CN108265590B - Hydraulic control system of microwave heating asphalt pavement in-situ heat regeneration device - Google Patents
Hydraulic control system of microwave heating asphalt pavement in-situ heat regeneration device Download PDFInfo
- Publication number
- CN108265590B CN108265590B CN201810204023.2A CN201810204023A CN108265590B CN 108265590 B CN108265590 B CN 108265590B CN 201810204023 A CN201810204023 A CN 201810204023A CN 108265590 B CN108265590 B CN 108265590B
- Authority
- CN
- China
- Prior art keywords
- axis
- way
- valve
- guide rail
- hydraulic control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 81
- 239000010426 asphalt Substances 0.000 title claims abstract description 50
- 230000008929 regeneration Effects 0.000 title claims abstract description 45
- 238000011069 regeneration method Methods 0.000 title claims abstract description 45
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 19
- 230000005855 radiation Effects 0.000 claims description 20
- 230000007246 mechanism Effects 0.000 claims description 14
- 230000005284 excitation Effects 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 2
- 230000033001 locomotion Effects 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 6
- 230000001808 coupling effect Effects 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 48
- 230000008878 coupling Effects 0.000 description 18
- 238000010168 coupling process Methods 0.000 description 18
- 238000005859 coupling reaction Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 8
- 239000011384 asphalt concrete Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 230000005672 electromagnetic field Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000012492 regenerant Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/02—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
- E01C19/10—Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
- E01C19/1004—Reconditioning or reprocessing bituminous mixtures, e.g. salvaged paving, fresh patching mixtures grown unserviceable; Recycling salvaged bituminous mixtures; Apparatus for the in-plant recycling thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/30—Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Road Paving Machines (AREA)
Abstract
本发明公开了一种微波加热沥青路面就地热再生装置的液压控制系统,地热再生装置包括主框架、空间调节装置以及加热装置,主框架底部安装有带锁万向轮,空间调节装置包括独立的三组三向电驱调节结构,每组三向电驱调节结构均连接有一组加热装置。液压控制系通过液压泵作为动力源,采用液压控制系统,实现了对加热腔沿X轴、Y轴、z轴的移动移动控制,简化了人为繁琐的操作,减少工人的劳动强度。同时避免了人工调节加热腔过程中经验、体力等对微波加热效果的影响,确保了不同加热腔口面之间始终保持在同一水平面,从而保证了耦合效果能够始终达到最优效果。
The invention discloses a hydraulic control system of an in-situ thermal regeneration device for microwave heating asphalt pavement. The geothermal regeneration device includes a main frame, a space adjustment device and a heating device. Universal wheels with locks are installed at the bottom of the main frame, and the space adjustment device includes an independent Three sets of three-way electric drive adjustment structures, each set of three-way electric drive adjustment structures are connected with a set of heating devices. The hydraulic control system uses the hydraulic pump as the power source and adopts the hydraulic control system to realize the movement control of the heating chamber along the X-axis, Y-axis, and Z-axis, which simplifies the cumbersome operations and reduces the labor intensity of workers. At the same time, it avoids the influence of experience and physical strength on the microwave heating effect in the process of manually adjusting the heating chamber, and ensures that the mouth surfaces of different heating chambers are always kept at the same level, thus ensuring that the coupling effect can always achieve the best effect.
Description
技术领域technical field
本发明属于沥青路面微波热再生技术领域,具体涉及一种微波加热沥青路面就地热再生装置的液压控制系统。The invention belongs to the technical field of microwave thermal regeneration of asphalt pavement, and in particular relates to a hydraulic control system of an in-situ thermal regeneration device for microwave heating of asphalt pavement.
背景技术Background technique
近年来,随着公路交通建设事业的蓬勃发展,沥青混凝土凭借其极好的路用性能和稳定的使用品质在高速公路建设中得到了广泛应用。到2012年末,中国已经有400多万公里的公路建成通车,其中沥青混凝土路面为主的高级公路路面、次高级公路路面就有9.5万千米,仅次于美国,位居世界第二,可见沥青混凝土路面是中国高等公路路面的主要结构形式。中国于20世纪80年代开始建设沥青路面的高速公路,沥青路面一般的设计寿命为15年——20年。因此,中国随后建成的沥青路面高速公路于90年代底陆续已进入大、中维修期,然而,目前废旧沥青混凝土的就地热再生技术在我国尚未被完全成熟掌握。In recent years, with the vigorous development of highway traffic construction, asphalt concrete has been widely used in highway construction due to its excellent road performance and stable quality. By the end of 2012, more than 4 million kilometers of roads in China had been completed and opened to traffic, of which 95,000 kilometers were high-grade roads and sub-high-grade roads dominated by asphalt concrete pavements, ranking second in the world after the United States. Visible asphalt Concrete pavement is the main structural form of Chinese highway pavement. China began to build highways with asphalt pavements in the 1980s, and the general design life of asphalt pavements is 15 to 20 years. Therefore, the asphalt pavement highways built in China have entered the period of major and medium maintenance at the end of the 1990s. However, the hot-in-place regeneration technology of waste asphalt concrete has not yet been fully mastered in our country.
沥青路面热再生方法有厂拌热再生和就地热再生两种。厂拌热再生就是将废旧沥青混合料运到拌和厂,再进行破碎处理,添加一定比例的再生剂、新集料或新沥青混合料等进行充分拌和,得到性能优良,满足路用性能的再生沥青混凝土,并重新压实成再生后的新沥青路面。沥青路面就地热再生就是采用就地热再生装置对已损坏的沥青路面进行现场加热,将软化的废旧沥青混凝土进行铣刨,然后再就地掺加一定配比的新沥青混合料和沥青再生剂等,经过现场热再生设备的热拌和、摊铺烫平和碾压等多道施工工序,一次性实现对受损沥青路面进行修复再生的技术。就地热再生以其流程经凑、工序简单和路面维护质量好等优点,在废旧沥青路面维护和养护中得到了广泛的应用。There are two methods of asphalt pavement thermal regeneration: plant-mix thermal regeneration and in-situ thermal regeneration. Plant-mixed hot regeneration is to transport the waste asphalt mixture to the mixing plant, then crush it, add a certain proportion of regenerant, new aggregate or new asphalt mixture, etc. to fully mix, and obtain the regeneration with excellent performance and meet the road performance. Asphalt concrete, and recompacted into a new asphalt pavement after regeneration. Hot-in-place regeneration of asphalt pavement is to use hot-in-place regeneration device to heat the damaged asphalt pavement on site, mill the softened waste asphalt concrete, and then add a certain proportion of new asphalt mixture and asphalt regeneration agent on the spot. , After multiple construction processes such as thermal mixing, paving and ironing, and rolling of on-site thermal regeneration equipment, the technology of repairing and regenerating damaged asphalt pavement can be realized at one time. Hot-in-place regeneration has been widely used in the maintenance and maintenance of waste asphalt pavement due to its advantages of compact process, simple process and good pavement maintenance quality.
我国沥青路面就地热再生技术的相关研究起步比较晚,进入21世纪后才逐渐得到广泛关注,随着国内陆续引进国外多台沥青路面热再生设备,对其进行改造,并在沥青路面的养护中得到成功应用,沥青路面就地热再生技术才逐渐得到认可。沥青路面就地热再生技术在中国还处于起步阶段,与其它发达国家相比,还有待深入研究。The related research on hot-in-place regeneration technology of asphalt pavement in my country started relatively late, and it gradually gained widespread attention after entering the 21st century. After being successfully applied, the hot-in-place regeneration technology of asphalt pavement has gradually been recognized. The hot-in-place recycling technology of asphalt pavement is still in its infancy in China, and compared with other developed countries, it still needs further research.
因此,需要一种微波加热沥青路面就地热再生装置以养护沥青路面。目前,路面上使用的微波加热装置,大多无法实现对加热装置的空间位置控制,对一些复杂路面难以快捷的进行加热,并且加热效率不高。因此,需要在考虑到沥青路面被破坏的形状、大小等情况的前提下,对微波加热沥青路面就地热再生装置进行设计。同时,为防止磁控管发射出来的电磁波产生泄漏,需要考虑到对泄漏出来的电磁波进行屏蔽,并且此屏蔽装置应尽量便捷的安装在微波加热沥青路面就地热再生装置上。Therefore, there is a need for a microwave-heated asphalt pavement thermal regeneration device to maintain the asphalt pavement. At present, most of the microwave heating devices used on the road cannot realize the spatial position control of the heating device, and it is difficult to quickly heat some complex roads, and the heating efficiency is not high. Therefore, it is necessary to design the in-situ thermal regeneration device for microwave heating asphalt pavement under the premise of considering the shape and size of the damaged asphalt pavement. At the same time, in order to prevent the electromagnetic waves emitted by the magnetron from leaking, it is necessary to consider shielding the leaked electromagnetic waves, and the shielding device should be installed on the in-situ heat regeneration device for microwave heating asphalt pavement as conveniently as possible.
发明内容Contents of the invention
发明目的:针对上述现有技术,提出一种微波加热沥青路面就地热再生装置的液压控制系统,实现了对微波加热沥青路面就地热再生装置的控制,提高辐射腔的定位精度和加热效率。Purpose of the invention: Aiming at the above-mentioned prior art, a hydraulic control system of a microwave-heated asphalt pavement hot-in-place regeneration device is proposed, which realizes the control of the microwave-heated asphalt pavement hot-in-place regeneration device, and improves the positioning accuracy and heating efficiency of the radiation cavity.
技术方案:一种微波加热沥青路面就地热再生装置的液压控制系统,所述微波加热沥青路面就地热再生装置包括主框架、空间调节装置以及加热装置;所述主框架整个外侧设有金属屏蔽网,主框架底部安装有带锁万向轮;所述主框架顶部包括相互平行的两根第一滑动导轨,以其中一条滑动导轨的一端为原点O建立坐标系,以该条滑动导轨所在直线为X轴,Y轴垂直所述X轴并与X轴位于同一水平面,Z轴垂直XOY面;Technical solution: a hydraulic control system of a microwave-heated asphalt pavement hot-in-place regeneration device, the microwave-heated asphalt pavement hot-in-place regeneration device includes a main frame, a space adjustment device, and a heating device; the entire outer side of the main frame is provided with a metal shielding net , the bottom of the main frame is equipped with universal wheels with locks; the top of the main frame includes two first sliding guide rails parallel to each other, a coordinate system is established with one end of one of the sliding guide rails as the origin O, and the straight line where the sliding guide rail is located is The X-axis and the Y-axis are perpendicular to the X-axis and located on the same horizontal plane as the X-axis, and the Z-axis is perpendicular to the XOY plane;
所述加热装置和空间调节装置分别包括三组,每组空间调节装置包括跨接在所述第一滑动导轨上并通过第一导轨滑块沿X轴滑动的第二滑动导轨,所述第二滑动导轨上安装有沿Y轴滑动的第二导轨滑块,所述第二导轨滑块侧面连接有垂直升降机构;所述垂直升降机构底部连接一组所述加热装置,连接处设置有温度传感器;所述第一滑动导轨上安装有驱动第一导轨滑块的X轴液压泵,所述第二滑动导轨上安装有驱动第二导轨滑块的Y轴液压泵;所述垂直升降机构包括Z轴液压泵;The heating device and the space adjustment device include three groups respectively, and each group of space adjustment devices includes a second sliding guide rail that straddles the first sliding guide rail and slides along the X-axis through the first guide rail slider. A second guide rail slider that slides along the Y axis is installed on the sliding guide rail, and a vertical lifting mechanism is connected to the side of the second guide rail slider; the bottom of the vertical lifting mechanism is connected to a group of heating devices, and a temperature sensor is provided at the connection ; The X-axis hydraulic pump driving the first guide rail slider is installed on the first sliding guide rail, and the Y-axis hydraulic pump driving the second guide rail slider is installed on the second sliding guide rail; the vertical lifting mechanism includes a Z shaft hydraulic pump;
每组所述加热装置包括沿Y轴平行设置的两个微波加热器,每个微波加热器包括角锥喇叭状的辐射腔以及连接所述辐射腔的激励腔,所述激励腔相对的一组侧壁由磁控管构成,所述激励腔的另一组相对侧壁分别设置磁控管的接线口和所述激励腔的散热风扇;每组所述加热装置还包括支架,所述支架上沿Y轴平行固定有两根第三滑动导轨,所述第三滑动导轨上跨接有平行设置的两根第四滑动导轨,所述第四滑动导轨通过第三导轨滑块与第三滑动导轨滑动连接;每个所述微波加热器通过两侧面固定的第四导轨滑块与所述第四滑动导轨滑动连接;Each group of heating devices includes two microwave heaters arranged in parallel along the Y axis, each microwave heater includes a pyramidal horn-shaped radiation chamber and an excitation chamber connected to the radiation chamber, and the opposite group of excitation chambers The side wall is composed of a magnetron, and another group of opposite side walls of the excitation chamber is respectively provided with a connection port of the magnetron and a heat dissipation fan of the excitation chamber; each group of the heating device also includes a bracket, and Two third sliding guide rails are fixed in parallel along the Y axis, and two fourth sliding guide rails arranged in parallel are bridged on the third sliding guide rails, and the fourth sliding guide rails pass through the slider of the third guide rail and the third sliding guide rail. Sliding connection; each of the microwave heaters is slidably connected to the fourth sliding guide rail through fourth guide rail sliders fixed on both sides;
所述液压控制系统包括柱塞泵、二位四通电磁阀、溢流阀、减压阀、第一三位四通电磁阀、第二三位四通电磁阀、第三三位四通电磁阀、第一双向液控单向阀、第二双向液控单向阀、第三双向液控单向阀、第一单向节流阀、第二单向节流阀、第三单向节流阀、第一压力继电器、第一蓄能器、第二蓄能器、第二压力继电器、电机;The hydraulic control system includes a plunger pump, a two-position four-way solenoid valve, an overflow valve, a pressure reducing valve, a first three-position four-way solenoid valve, a second three-position four-way solenoid valve, and a third three-position four-way solenoid valve. Valve, the first two-way hydraulic control check valve, the second two-way hydraulic control check valve, the third two-way hydraulic control check valve, the first one-way throttle valve, the second one-way throttle valve, the third one-way joint Flow valve, first pressure relay, first accumulator, second accumulator, second pressure relay, motor;
所述电机驱动柱塞泵从油缸中吸油,所述柱塞泵出油口通过管路连接溢流阀、减压阀、第三三位四通电磁阀以及第三三位四通电磁阀的进油口,所述溢流阀的出油口连接油缸;所述二位四通电磁阀的两个工作口分别连接所述溢流阀的进油口和出油口,所述二位四通电磁阀的进油口和回油口连成回路;所述第一三位四通电磁阀和第二三位四通电磁阀的进油口分别连接所述减压阀的出油口;所述第一三位四通电磁阀的两个工作口连接所述第一双向液控单向阀,所述第一双向液控单向阀通过两个所述第一单向节流阀分别连接所述X轴液压泵的第一进出油口和第二进出油口,所述第一蓄能器连接所述X轴液压泵的第一进出油口,所述第一压力继电器连接所述第一蓄能器;所述第二三位四通电磁阀的两个工作口连接所述第二双向液控单向阀,所述第二双向液控单向阀通过两个所述第二单向节流阀分别连接所述Y轴液压泵的第一进出油口和第二进出油口,所述第二蓄能器连接所述Y轴液压泵的第一进出油口,所述第二压力继电器连接所述第二蓄能器;所述第三三位四通电磁阀的两个工作口连接所述第三双向液控单向阀,所述第三双向液控单向阀通过两个所述第三单向节流阀分别连接所述Z轴液压泵的第一进出油口和第二进出油口。The motor drives the plunger pump to suck oil from the oil cylinder, and the oil outlet of the plunger pump is connected to the overflow valve, the pressure reducing valve, the third three-position four-way solenoid valve and the third three-position four-way solenoid valve through pipelines. oil inlet, the oil outlet of the overflow valve is connected to the oil cylinder; the two working ports of the two-position four-way solenoid valve are respectively connected to the oil inlet and oil outlet of the overflow valve, and the two-position four-way The oil inlet and the oil return port of the solenoid valve are connected to form a circuit; the oil inlets of the first three-position four-way solenoid valve and the second three-position four-way solenoid valve are respectively connected to the oil outlet of the pressure reducing valve; The two working ports of the first three-position four-way solenoid valve are connected to the first two-way hydraulically controlled one-way valve, and the first two-way hydraulically controlled one-way valve passes through the two first one-way throttle valves respectively. The first oil inlet and outlet port and the second oil inlet and outlet port of the X-axis hydraulic pump are connected, the first accumulator is connected to the first oil inlet and outlet port of the X-axis hydraulic pump, and the first pressure switch is connected to the The first accumulator; the two working ports of the second three-position four-way solenoid valve are connected to the second two-way hydraulic control check valve, and the second two-way hydraulic control check valve passes through the two second The one-way throttle valve is respectively connected to the first oil inlet and outlet port and the second oil inlet and outlet port of the Y-axis hydraulic pump, the second accumulator is connected to the first oil inlet and outlet port of the Y-axis hydraulic pump, and the first The second pressure relay is connected to the second accumulator; the two working ports of the third three-position four-way solenoid valve are connected to the third two-way hydraulic control check valve, and the third two-way hydraulic control check valve passes through The two third one-way throttle valves are respectively connected to the first oil inlet and outlet port and the second oil inlet and outlet port of the Z-axis hydraulic pump.
进一步的,所述垂直升降机构包括固定在所述第二导轨滑块侧面的安装座,所述安装座上开设竖直通孔,所述竖直通孔内设有推力轴承;所述Z轴液压泵垂直设置,其活塞杆穿过所述推力轴承,其缸体端部与所述推力轴承的平底座圈接触,所述安装座底部设有所述活塞杆夹紧结构;所述活塞杆下端安装有套环,所述套环通过限位螺丝固定在所述活塞杆上,所述套环侧面垂直固定连接L型连接板,所述L型连接板底端连接所述加热装置。Further, the vertical lifting mechanism includes a mounting seat fixed on the side of the second guide rail slider, and a vertical through hole is opened on the mounting seat, and a thrust bearing is arranged in the vertical through hole; the Z-axis The hydraulic pump is installed vertically, its piston rod passes through the thrust bearing, the end of its cylinder body is in contact with the flat base ring of the thrust bearing, and the piston rod clamping structure is provided at the bottom of the mounting seat; the piston rod A collar is installed at the lower end, and the collar is fixed on the piston rod through a limit screw. The side of the collar is vertically fixedly connected to an L-shaped connecting plate, and the bottom end of the L-shaped connecting plate is connected to the heating device.
进一步的,所述第三导轨滑块和第四导轨滑块上设有限位结构。Further, the third guide rail slider and the fourth guide rail slider are provided with limiting structures.
进一步的,还包括固定支架,所述固定支架包括相互固定连接的底座和套环,所述套环套接在所述Z轴液压泵的缸体上,所述固定支架的底座固定在所述安装座上。Further, it also includes a fixed bracket, the fixed bracket includes a base and a collar that are fixedly connected to each other, the collar is sleeved on the cylinder body of the Z-axis hydraulic pump, and the base of the fixed bracket is fixed on the on the mount.
进一步的,所述柱塞泵的进油口连接过滤器。Further, the oil inlet of the plunger pump is connected with a filter.
有益效果:本发明通过液压泵作为动力源,采用液压控制系统,实现了对加热腔沿X轴、Y轴、z轴的移动移动控制,简化了人为繁琐的操作,减少工人的劳动强度。同时避免了人工调节加热腔过程中经验、体力等对微波加热效果的影响,确保了不同加热腔口面之间始终保持在同一水平面,从而保证了耦合效果能够始终达到最优效果。Beneficial effects: the invention uses the hydraulic pump as the power source and adopts the hydraulic control system to realize the movement control of the heating chamber along the X-axis, Y-axis, and Z-axis, which simplifies the cumbersome operation and reduces the labor intensity of workers. At the same time, it avoids the influence of experience and physical strength on the microwave heating effect in the process of manually adjusting the heating chamber, and ensures that the mouth surfaces of different heating chambers are always kept at the same level, thus ensuring that the coupling effect can always achieve the best effect.
附图说明Description of drawings
图1是本发明中微波加热沥青路面就地热再生装置的结构示意图;Fig. 1 is the structural representation of microwave heating asphalt pavement thermal regeneration device in situ in the present invention;
图2是本发明中微波加热沥青路面就地热再生装置的正视图;Fig. 2 is the front view of microwave heating asphalt pavement thermal regeneration device in situ in the present invention;
图3是本发明中微波加热沥青路面就地热再生装置的侧视图;Fig. 3 is the side view of microwave heating asphalt pavement thermal regeneration device in situ in the present invention;
图4是加热装置的垂直升降机构的结构示意图;Fig. 4 is a structural schematic diagram of the vertical lifting mechanism of the heating device;
图5是微波加热沥青路面就地热再生装置中一组加热装置的结构示意图;Fig. 5 is a structural schematic diagram of a group of heating devices in a microwave heating asphalt pavement in-situ thermal regeneration device;
图6是加热装置中磁控管和辐射腔安装结构示意图;Fig. 6 is a schematic diagram of the installation structure of the magnetron and the radiation cavity in the heating device;
图7是本发明液压控制系统的结构示意图;Fig. 7 is a schematic structural view of the hydraulic control system of the present invention;
图8是一组加热装置耦合加热示意图;Fig. 8 is a schematic diagram of coupling heating of a group of heating devices;
图9是辐射腔耦合仿真图,(a)为辐射腔H面与H面距离为0耦合仿真图,(b)为辐射腔H面与H面距离为10mm耦合仿真图,(c)为辐射腔H面与H面距离为20mm耦合仿真图。Figure 9 is the coupling simulation diagram of the radiation cavity, (a) is the coupling simulation diagram with the distance between the H surface and the H surface of the radiation cavity being 0 mm, (b) is the coupling simulation diagram with the distance between the H surface and the H surface of the radiation cavity being 10mm, and (c) is the radiation cavity The coupling simulation diagram of the cavity H surface and the H surface distance is 20mm.
实施方式Implementation
下面结合附图对本发明做更进一步的解释。The present invention will be further explained below in conjunction with the accompanying drawings.
一种微波加热沥青路面就地热再生装置的液压控制系统,如图1-3所示,微波加热沥青路面就地热再生装置包括主框架、空间调节装置以及加热装置。主框架1用于承载所有加热装置以及空间调节装置,承受着大部分重量,因此采用钢板作为制造材料,用钢材作为铸造材料的主框架具有足够的承载刚度与承载强度,因此不会发生受压变形的情况。主框架整个外侧设有金属屏蔽网,主框架底部安装有带锁万向轮3。主框架顶部包括相互平行的两根第一滑动导轨8,以其中一条滑动导轨的一端为原点O建立坐标系,以该条滑动导轨所在直线为X轴,Y轴垂直所述X轴并与X轴位于同一水平面,Z轴垂直XOY面。A hydraulic control system of a microwave-heated asphalt pavement hot-in-place regeneration device. As shown in Figure 1-3, the microwave-heated asphalt pavement hot-in-place regeneration device includes a main frame, a space adjustment device and a heating device. The
加热装置和空间调节装置分别包括三组,每组空间调节装置包括跨接在第一滑动导轨8上并通过第一导轨滑块9沿X轴滑动的第二滑动导轨11,第二滑动导轨上安装有沿Y轴滑动的第二导轨滑块10,第二导轨滑块10侧面连接有垂直升降机构。垂直升降机构底部连接一组加热装置,连接处设置有温度传感器12。第一滑动导轨8上安装有驱动第一导轨滑块9的X轴液压泵17,第二滑动导轨11上安装有驱动第二导轨滑块10的Y轴液压泵19,垂直升降机构包括Z轴液压泵18。The heating device and the space adjustment device include three groups respectively, and each group of space adjustment devices includes a second sliding
如图4所示,垂直升降机构包括固定在第二导轨滑块侧面的安装座10,安装座10上开设竖直通孔,竖直通孔内设有推力轴承。Z轴液压泵18垂直设置,其活塞杆穿过推力轴承,其缸体端部与推力轴承的平底座圈接触,安装座10底部设有活塞杆夹紧结构。还包括固定支架25,固定支架25包括相互固定连接的底座和套环,套环套接在Z轴液压泵18的缸体上,固定支架25的底座固定在安装座10上。活塞杆下端安装有套环24,套环24通过限位螺丝固定在活塞杆上,套环24侧面垂直固定连接L型连接板7,L型连接板7底端连接加热装置。其工作原理为,Z轴液压泵缸体作用在轴向能够受力的推力轴承的平底座圈上,由穿过安装座10竖直通孔的活塞杆带动其端部连接的L型连接板7进行沿Z轴的运动。L型连接板7通过螺丝23连接套环24,根据实际高度,可通过套环24上的限位螺丝调节L型连接板7连接活塞杆的位置。缸体通过推力轴承连接,是为了便于通过转动Z轴液压泵18调整其连接的加热装置在水平方向的角度,以此适应一些特殊的加热区域时能够具有较好的耦合效果。为了防止Z轴液压泵18在水平方向随意转动,通过安装座10底部的活塞杆夹紧结构以及接在缸体上的支架25共同限制其转动。As shown in Figure 4, the vertical lifting mechanism includes a mounting
如图6所示,每组加热装置包括沿Y轴平行设置的两个微波加热器,每个微波加热器包括角锥喇叭状的辐射腔4以及连接辐射腔的激励腔26。激励腔26相对的一组侧壁由磁控管6构成,激励腔的另一组相对侧壁分别设置磁控管的接线口28和激励腔的散热风扇5。如图5所示,每组加热装置还包括支架22,支架22上沿Y轴平行固定有两根第三滑动导轨21,第三滑动导轨21上跨接有平行设置的两根第四滑动导轨15,第四滑动导轨15通过第三导轨滑块20与第三滑动导轨21滑动连接。每个微波加热器通过两侧面固定的第四导轨滑块14与第四滑动导轨15滑动连接。第三导轨滑块20和第四导轨滑块14上设有限位结构,用于固定导轨滑块和滑动导轨的相对位置。As shown in FIG. 6 , each group of heating devices includes two microwave heaters arranged in parallel along the Y axis, and each microwave heater includes a pyramidal horn-shaped
传感器12在下方磁控管产生的温度影响下将产生电阻效应,经过内部处理单元转换产生一个差动电压信号,此信号经过放大器,将量程相对应的信号转化成标准模拟信号或数字信号,从而实现对沥青路面温度的实时监控。Under the influence of the temperature generated by the magnetron below, the
为了使整个装置在能够方便的就地对破损路面进行热再生,在装置的主框架下方设计了带锁万向轮,不仅方便对装置进行移动,同时在对具有一定斜度的破损沥青路进行就地修补时,通过对万向轮的锁止,防止在进行就地热再生修补时,装置发生移动,偏离需要修补的破损路面。In order to enable the whole device to thermally regenerate the damaged road surface conveniently, a universal wheel with lock is designed under the main frame of the device, which not only facilitates the movement of the device, but also regenerates the damaged asphalt road with a certain slope. During on-site repair, the universal wheel is locked to prevent the device from moving and deviating from the damaged road surface that needs to be repaired during in-situ thermal regeneration repair.
如图7所示,液压控制系统包括柱塞泵102、二位四通电磁阀103、溢流阀104、减压阀105、第一三位四通电磁阀106、第二三位四通电磁阀107、第三三位四通电磁阀108、第一双向液控单向阀109、第二双向液控单向阀110、第三双向液控单向阀111、第一单向节流阀112、第二单向节流阀113、第三单向节流阀114、第一压力继电器115、第一蓄能器116、第二蓄能器119、第二压力继电器120、电机122。As shown in Figure 7, the hydraulic control system includes a
电机122驱动柱塞泵102从油缸中吸油,柱塞泵102出油口通过管路连接溢流阀104、减压阀105、第三三位四通电磁阀108以及第三三位四通电磁阀108的进油口,溢流阀104的出油口连接油缸。二位四通电磁阀103的两个工作口分别连接溢流阀104的进油口和出油口,二位四通电磁阀103的进油口和回油口连成回路。第一三位四通电磁阀106和第二三位四通电磁阀107的进油口分别连接减压阀105的出油口。第一三位四通电磁阀106的两个工作口连接第一双向液控单向阀109,第一双向液控单向阀109通过两个第一单向节流阀112分别连接X轴液压泵17的第一进出油口和第二进出油口,第一蓄能器116连接X轴液压泵17的第一进出油口,第一压力继电器115连接第一蓄能器116。第二三位四通电磁阀107的两个工作口连接第二双向液控单向阀110,第二双向液控单向阀110通过两个第二单向节流阀113分别连接Y轴液压泵19的第一进出油口和第二进出油口,第二蓄能器119连接Y轴液压泵19的第一进出油口,第二压力继电器120连接第二蓄能器119。第三三位四通电磁阀108的两个工作口连接第三双向液控单向阀111,第三双向液控单向阀111通过两个第三单向节流阀114分别连接Z轴液压泵18的第一进出油口和第二进出油口。The
液压控制系统中,柱塞泵102与电机122之间通过联轴器连接,电机122为柱塞泵102提供机械能来从油缸中吸油,为系统供油。泵供油经过溢流阀104、减压阀105用于控制整个液压系统的运行。三个双向液控单向阀并排在一起,作锁紧作用,用于保证调节系统运行同步。第一单向节流阀112、第二单向节流阀113以及第三单向节流阀114用于控制各液压泵伸缩速度,使其伸的速度快,缩的速度慢。In the hydraulic control system, the
液压油里难免会存在一些污染体,如粉尘、系统中零件表面脱落的金属等,上述污染体会对液压元件造成很大的破坏。柱塞泵102与油缸之间装有吸油过滤器101,过滤器101可以有效的保证供入系统的油干净可靠,这也有利于系统长时间稳定工作。二位四通电磁阀103与减压阀105之间的溢流阀104可以控制整个系统的运行速度。溢流阀104与二位四通电磁阀103之间连有测压组件,测压组件由截止阀和压力表构成,用以检测压力。It is inevitable that there will be some pollutants in the hydraulic oil, such as dust, metal falling off the surface of the parts in the system, etc. The above-mentioned pollutants will cause great damage to the hydraulic components. An
当二位四通电磁阀103停在中间时,整个系统为停止状态。当第一三位四通电磁阀106和第二三位四通电磁阀107停在左边时X轴液压泵17是伸的运动状态。当第一三位四通电磁阀106在左边,第二三位四通电磁阀107停在右边时,X轴液压泵17是缩的运动状态。当第一三位四通电磁阀106停在右边,第二三位四通电磁阀107停在左边时,X轴液压泵17是缩的运动状态。当第一三位四通电磁阀106和第二三位四通电磁阀107都停在右边时,X轴液压泵17是伸的运动状态。当第二三位四通电磁阀107停在中间时,X轴液压泵17为不工作状态。Y轴液压泵19、Z轴液压泵18与X轴液压泵17的执行动作相同,并且每一个液压缸都可以独立控制,执行速度也可以独立控制。When the two-position four-way
利用本发明的装置进行微波加热沥青路面就地热再生时,首先通过移动带锁万向轮的主框架并固定到待修补路面处。再对平行设置的三组加热装置分别进行独立的三向电驱调节,使得加热装置的加热区域覆盖待修补路面。然后分别调节同一组加热装置中两个微波加热器,使两个微波加热器的辐射腔位于同一水平高度;最后手动调整加热装置直接连接的滑块导轨,使得两个微波加热器H面之间的距离小于10毫米,实现加热器的耦合。When utilizing the device of the present invention to perform in-situ thermal regeneration of the microwave-heated asphalt pavement, firstly, the main frame of the universal wheel with locks is moved and fixed to the pavement to be repaired. Then, the three sets of heating devices arranged in parallel are independently adjusted by three-way electric drive, so that the heating area of the heating device covers the road surface to be repaired. Then adjust the two microwave heaters in the same group of heating devices separately, so that the radiation chambers of the two microwave heaters are at the same level; finally, manually adjust the slider guide rails directly connected to the heating devices so that the gap between the H surfaces of the two microwave heaters The distance is less than 10 mm to achieve heater coupling.
每组加热装置包括沿Y轴平行设置的两个微波加热器,目的是使磁控管之间在产生电磁场的同时,能够相互耦合,从而获得最优的加热效果,在相同的能耗下,得到最大的加热效率,从而节约能源。接线口28用于接通高压电源,当电源接通的一瞬间,磁控管6就会产生电磁场作用于下方的沥青路面,在电磁场的作用下,沥青路面中的极性分子开始剧烈运动,相互摩擦、碰撞,在极性分子的作用下,沥青路面的温度随之升高,从而实现对沥青路面的就地热再生。Each group of heating devices includes two microwave heaters arranged in parallel along the Y axis, the purpose is to make the magnetrons generate electromagnetic fields while being coupled to each other, so as to obtain the optimal heating effect. Under the same energy consumption, Get maximum heating efficiency and thus save energy. The
如图9所示,在电磁波加热的过程中考虑了两个或两个以上的电磁场交叉作用以及相互影响,当辐射腔在同一水平面时,在Y轴方向产生微波耦合。微波属于电磁波,微波的传播规律符合麦克斯韦波动方程。由此可知,磁控管产生的沿Z方向的平面波,经过辐射腔的导波,仅存在X轴方向的电场强度E和Y轴方向的磁场强度H沿Z轴传播。而当多个磁控管同时加热时,如果它们产生的电场、磁场处于同一水平面时,会产生耦合。通过COMSOL仿真可知:两个角锥喇叭辐射腔H面之间距离为0耦合加热时,加热区域有很明显的耦合现象,即角锥喇叭辐射腔H面与H面距离为0耦合时加热区域内的有效加热区域变得更大,基本充满整个辐射腔。有效加热区域y方向关于角锥喇叭口面x方向的中心线对称,有效加热区域x方向关于耦合交接处对称。最优的加热区域不在角锥喇叭辐射腔口面正中心,而是在两个角锥喇叭辐射腔的耦合处。因此,在相同的功率下,耦合处加热效率最高。如图9所示为角锥喇叭辐射腔H面之间距离分别为0、10mm、20mm。As shown in Figure 9, in the process of electromagnetic wave heating, the interaction and interaction of two or more electromagnetic fields are considered. When the radiation cavity is at the same level, microwave coupling occurs in the Y-axis direction. Microwave belongs to electromagnetic wave, and the propagation law of microwave conforms to Maxwell's wave equation. It can be seen that the plane wave generated by the magnetron along the Z direction passes through the guided wave of the radiation cavity, and only the electric field intensity E in the X-axis direction and the magnetic field intensity H in the Y-axis direction propagate along the Z-axis. When multiple magnetrons are heated at the same time, if the electric fields and magnetic fields generated by them are at the same level, coupling will occur. Through COMSOL simulation, it can be seen that when the distance between the H surfaces of the two pyramid horn radiation chambers is 0 coupling heating, the heating area has obvious coupling phenomenon, that is, the heating area when the distance between the H surface and the H surface of the pyramid horn radiation cavity is 0 coupling The effective heating area inside becomes larger and basically fills the entire radiation cavity. The y direction of the effective heating area is symmetrical to the center line of the pyramid horn mouth surface in the x direction, and the x direction of the effective heating area is symmetrical to the coupling joint. The optimal heating area is not at the center of the pyramid horn radiating cavity, but at the coupling of two pyramid horn radiating cavities. Therefore, under the same power, the heating efficiency at the coupling is the highest. As shown in Figure 9, the distances between the H surfaces of the pyramidal horn radiation cavity are 0, 10 mm, and 20 mm, respectively.
每个加热装置可以沿XYZ方向进行独立调节,当就地热再生装置在加热具有一定倾斜度的破损路面时,为了使不同加热装置之间能够进行耦合,达到最优加热距离,可以通过控制垂直升降机构来调节不同加热装置沿Z轴方向的高度,然后手动调节加热装置内部的X轴和Y轴导轨滑块,使不同加热装置中辐射腔的加热表面能够始终保持在同一水平位置,从而使一组加热装置中的两个加热器在Y轴耦合,同样,通过调节还能给同时实现不同组加热装置在X轴的耦合。Each heating device can be independently adjusted along the XYZ direction. When the in-situ heat regeneration device is heating a damaged road surface with a certain inclination, in order to enable coupling between different heating devices and achieve the optimal heating distance, the vertical lift can be controlled. mechanism to adjust the height of different heating devices along the Z-axis direction, and then manually adjust the X-axis and Y-axis guide rail sliders inside the heating device, so that the heating surface of the radiation chamber in different heating devices can always be kept at the same horizontal position, so that a The two heaters in the group of heating devices are coupled on the Y axis. Similarly, through adjustment, the coupling of different groups of heating devices on the X axis can also be realized at the same time.
磁控管6在工作时不仅会产生电磁波,自身还会产生较高的温度,为防止所产生的温度过高烧损磁控管,散热风扇5采用风冷的方式进行冷却,使散热风扇5的风直接吹向磁控管6的散热片,虽然散热风扇5功率较小,但它们只产生相对较小的范围内产生气流,形成很好的冷热气流循环,增强散热效果。
为使就地热再生装置方便移动,在设计金属屏蔽装置时,直接在装置的主框架外围,装有一层金属屏蔽网。在整个装置外面罩有金属屏蔽网,主要作用是屏蔽泄漏的一些电磁辐射,防止泄漏的电磁辐射危害操作人员身体健康及危害周围环境。在移动装置时,直接推动装置进行移动就可以了,无需再对金属屏蔽网进行移动,节约时间、人力。In order to facilitate the movement of the in-situ heat regeneration device, when designing the metal shielding device, a layer of metal shielding net is installed directly on the periphery of the main frame of the device. The entire device is covered with a metal shielding net, the main function of which is to shield some of the leaked electromagnetic radiation and prevent the leaked electromagnetic radiation from endangering the health of the operator and the surrounding environment. When moving the device, it is enough to directly push the device to move, and there is no need to move the metal shielding net, saving time and manpower.
本发明的微波加热沥青路面就地热再生装置的液压控制系统,通过液压泵作为动力源,对不同加热装置可进行同时操作,使不同加热装置能够在处于不同高度时,同时进行加热,保证了加热装置在对一些具有斜度的破损路面进行微波热再生时,也能够保证耦合,达到最优加热情况。同时控制移动的方式也更加方便、准确,其调节范围更大,适应性强,可以适应不同斜度及不规则面积的被损坏的沥青路面,满足实际生活中的修复需求。The hydraulic control system of the microwave-heated asphalt pavement hot-in-place regeneration device of the present invention uses a hydraulic pump as a power source to operate different heating devices at the same time, so that different heating devices can be heated at different heights at the same time, ensuring heating When the device performs microwave heat regeneration on some sloped damaged road surfaces, it can also ensure coupling and achieve optimal heating conditions. At the same time, the way of controlling the movement is more convenient and accurate. Its adjustment range is larger and its adaptability is strong. It can adapt to damaged asphalt pavements with different slopes and irregular areas, and meet the repair needs in real life.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810204023.2A CN108265590B (en) | 2018-03-13 | 2018-03-13 | Hydraulic control system of microwave heating asphalt pavement in-situ heat regeneration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810204023.2A CN108265590B (en) | 2018-03-13 | 2018-03-13 | Hydraulic control system of microwave heating asphalt pavement in-situ heat regeneration device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108265590A CN108265590A (en) | 2018-07-10 |
CN108265590B true CN108265590B (en) | 2023-05-26 |
Family
ID=62774737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810204023.2A Active CN108265590B (en) | 2018-03-13 | 2018-03-13 | Hydraulic control system of microwave heating asphalt pavement in-situ heat regeneration device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108265590B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113339025A (en) * | 2021-06-04 | 2021-09-03 | 煤炭科学研究总院 | Hydraulic system and hydraulic support group |
CN113894582B (en) * | 2021-09-23 | 2023-02-24 | 四川明日宇航工业有限责任公司 | Hydraulic tool, hydraulic system and hydraulic method for processing stringer |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2758601A1 (en) * | 1977-01-03 | 1978-07-13 | Morris R Jeppson | PROCEDURE AND EQUIPMENT FOR REPAIRING ROAD COVERS |
CN2670427Y (en) * | 2002-11-12 | 2005-01-12 | 广东美的集团股份有限公司 | Microwave asphaltic road surface heater |
DE102009043603A1 (en) * | 2009-09-28 | 2011-03-31 | Kurt Fritzsche | Device and process for restoration of asphalt roads, cycle paths and foot path mark up, comprises e.g. removing tears, blow holes and root departures by heating of original street coatings using heaters with vertical microwaves |
CN103276373A (en) * | 2013-05-28 | 2013-09-04 | 南方科技大学 | PECVD device |
CN104120639A (en) * | 2013-04-25 | 2014-10-29 | 拜耳材料科技(中国)有限公司 | Drying and temperature-controlling device for ballast and operating method thereof |
CN105544369A (en) * | 2016-01-22 | 2016-05-04 | 安徽工程大学 | Adjustable bituminous pavement microwave heat regeneration test device |
CN105970789A (en) * | 2016-06-01 | 2016-09-28 | 西安电子科技大学 | Microwave heating device based on power division and radiation integration |
CN106769635A (en) * | 2017-03-20 | 2017-05-31 | 安徽工程大学 | A kind of heat and mass experimental provision on adjustable microwave heated asphalt road surface |
CN107268414A (en) * | 2017-08-07 | 2017-10-20 | 江苏集萃道路工程技术与装备研究所有限公司 | A kind of microwave heating equipment suitable for sheet pavement in-situ heat regeneration train |
CN107288018A (en) * | 2017-08-07 | 2017-10-24 | 江苏集萃道路工程技术与装备研究所有限公司 | A kind of microwave heater and its microwave heating wall on the spot |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1146958B (en) * | 1980-04-29 | 1986-11-19 | Autostrade Concess Const | SELF-PROPELLED OPERATING MACHINE FOR THE REGENERATION OF STREET FLOORING IN BITUMINOUS CONGLOMERATE, USING A RADIOFREQUENCY GENERATOR WITH MICROWAVE COUPLED TO AT LEAST ONE CRACKED WAVE GUIDE ILLUMINATOR FOR HEATING THE COVER |
-
2018
- 2018-03-13 CN CN201810204023.2A patent/CN108265590B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2758601A1 (en) * | 1977-01-03 | 1978-07-13 | Morris R Jeppson | PROCEDURE AND EQUIPMENT FOR REPAIRING ROAD COVERS |
CN2670427Y (en) * | 2002-11-12 | 2005-01-12 | 广东美的集团股份有限公司 | Microwave asphaltic road surface heater |
DE102009043603A1 (en) * | 2009-09-28 | 2011-03-31 | Kurt Fritzsche | Device and process for restoration of asphalt roads, cycle paths and foot path mark up, comprises e.g. removing tears, blow holes and root departures by heating of original street coatings using heaters with vertical microwaves |
CN104120639A (en) * | 2013-04-25 | 2014-10-29 | 拜耳材料科技(中国)有限公司 | Drying and temperature-controlling device for ballast and operating method thereof |
CN103276373A (en) * | 2013-05-28 | 2013-09-04 | 南方科技大学 | PECVD device |
CN105544369A (en) * | 2016-01-22 | 2016-05-04 | 安徽工程大学 | Adjustable bituminous pavement microwave heat regeneration test device |
CN105970789A (en) * | 2016-06-01 | 2016-09-28 | 西安电子科技大学 | Microwave heating device based on power division and radiation integration |
CN106769635A (en) * | 2017-03-20 | 2017-05-31 | 安徽工程大学 | A kind of heat and mass experimental provision on adjustable microwave heated asphalt road surface |
CN107268414A (en) * | 2017-08-07 | 2017-10-20 | 江苏集萃道路工程技术与装备研究所有限公司 | A kind of microwave heating equipment suitable for sheet pavement in-situ heat regeneration train |
CN107288018A (en) * | 2017-08-07 | 2017-10-24 | 江苏集萃道路工程技术与装备研究所有限公司 | A kind of microwave heater and its microwave heating wall on the spot |
Non-Patent Citations (3)
Title |
---|
Investigation of wireless power transfer applications with a focus on renewable energy;Saransch Chhawchharia,etc.;Renewable and Sustainable Energy Reviews;第91卷;全文 * |
微波加热沥青混合料传热模型研究;陈陆骏;孙铜生;许德章;;井冈山大学学报(自然科学版)(第03期);全文 * |
沥青路面现场微波加热再生模型与实验;朱松青;史金飞;王鸿翔;;东南大学学报(自然科学版)(第03期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN108265590A (en) | 2018-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108252189B (en) | A device and method for in-situ thermal regeneration of asphalt pavement heated by microwave | |
CN201553977U (en) | Bituminous pavement microwave heating device | |
CN108265590B (en) | Hydraulic control system of microwave heating asphalt pavement in-situ heat regeneration device | |
CN107268414B (en) | Microwave heating device suitable for bituminous paving hot in-place recycling train | |
CN112323603B (en) | Asphalt functional pavement self-healing construction method based on electromagnetic heating and microwave heating | |
CN106769635B (en) | Adjustable heat and mass transfer experimental device for heating asphalt pavement by microwave | |
CN207488061U (en) | Bituminous paving accelerates to wear away miniature circuit testing machine canister | |
CN105544369B (en) | A kind of adjustable bituminous paving microwave heat regeneration tests device | |
CN211665527U (en) | Highway crack maintenance machine | |
CN110241699A (en) | A microwave seam repairing maintenance vehicle for asphalt pavement maintenance | |
CN208072135U (en) | A kind of hydraulic control system of asphalt road surface by microwave heating in-situ heat regeneration device | |
CN112323565B (en) | Method for repairing multifunctional pits of asphalt pavement by induction heating and microwave heating | |
CN208009217U (en) | A kind of asphalt road surface by microwave heating in-situ heat regeneration device | |
CN210262593U (en) | Drawing type microwave thermal regeneration asphalt mixture pavement maintenance vehicle | |
CN205387661U (en) | Procumbent plastic course paver of secondary can carry out | |
CN208347907U (en) | A kind of cooling mechanism for bull-dozer internal combustion engine | |
CN112323602B (en) | Construction method of multifunctional thermal milling of asphalt pavement heated by induction heating and microwave heating | |
CN206800151U (en) | A kind of energy-conserving and environment-protective through street mending mortar construction | |
CN110700066A (en) | A multifunctional repair vehicle for potholes on asphalt pavement based on electromagnetic heating | |
CN209456863U (en) | A device for repairing cracks in asphalt pavement | |
CN205329514U (en) | Bituminous paving microwave heat regeneration experimental apparatus with adjustable | |
CN205443886U (en) | Bituminous paving heats milling machine | |
CN210315165U (en) | Microwave joint repairing maintenance vehicle for asphalt pavement maintenance | |
CN213978527U (en) | Heating device for interlayer thermal connection of asphalt pavement | |
CN111893851A (en) | Novel road microwave maintenance car |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |