),9 mmol乙酸锌[Zn(acet)2],8 mL油酸(Oleic acid),和15 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硫粉(Sulfur powder)溶解在3 mL的十八烯(1-Octadecene)中,得到硫十八烯前驱体。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6 mmol氧化镉(CdO),0.6 mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,反应10 min后,将硫化三辛基膦前驱体和油酸镉前驱体分别以3 mL/h和10 mL/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,然后离心提纯,得到具有具体结构1的蓝色量子点(CdxZn1- xS)。
实施例11:具有具体结构1的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将0.4 mmol氧化镉(CdO),8 mmol乙酸锌[Zn(acet)2],10 mL油酸(Oleic acid)置于100 mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硒粉(Selenium powder),4 mmol硫粉(Sulfur powder)溶解在4 mL的三辛基膦(Trio ctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体。
将2 mmol硫粉(Sulfur powder)溶解在2 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦-硫化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1-xSeyS1-y,反应10 min后,将2mL的硫化三辛基膦前驱体以8 mL/h的速率逐滴加入到反应体系中,直至前驱体注入完。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构1的绿色量子点(CdxZn1-xSeyS1-y/CdzZn1-zS),此处“/”的前面代表所制备的绿色量子点的内部的组成,“/”的后面则代表所制备的绿色量子点外部的组成,并且“/”代表的并不是明显的界限,而是从内到外渐变的结构,后续出现的这种量子点表示方法含义相同。
实施例12:具有具体结构1的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8 mmol氧化镉(CdO),12 mmol乙酸锌[Zn(acet)2],14 mL油酸(Oleic acid)置于100 mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硒粉(Selenium powder)在4 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.2 mmol硒粉(Selenium powder),0.6 mmol硫粉(Sulfur powder)溶解在2 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1-xSe,反应10 min后,将2mL的硒化三辛基膦-硫化三辛基膦前驱体以4 mL/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构1的红色荧光量子点(CdxZn1-xSeyS1-y/CdzZn1-zS)。
实施例13:油酸镉注入速率对具有具体结构1的蓝色量子点合成的影响
在实施例10的基础上,通过调节油酸镉的注入速率可以调控量子点组分的梯度变化的斜率,从而影响其能级结构,最终实现对量子点发光波长的调控。
油酸镉和油酸锌前驱体制备:将1 mmol氧化镉(CdO),9 mmol乙酸锌[Zn(acet)2],8 mL油酸(Oleic acid),和15 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硫粉(Sulfur powder)溶解在3 mL的十八烯(1-Octadecene)中,得到硫十八烯前驱体。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6 mmol氧化镉(CdO),0.6 mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1-xS,反应10 min后,将硫化三辛基膦前驱体以3 mL/h速率逐滴加入到反应体系中,同时将油酸镉前驱体以不同的注入速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有能级结构1的蓝色量子点(CdxZn1-xS/CdyZn1-yS)。
基于相同的量子点中心(合金量子点发光峰447nm)及不同油酸镉前驱体的注入速率下,量子点发光波长调控的列表如下:
Figure DEST_PATH_IMAGE001
实施例14:油酸镉注入量对具有具体结构1的蓝色量子点合成的影响
在实施例10和实施例13的基础上,通过调节油酸镉前驱体的注入量,可以调控量子点的成分的梯度变化的区间,从而影响其能级结构的变化,最终实现对量子点发光波长的调控。基于相同的量子点中心(合金量子点发光峰447nm)及不同油酸镉前驱体的注入量(相同注入速率下1 mmol/h)速率下,量子点发光波长调控的列表如下。
Figure DEST_PATH_IMAGE002
实施例15:具有具体结构2的蓝色量子点的制备
油酸镉和油酸锌前驱体制备:将1 mmol氧化镉(CdO),9 mmol乙酸锌[Zn(acet)2],8 mL油酸(Oleic acid)和15 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硫粉(Sulfur powder)溶解在3 mL的十八烯(1-Octadecene)中,得到硫十八烯前驱体。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6 mmol氧化镉(CdO),0.6 mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1-xS,反应10 min后,将反应体系温度降至280℃,接着将2mL的硫化三辛基膦前驱体和6mL油酸镉前驱体分别以3 mL/h和10mL/h的速率同时注入到反应体系中。注入40 min后,将反应体系温度升温至310℃,将1mL硫化三辛基膦前驱体以3 mL/h的速率注入到反应体系中,反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具体结构2的蓝色量子点。
实施例16:具有具体结构2的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将0.4 mmol氧化镉(CdO),8 mmol乙酸锌[Zn(acet)2],10 mL油酸(Oleic acid)和20 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硒粉(Selenium powder),4 mmol硫粉(Sulfur powder)溶解在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体。
将2mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6 mmol氧化镉(CdO),0.6 mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦-硫化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1-xSeyS1-y,反应10 min后,将反应体系温度降至280℃,接着将1.2mL的硫化三辛基膦前驱体和6mL油酸镉前驱体分别以2 mL/h和10mL/h的速率注入到反应体系中,直至前驱体注入完。将反应体系温度升温至310℃,将0.8mL硫化三辛基膦前驱体以2 mL/h的速率注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构2的绿色量子点。
实施例17:具有具体结构2的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8 mmol氧化镉(CdO),12 mmol乙酸锌[Zn(acet)2],14 mL油酸(Oleic acid)和20 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硒粉(Selenium powder)在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.2 mmol硒粉(Selenium powder),0.6 mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体。
将0.3 mmol氧化镉(CdO),0.3mL油酸(Oleic acid)和2.7 mL十八烯(1-Octadecene)置于50 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1-xSe,反应10 min后,将反应体系温度降至280℃,接着将1mL硒化三辛基膦-硫化三辛基膦前驱体和3mL油酸镉前驱体分别以2 mL/h和6 mL/h的速率注入到反应体系中。将反应体系温度升温至310℃,将1mL硒化三辛基膦-硫化三辛基膦前驱体以4 mL/h的速率注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构2的红色量子点。
实施例18:具有具体结构3的蓝色量子点的制备
油酸镉和油酸锌前驱体制备:将1 mmol氧化镉(CdO),9 mmol乙酸锌[Zn(acet)2],8 mL油酸(Oleic acid),和15 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硫粉(Sulfur powder)溶解在3 mL的十八烯(1-Octadecene)中,得到硫十八烯前驱体。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.2 mmol硒粉(Selenium powder)溶解在1 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.6 mmol氧化镉(CdO),0.6 mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1-xS,反应10 min后,将油酸镉前驱体和硫化三辛基膦前驱体分别以0.6 mmol/h、4 mmol/h的速率连续注入20 min到反应体系中。随后将油酸镉前驱体、硫化三辛基膦前驱体和硒化三辛基膦前驱体分别以0.4 mmol/h、0.6 mmol/h和0.2 mmol/h的速率连续注入1 h到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构(具体结构3)的蓝色量子点(CdZnS/CdZnS/CdZnSeS3)。
实施例19:具有具体结构3的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将0.4 mmol氧化镉(CdO),6 mmol乙酸锌[Zn(acet)2],10 mL油酸(Oleic acid)和20 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将0.4 mmol硒粉(Selenium powder),4 mmol硫粉(Sulfur powder)溶解在4 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体1。
将0.1 mmol硒粉(Selenium powder),0.3 mmol硫粉(Sulfur powder)溶解在2 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体2。
将0.8 mmol硫粉(Sulfur powder),0.8 mmol硒粉(Selenium powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体3。
将0.6 mmol氧化镉(CdO),0.6 mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦-硫化三辛基膦前驱体1快速注入到反应体系中,先生成CdxZn1-xSeyS1-y,反应5 min后,将2mL的硒化三辛基膦-硫化三辛基膦前驱体2以6 mL/h的速率逐滴加入到反应体系中。随后,将3mL的硒化三辛基膦-硫化三辛基膦前驱体3和6mL的油酸镉前驱体的分别以3 mL/h和6 mL/h速率继续逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构3的绿色量子点(CdZn3SeS3/Zn4SeS3/Cd3Zn5Se4S4)。
实施例20:具有具体结构3的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8 mmol氧化镉(CdO),12 mmol乙酸锌[Zn(acet)2],14 mL油酸(Oleic acid)和20 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硒粉(Selenium powder)在4 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.2 mmol硒粉(Selenium powder),0.6 mmol硫粉(Sulfur powder)溶解在2 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体。
将0.9 mmol氧化镉(CdO),0.9 mL油酸(Oleic acid)和8.1 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1-xSe,反应10 min后,将2 mL的硒化三辛基膦-硫化三辛基膦前驱体以2 mL/h的速率逐滴加入到反应体系中。注入到30 min时,将3 mL的油酸镉前驱体同时以6 mL/h速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构3的红色量子点(CdxZn1-xSe/ZnSeyS1-y/CdzZn1-zSeS)。
实施例21:具有具体结构4的蓝色量子点的制备
油酸镉和油酸锌前驱体制备:将1 mmol氧化镉(CdO),9 mmol乙酸锌[Zn(acet)2],8 mL油酸(Oleic acid),和15 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硫粉(Sulfur powder)溶解在3 mL的十八烯(1-Octadecene)中,得到硫十八烯前驱体。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.2mmol硒粉(Selenium powder)溶解在1mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.6 mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1-xS,反应10 min后,将油酸镉前驱体和硒化三辛基膦前驱体分别以0.6 mmol/h、0.6 mmol/h的速率连续注入20 min到反应体系中。随后将油酸镉前驱体和硫化三辛基膦前驱体分别以0.4 mmol/h和6 mmol/h的速率连续注入1h到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构(具体结构4)的蓝色量子点(CdZnS/CdZnSe/CdZnS)。
实施例22:具有具体结构4的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将1 mmol氧化镉(CdO),9 mmol乙酸锌[Zn(acet)2],8 mL油酸(Oleic acid),和15 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硫粉(Sulfur powder)溶解在3 mL的十八烯(1-Octadecene)中,得到硫十八烯前驱体。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.4 mmol硒粉(Selenium powder)溶解在2 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.8 mmol氧化镉(CdO),1.2 mL油酸(Oleic acid)和4.8 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1-xS,反应10 min后,将油酸镉前驱体和硒化三辛基膦前驱体分别以0.6 mmol/h、0.6 mmol/h的速率连续注入40 min到反应体系中。随后将油酸镉前驱体和硫化三辛基膦前驱体分别以0.4 mmol/h和6 mmol/h的速率连续注入1 h到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构(具体结构4)的绿色量子点(CdZnS/CdZnSe/CdZnS)。
实施例23:具有具体结构4的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8 mmol氧化镉(CdO),12 mmol乙酸锌[Zn(acet)2],14 mL油酸(Oleic acid)和20 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将1.5 mmol硒粉(Selenium powder),1.75 mmol硫粉(Sulfur powder)溶解在3mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体1。
将1 mmol硒粉(Selenium powder)在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.2 mmol硒粉(Selenium powder),0.8 mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体2。
将3 mmol氧化镉(CdO),3mL油酸(Oleic acid)和6 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦-硫化三辛基膦前驱体1注入到反应体系中,先生成CdxZn1-xSe,反应10 min后,将2 mL的硒化三辛基膦前驱体和3mL的油酸镉前驱体分别以4 mL/h和6 mL/h的速率逐滴加入到反应体系中。注入到30 min时,将2mL的硒化三辛基膦-硫化三辛基膦前驱体2和3mL的油酸镉前驱体分别以2 mL/h和3 mL/h速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具体结构4的红色量子点(CdxZn1-xSe/CdZnSe/CdzZn1-zSeS)。
实施例24:具有具体结构5的蓝色量子点的制备
油酸镉和油酸锌前驱体制备:将1 mmol氧化镉(CdO),9 mmol乙酸锌[Zn(acet)2],8 mL油酸(Oleic acid),和15 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将1 mmol硫粉(Sulfur powder)溶解在3 mL的十八烯(1-Octadecene)中,得到硫十八烯前驱体。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6 mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1-xS,反应10 min后,将3 mL硫化三辛基膦前驱体以3 mL/h的速率连续注入1h到反应体系中,在硫化三辛基膦前驱体注入20 min时,将2 mL油酸镉前驱体以6 mL/h注入到反应体系中,在硫化三辛基膦前驱体注入40 min时,将4 mL油酸镉前驱体以12 mL/h注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构(具体结构5)的蓝色量子点(CdZnS/ZnS/CdZnS)。
实施例25:具有具体结构5的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将0.4 mmol氧化镉(CdO),6 mmol乙酸锌[Zn(acet)2],10 mL油酸(Oleic acid)和20 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将0.4 mmol硒粉(Selenium powder),4 mmol硫粉(Sulfur powder)溶解在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体1。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6 mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦-硫化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1-xSeyS1-y,反应10 min后,将3 mL硫化三辛基膦前驱体以3 mL/h的速率连续注入1h到反应体系中,在硫化三辛基膦前驱体注入20min时,将2 mL油酸镉前驱体以6 mL/h注入到反应体系中,在硫化三辛基膦前驱体注入40min时,将4 mL油酸镉前驱体以12 mL/h注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构(具体结构5)的绿色量子点(CdZnSeS/ZnS/CdZnS)。
实施例26:具有具体结构5的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8 mmol氧化镉(CdO),12 mmol乙酸锌[Zn(acet)2],14 mL油酸(Oleic acid)和20 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硒粉(Selenium powder)在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6 mmol氧化镉(CdO),0.6mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1-xSe,反应10 min后,将硫化三辛基膦前驱体以6 mmol/h的速率连续注入1h到反应体系中,在S-TOP注入20 min时,将0.2 mmol油酸镉前驱体以0.6mmol/h注入到反应体系中,在S-TOP注入40 min时,将0.4 mmol油酸镉前驱体以1.2 mmol/h注入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构(具体结构5)的红色量子点(CdZnSe/ZnS/CdZnS)。
实施例27:具有具体结构6的蓝色量子点的制备
油酸镉和油酸锌前驱体制备:将1 mmol氧化镉(CdO),9 mmol乙酸锌[Zn(acet)2],8 mL油酸(Oleic acid),和15 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80℃下进行真空脱气60 min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硫粉(Sulfur powder)溶解在3 mL的十八烯(1-Octadecene)中,得到硫十八烯前驱体。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
将0.6 mmol氧化镉(CdO),0.6 mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250℃加热回流120 min,得到透明的油酸镉前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硫十八烯前驱体快速注入到反应体系中,先生成CdxZn1-xS,反应10 min后,将硫化三辛基膦前驱体和油酸镉前驱体分别以6mmol/h和0.6 mmol/h的速率逐滴加入到反应体系中。30 min后,将反应体系温度降至280℃,将剩余的硫化三辛基膦前驱体和油酸镉前驱体分别以6mmol/h和0.6 mmol/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构6的蓝色量子点(CdxZn1-xS)。
实施例28:具有具体结构6的绿色量子点的制备
油酸镉和油酸锌前驱体制备:将0.4 mmol氧化镉(CdO),8 mmol乙酸锌[Zn(acet)2],10 mL油酸(Oleic acid)置于100 mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硒粉(Selenium powder),4 mmol硫粉(Sulfur powder)溶解在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体。
将2mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦-硫化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1-xSeyS1-y,反应10 min后,将反应体系温度降至280℃,将硫化三辛基膦前驱体以4 mL/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构6的绿色量子点(CdxZn1-xSeyS1-y/ZnS)。
实施例29:具有具体结构6的红色量子点的制备
油酸镉和油酸锌前驱体制备:将0.8 mmol氧化镉(CdO),12 mmol乙酸锌[Zn(acet)2],14 mL油酸(Oleic acid)置于100 mL三口烧瓶中,于80℃下进行真空脱气60min。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
将2 mmol硒粉(Selenium powder)在4mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将0.2 mmol硒粉(Selenium powder),0.6 mmol硫粉(Sulfur powder)溶解在2mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉和油酸锌前驱体升温至310℃,将硒化三辛基膦前驱体快速注入到反应体系中,先生成CdxZn1-xSe,反应10 min后,将反应体系温度降至280℃,将硒化三辛基膦-硫化三辛基膦前驱体以4 mL/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有具体结构6的红色量子点(CdxZn1-xSe/ZnSeS)。
实施例30:具有具体结构7的绿色量子点的制备
油酸镉第一前驱体制备:将1 mmol氧化镉(CdO),1 mL油酸(Oleic acid)和5 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80 ℃下进行真空脱气60 mins。然后将其切换成氮气气氛下,并于该温度下保存以备待用。
油酸镉第二前驱体制备:将0.6 mmol氧化镉(CdO),0.6 mL油酸(Oleic acid)和5.4 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,在氮气氛围下250 ℃加热回流120mins,得到透明的油酸镉第二前驱体。
油酸锌前驱体制备:将9 mmol乙酸锌[Zn(acet)2],7 mL油酸(Oleic acid),和10mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80 ℃下进行真空脱气60 mins。然后将其切换成氮气气氛下,并于氮气氛围下250 ℃加热回流保存以备待用。
将2 mmol硫粉(Sulfur powder)溶解在3 mL的十八烯(1-Octadecene)中,得到硫十八烯前驱体。
将6 mmol硫粉(Sulfur powder)溶解在3 mL的三辛基膦(Trioctylphosphine)中,得到硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉第一前驱体升温至310 ℃,将硫十八烯前驱体快速注入到反应体系中,迅速生成CdS,反应10 mins后,将油酸锌前驱体全部注入反应体系,随后将3mL的硫化三辛基膦前驱体和6 mL油酸镉第二前驱体分别以3 mL/h和10 mL/h的速率同时注入到反应体系中。
反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的蓝色量子点。
实施例31:具有具体结构7的绿色量子点的制备
油酸镉前驱体制备:将0.4 mmol氧化镉(CdO), 1 mL油酸(Oleic acid)和5 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80 ℃下进行真空脱气60 mins。然后将其在氮气氛围下250 ℃加热回流,并于该温度下保存以备待用。
将0.4 mmol硒粉(Selenium powder),溶解在4 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦。
油酸锌前驱体制备:将8 mmol乙酸锌[Zn(acet)2],9 mL油酸(Oleic acid)和15mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80 ℃下进行真空脱气60 mins。在氮气氛围下250 ℃加热回流120 mins,得到透明的油酸锌前驱体。
将2 mmol硫粉(Sulfur powder)和1.6 mmol硒粉(Selenium powder)溶解在2 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉前驱体升温至310 ℃,将硒化三辛基膦前驱体快速注入到反应体系中,迅速生成CdSe,反应5 mins后,将油酸锌前驱体全部注入到反应体系中,将2mL的硒化三辛基膦-硫化三辛基膦前驱体以2 mL/h的速率逐滴加入到反应体系中,直至前驱体注入完。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的绿色荧光量子点。
实施例32:具有具体结构7的红色量子点的制备
油酸镉前驱体制备:将0.8 mmol氧化镉(CdO),4 mL油酸(Oleic acid)和10 mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80 ℃下进行真空脱气60 mins。然后将其在氮气氛围下250 ℃加热回流,并于该温度下保存以备待用。
油酸锌前驱体制备:12 mmol乙酸锌[Zn(acet)2],10 mL油酸(Oleic acid)和10mL十八烯(1-Octadecene)置于100 mL三口烧瓶中,于80 ℃下进行真空脱气60 mins。
将0.8 mmol硒粉(Selenium powder)在4 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦前驱体。
将1 mmol硒粉(Selenium powder),0.6 mmol硫粉(Sulfur powder)溶解在2 mL的三辛基膦(Trioctylphosphine)中,得到硒化三辛基膦-硫化三辛基膦前驱体。
在氮气氛围下,将油酸镉前驱体升温至310 ℃,将硒化三辛基膦前驱体快速注入到反应体系中,迅速生成CdSe,反应10 mins后,将油酸锌前驱体全部注入到反应体系中,将2 mL的硒化三辛基膦-硫化三辛基膦前驱体以4 mL/h的速率逐滴加入到反应体系中。反应结束后,待反应液冷却至室温后,用甲苯和无水甲醇将产物反复溶解、沉淀,离心提纯,得到具有量子阱能级结构的红色荧光量子点。
实施例33:本实施例中的正置顶发射QLED器件,如图10所示,自下而上依次包括:玻璃衬底21、Al阳极22、PEDOT:PSS空穴注入层23、poly-TPD空穴传输层24、量子点发光层25、ZnO电子传输层26及ITO阴极27。
上述正置顶发射QLED器件的制备步骤如下:
在玻璃衬底21上通过真空蒸镀的方法制备100nm的Al阳极22,然后依次制备30 nmPEDOT:PSS空穴注入层23和30 nm poly-TPD空穴传输层24后,在poly-TPD空穴传输层24上制备一层量子点发光层25,厚度为20 nm,随后再在量子点发光层25上制备40 nm ZnO电子传输层26,最后通过溅射的方法制备120nm的ITO阴极作为顶电极。所述量子点发光层25的量子点材料为如实施例所述的量子点材料。
本发明还相应提供一种如上所述的正置顶发射QLED器件的制备方法,如图11所示,所述制备方法包括如下步骤:
S100、提供一衬底,在所述衬底上形成反射阳极;
S200、在所述反射阳极上依次沉积空穴传输层、量子点发光层及电子传输层;
S300、在所述电子传输层上沉积一透明阴极,制得正置顶发射QLED器件。
进一步地,所述步骤S100之后、步骤S200之前,还包括步骤:
S201、对具有反射阳极的衬底进行清洗处理;
S202、对经清洗处理后的具有反射阳极的衬底进行氧等离子体处理或紫外臭氧处理。
即本发明通过在例如玻璃等衬底上形成以反射阳极,例如Al/ITO的反射电极,之后对具有Al/ITO的反射电极的衬底进行清洗处理,具体可将衬底依次用洗涤液、超纯水、丙酮和异丙醇清洗且连续超声处理 15分钟,然后在80℃烘箱下烘干待用,之后对清洗处理后的衬底进行氧等离子体处理或紫外臭氧处理30分钟,以进一步清洁电极表面并提高其功函数;之后通过溶液加工法或真空蒸镀法在反射阴极上依次沉积空穴注入层、空穴传输层、量子点发光层及电子传输层,所述溶液加工法包括旋涂、打印及喷涂等,所述真空蒸镀法包括真空热蒸镀以及溅射等,具体可根据实际需要选择。
以下举应用实施例对本发明提供的正置顶发射QLED器件的制备方法以及具体器件性能进行进一步说明。
第一应用实施例提供的正置顶发射QLED器件,其制备方法为:
1、含Al/ITO的反射电极(即阳极)的玻璃衬底的清洗:用洗涤液、超纯水、丙酮和异丙醇清洗且连续超声处理15分钟,然后在80℃烘箱下烘干,在UVO下处理30分钟,以清洁ITO表面,并提升 ITO 电极的功函数;
2、空穴注入层和空穴传输层制备:于空气中,在清洗后的玻璃衬底上以 5000转/分钟的转速旋涂PEDOT:PSS,旋涂时间为40s,旋涂完成后在空气中150℃退火15min,烘干未挥发完的液体,然后转移入手套箱 (O2<1ppm,H2O<1ppm),在 PEDOT:PSS 层上以 3000 转/分钟的转速旋涂 TFB 的氯苯溶液(浓度为 8mg/ml),旋涂时间 30s。旋涂完成后在手套箱中 150℃退火30分钟去除剩余溶剂形成TFB层;
3、量子点发光层的制备:完成退火后旋涂量子点溶液,其中的量子点为CdSe/CdS核壳结构,分散在正辛烷中,浓度约15mg/ml,转速为2000转/分钟,旋涂时间40s;
4、电子传输层的制备:量子点溶液旋涂完成后,再旋涂一层ZnO乙醇溶液,其中转速是 3000 转/分钟,旋涂时间30s;乙醇的浓度为30mg/ml;
5、透明阴极的制备:将旋涂完成的器件放入真空蒸镀腔体,蒸镀15nm厚的铝作为阴极,并在Al上蒸镀200nm厚MoOx作为保护层得到第一应用实施例的量子点发光器件。
综上所述,本发明提供的正置顶发射QLED器件及其制备方法中,所述正置顶发射QLED器件包括依次叠层设置的衬底、反射阳极、空穴传输层、量子点发光层、电子传输层及透明阴极,所述量子点发光层采用具有量子阱能级结构的量子点材料制备而成,所述量子点材料包括至少一个在径向方向上依次排布的量子点结构单元,所述量子点结构单元为径向方向上能级宽度变化的渐变合金组分结构或径向方向上能级宽度一致的均一组分结构,可实现具有高效电荷注入、高发光亮度、低驱动电源以及高器件效率等优异性能的高效QLED器件。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (23)

1.一种正置顶发射QLED器件,包括依次叠层设置的衬底、反射阳极、空穴传输层、量子点发光层、电子传输层及透明阴极,其特征在于,所述量子点发光层采用量子点材料制备而成,所述量子点材料包括至少两个在径向方向上依次排布的量子点结构单元,所述量子点结构单元为径向方向上能级宽度变化的渐变合金组分结构或径向方向上能级宽度一致的均一组分结构;所述量子点结构单元包括2-20层单原子层,或者所述量子点结构单元包含1-10层的晶胞层;其中,所述晶胞层为最小结构单元,每一所述晶胞层内具有相同晶格参数和元素,每一所述量子点结构单元均为所述晶胞层连接而构成的封闭晶胞曲面,相邻所述晶胞层之间的能级宽度具有连续结构或突变结构;每个量子点结构单元的合金组分组成为CdxZn1-xSeyS1-y,其中,0<x<1,0<y<1;
所述径向方向上能级宽度一致的均一组分结构的合金组分中x和y均为固定值;所述径向方向上能级宽度变化的渐变合金组分结构为:
径向方向上越向外能级宽度越宽的渐变合金组分结构,其中,该渐变合金组分结构的合金组分中x自内向外从1单调递减为0,y自内向外从0单调递增为1;或者
径向方向上越向外能级宽度越窄的渐变合金组分结构,其中,该渐变合金组分结构的合金组分中x自内向外从0单调递增为1,y自内向外从1单调递减为0。
2.根据权利要求1所述的正置顶发射QLED器件,其特征在于,还包括在所述反射阳极与空穴传输层之间设置的空穴注入层。
3.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且在径向方向上相邻的量子点结构单元的能级是连续的。
4.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点材料包括至少三个在径向方向上依次排布的量子点结构单元,其中,所述至少三个量子点单元中,位于中心和表面的量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;位于中心和表面的量子点结构单元之间的一个量子点结构单元为均一组分结构。
5.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点材料包括两种类型的量子点结构单元,其中一种类型的量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,另一种类型的量子点结构单元为径向方向上越向外能级宽度越窄的渐变合金组分结构,所述两种类型的量子点结构单元沿径向方向依次交替分布,且在径向方向上相邻的量子点结构单元的能级是连续的。
6.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点结构单元均为径向方向上越向外能级宽度越宽的渐变合金组分结构,且相邻的量子点结构单元的能级是不连续的。
7.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点结构单元均为径向方向上越向外能级宽度越窄的渐变合金组分结构,且相邻的量子点结构单元的能级是不连续的。
8.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点材料包括两种量子点结构单元,其中一种量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,另一种量子点结构单元为均一组分结构,所述量子点材料的内部包括一个或一个以上的渐变合金组分结构的量子点结构单元,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的;所述量子点材料的外部包括一个或一个以上的均一组分结构的量子点结构单元。
9.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点材料包括两种量子点结构单元,其中一种量子点结构单元为均一组分结构,另一种量子点结构单元为径向方向上越向外能级宽度越宽的渐变合金组分结构,所述量子点材料的内部包括一个或一个以上的均一组分结构的量子点结构单元,所述量子点材料的外部包括一个或一个以上的渐变合金组分结构的量子点结构单元,且在径向方向上相邻的渐变合金组分结构的量子点结构单元的能级是连续的。
10.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点结构单元为包含II族和VI族元素的渐变合金组分结构或均一合金组分结构。
11.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点材料的发光峰波长范围为400纳米至700纳米。
12.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点材料的发光峰的半高峰宽为12纳米至80纳米。
13.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述量子点发光层的厚度为10-100nm。
14.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述反射阳极为铝电极或银电极,所述反射阳极的厚度为30-800nm。
15.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述透明阴极为ITO或薄层金属电极,所述ITO的厚度为20-300nm,所述薄层金属电极的厚度为5-50nm。
16.根据权利要求2所述的正置顶发射QLED器件,其特征在于,所述空穴注入层的材料为PEDOT:PSS、MoO3、VO2或WO3中的至少一种。
17.根据权利要求16所述的正置顶发射QLED器件,其特征在于,所述空穴注入层的厚度为10-150nm。
18.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述空穴传输层的材料为TFB、poly-TPD、PVK、NiO、MoO3、NPB、CBP中的至少一种。
19.根据权利要求18所述的正置顶发射QLED器件,其特征在于,所述空穴传输层的厚度为10-150nm。
20.根据权利要求1或2所述的正置顶发射QLED器件,其特征在于,所述电子传输层的材料为LiF、CsF、Cs2CO3、ZnO、Alq3中的至少一种。
21.根据权利要求20所述的正置顶发射QLED器件,其特征在于,所述电子传输层的厚度为10-150nm。
22.一种如权利要求1所述的正置顶发射QLED器件的制备方法,其特征在于,包括如下步骤:
A、提供一衬底,在所述衬底上形成反射阳极;
B、在所述反射阳极上依次沉积空穴传输层、量子点发光层及电子传输层;
C、在所述电子传输层上沉积一透明阴极,制得正置顶发射QLED器件。
23.根据权利要求22所述的正置顶发射QLED器件的制备方法,其特征在于,所述空穴传输层、量子点发光层及电子传输层通过溶液加工法或真空蒸镀法进行沉积。
CN201611256948.9A 2016-12-30 2016-12-30 一种正置顶发射qled器件及其制备方法 Active CN108269929B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611256948.9A CN108269929B (zh) 2016-12-30 2016-12-30 一种正置顶发射qled器件及其制备方法
PCT/CN2017/080618 WO2018120514A1 (zh) 2016-12-30 2017-04-14 Qled器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611256948.9A CN108269929B (zh) 2016-12-30 2016-12-30 一种正置顶发射qled器件及其制备方法

Publications (2)

Publication Number Publication Date
CN108269929A CN108269929A (zh) 2018-07-10
CN108269929B true CN108269929B (zh) 2022-06-24

Family

ID=62754494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611256948.9A Active CN108269929B (zh) 2016-12-30 2016-12-30 一种正置顶发射qled器件及其制备方法

Country Status (1)

Country Link
CN (1) CN108269929B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245436A1 (zh) * 2022-06-21 2023-12-28 京东方科技集团股份有限公司 一种蓝色顶发射量子点发光器件及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842460A (zh) * 2007-10-30 2010-09-22 伊斯曼柯达公司 含有不闪烁荧光量子点的器件
CN104736234A (zh) * 2012-08-30 2015-06-24 应用纳米技术中枢(Can)有限公司 核-壳纳米颗粒的制备方法和核-壳纳米颗粒
CN105261709A (zh) * 2015-10-08 2016-01-20 华南理工大学 一种掺杂量子点的有机发光器件及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001889A2 (en) * 2003-05-07 2005-01-06 Indiana University Research & Technology Corporation Alloyed semiconductor quantum dots and concentration-gradient alloyed quantum dots, series comprising the same and methods related thereto
EP1666562B1 (en) * 2004-11-11 2018-03-07 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
CN105405941B (zh) * 2016-01-06 2019-03-01 Tcl集团股份有限公司 一种基于量子阱结构的量子点发光二极管及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842460A (zh) * 2007-10-30 2010-09-22 伊斯曼柯达公司 含有不闪烁荧光量子点的器件
CN104736234A (zh) * 2012-08-30 2015-06-24 应用纳米技术中枢(Can)有限公司 核-壳纳米颗粒的制备方法和核-壳纳米颗粒
CN105261709A (zh) * 2015-10-08 2016-01-20 华南理工大学 一种掺杂量子点的有机发光器件及其制备方法

Also Published As

Publication number Publication date
CN108269929A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
CN106601886B (zh) 具有量子阱能级结构的纳米晶体、制备方法及半导体器件
KR102181060B1 (ko) 금속 이온 표면 처리된 금속 산화물 나노입자, 이것을 포함하는 양자점-발광 소자 및 그 제조 방법
KR102331163B1 (ko) 양자점 재료, 이를 위한 제조 방법, 및 반도체 장치
WO2018120513A1 (zh) 一种量子点复合材料、制备方法及半导体器件
CN108264901B (zh) 具有漏斗型能级结构的发光材料、制备方法及半导体器件
JP2019160796A (ja) 電界発光素子及び表示装置
CN108264894A (zh) 一种纳米发光材料、制备方法及半导体器件
CN108281494A (zh) 一种量子点光伏器件及制备方法
CN108630814B (zh) 一种核壳结构胶体纳米片、qled器件及制备方法
CN108269929B (zh) 一种正置顶发射qled器件及其制备方法
WO2018120511A1 (zh) 一种量子点薄膜及其制备方法
CN108269891B (zh) 一种纳米复合材料、制备方法及半导体器件
WO2018120514A1 (zh) Qled器件及其制备方法
CN108269886B (zh) 一种量子点材料、制备方法及半导体器件
CN108269926A (zh) 一种量子点组成及其制备方法
CN108269933A (zh) 一种反置底发射qled器件及其制备方法
CN108269893B (zh) 一种纳米晶体、制备方法及半导体器件
CN108269892B (zh) 具有量子阱能级结构的合金材料、制备方法及半导体器件
CN108269930B (zh) 一种合金纳米材料、制备方法及半导体器件
CN108269928A (zh) 一种正置底发射qled器件及其制备方法
CN108269927A (zh) 一种反置顶发射qled器件及其制备方法
CN108276826B (zh) 一种量子点油墨及其制备方法
CN108264904A (zh) 一种发光材料、制备方法及半导体器件
WO2018120516A1 (zh) 一种纳米材料、制备方法及半导体器件
Sadeghi et al. Structural Engineering of Colloidal Quantum Dots: Towards Realization of Highly Efficient, Aerobic-Stable, and Droop-Free QLEDs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 516006 TCL science and technology building, No. 17, Huifeng Third Road, Zhongkai high tech Zone, Huizhou City, Guangdong Province

Applicant after: TCL Technology Group Co.,Ltd.

Address before: 516006 Guangdong province Huizhou Zhongkai hi tech Development Zone No. nineteen District

Applicant before: TCL Corp.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant