CN108258052B - 超级结器件的工艺方法 - Google Patents

超级结器件的工艺方法 Download PDF

Info

Publication number
CN108258052B
CN108258052B CN201810025084.2A CN201810025084A CN108258052B CN 108258052 B CN108258052 B CN 108258052B CN 201810025084 A CN201810025084 A CN 201810025084A CN 108258052 B CN108258052 B CN 108258052B
Authority
CN
China
Prior art keywords
injection
super junction
groove
type
implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810025084.2A
Other languages
English (en)
Other versions
CN108258052A (zh
Inventor
赵龙杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201810025084.2A priority Critical patent/CN108258052B/zh
Publication of CN108258052A publication Critical patent/CN108258052A/zh
Application granted granted Critical
Publication of CN108258052B publication Critical patent/CN108258052B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Thyristors (AREA)

Abstract

本发明公开了一种超级结器件的工艺方法,在沟槽刻蚀完成之后,进行第一次外延填充,然后进行浅结注入,然后再进行第二次外延填充,直至填充满沟槽形成P柱;所述第一次外延填充至沟槽剩余深度为1.2±0.6μm,注入的杂质是与外延类型相同的杂质离子,注入的剂量在5E12/CM‑2以上,注入能量在100KeV以内,形成高浓度注入区。本发明所述的超级结器件工艺方法,使用两次填充加一次P型注入,额外的P型注入形成很浓的P型区域。本工艺能提高器件的大电流处理能力,并可适当改善器件的导通电阻。

Description

超级结器件的工艺方法
技术领域
本发明涉及半导体器件制造领域,特别是指一种超级结器件的工艺方法。
背景技术
超级结产品是一种利用PN电荷平衡的体内Resurf技术来提升器件反向击穿BV的同时又保持较小的导通电阻的MOSFET结构。如图1所示,是一种标准的超级结器件的原胞示意图,图中1是多晶硅栅极,2是P型外延, 5是重掺杂N型注入区,6是P阱。
超级结器件通过利用N/P交替配列的结构来代替传统VDMOS中的N漂移区,它结合业内熟知的VDMOS工艺,就可以制作得到超级结结构的MOSFET,它能在反向击穿电压与传统的VDMOS—致的情况下,通过使用低电阻率的外延层,使器件的导通电阻大幅降低。该薄层中P型杂质的载流子分布和N 型杂质的载流子分布以及它们的匹配会影响器件的特性包括其反向击穿电压和电流处理能力。一般器件设计中都采用使交替的P/N薄层即P型薄层和N型薄层中达到最佳的电荷平衡以得到器件的最大的反向击穿电压,传统的超级结器件的工艺都采用外延工艺,一次性填充完成N/P之间的电荷平衡,即图1中的沟槽为外延一次性填满。但这样的条件下器件的电流处理能力EAS不够。
发明内容
本发明所要解决的技术问题在于提供一种超级结器件工艺方法,能改善器件的大电流处理能力(EAS)。
为解决上述问题,本发明所述的一种超级结器件工艺方法:在沟槽刻蚀完成之后,进行第一次外延填充,然后进行浅结注入,然后再进行第二次外延填充,直至填充满沟槽。
进一步地,所述第一次外延填充至沟槽剩余深度为1.2±0.6μm。
进一步地,所述浅结注入,注入的杂质是与外延类型相同的杂质离子,注入的剂量在5E12/CM-2以上,注入能量在100KeV以内,形成高浓度注入区。
本发明所述的超级结器件工艺方法,使用两次填充加一次P型注入,额外的P型注入形成很浓的P型区域。本工艺能提高器件的大电流处理能力,并可适当改善器件的导通电阻。
附图说明
图1是现有的超级结器件原胞结构示意图。
图2是本发明超级结器件的结构示意图,形成了不同的浓度分布区域。
图3是本发明超级结器件工艺流程图。
附图标记说明
1是多晶硅栅极,2是P型外延(本发明工艺中第一层P型外延)。3是 P型注入区,4是第二层P型外延,5是重掺杂N型区,6是P阱。
具体实施方式
本发明所述的一种超级结器件工艺方法,是在沟槽刻蚀完成之后,进行第一次外延填充,第一次外延填充至沟槽剩余深度为1.2±0.6μm,比如0.8μm、1.4μm……。然后进行浅结注入,注入的杂质是与外延类型相同的杂质离子,如硼离子。注入的剂量在5E12/CM-2以上,比如选择注入剂量为1E13/CM-2,注入能量在100KeV以内,比如注入能量为60KeV,形成如图 2中所示的高浓度注入区3。然后再进行第二次外延填充,直至填充满沟槽形成完整P柱。
理论依据:正常器件在击穿时候产生的雪崩电流会通过Pbody流向接触区,而本发明会在P柱中,特别是靠近顶端位置产生额外的很浓的P型注入区域3,人为使得此处电荷平衡失效,导致此处的电场强度提前到达临界电场,此时雪崩电流就会通过P柱内部杂质浓度加深的P型注入区3导走,在一定程度上抑制了寄生BJT开启,提高器件的大电流处理能力,并可适当改善器件的导通电阻Ron。
以上仅为本发明的优选实施例,并不用于限定本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种超级结器件的工艺方法,其特征在于:在沟槽刻蚀完成之后,进行第一次外延填充,第一次外延填充至沟槽剩余深度为1.2±0.6μm;
然后进行浅结注入,在第一次外延上形成浓度高于外延的注入区;所述浅结注入,注入的杂质是与外延类型相同的杂质离子,注入的剂量在5E12 CM-2以上,注入能量在100KeV以内,形成高浓度注入区;浅结注入形成的注入区电荷平衡失效,使注入区的电场强度提前到达临界电场,雪崩电流通过注入区导走,抑制了超级结器件寄生三极管的开启,提高器件大电流处理能力;
然后再进行第二次外延填充,直至填充满沟槽形成P柱。
2.如权利要求1所述的超级结器件的工艺方法,其特征在于:所述浅结注入形成的P型注入区能降低器件的导通电阻。
CN201810025084.2A 2018-01-11 2018-01-11 超级结器件的工艺方法 Active CN108258052B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810025084.2A CN108258052B (zh) 2018-01-11 2018-01-11 超级结器件的工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810025084.2A CN108258052B (zh) 2018-01-11 2018-01-11 超级结器件的工艺方法

Publications (2)

Publication Number Publication Date
CN108258052A CN108258052A (zh) 2018-07-06
CN108258052B true CN108258052B (zh) 2021-01-22

Family

ID=62726046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810025084.2A Active CN108258052B (zh) 2018-01-11 2018-01-11 超级结器件的工艺方法

Country Status (1)

Country Link
CN (1) CN108258052B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598340B (zh) * 2023-07-10 2023-09-22 苏州锴威特半导体股份有限公司 一种SiC MOSFET及其制作工艺方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881723B (zh) * 2011-07-14 2016-06-08 上海华虹宏力半导体制造有限公司 一种半导体器件结构及其制作方法
US9647059B2 (en) * 2011-09-27 2017-05-09 Alpha And Omega Semiconductor Incorporated Manufacturing methods for accurately aligned and self-balanced superjunction devices
JP6253885B2 (ja) * 2013-01-07 2017-12-27 ルネサスエレクトロニクス株式会社 縦型パワーmosfet
DE102013112887B4 (de) * 2013-11-21 2020-07-09 Infineon Technologies Ag Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung

Also Published As

Publication number Publication date
CN108258052A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
US9859400B2 (en) Trench transistors and methods with low-voltage-drop shunt to body diode
US8575685B2 (en) Buried field ring field effect transistor (BUF-FET) integrated with cells implanted with hole supply path
CN107482061B (zh) 超结器件及其制造方法
US9837532B2 (en) Laterally diffused metal oxide semiconductor device and manufacturing method therefor
TW201334188A (zh) 溝槽底部氧化物屏蔽以及三維p-本體接觸區的奈米金氧半導體場效電晶體及其製造方法
CN109166922B (zh) 一种沟槽型超结功率终端结构及其制备方法
JP2014165306A (ja) 超接合半導体装置の製造方法
EP3509101B1 (en) Device integrating a junction field effect transistor and manufacturing method therefor
CN112864246B (zh) 超结器件及其制造方法
US9929285B2 (en) Super-junction schottky diode
US20150118810A1 (en) Buried field ring field effect transistor (buf-fet) integrated with cells implanted with hole supply path
CN109037310B (zh) 一种超结功率器件终端结构及其制备方法
CN108074963B (zh) 超结器件及其制造方法
EP3509102A1 (en) Component integrated with depletion-mode junction field-effect transistor and method for manufacturing component
CN106887451B (zh) 超结器件及其制造方法
CN110047930A (zh) Vdmos器件
CN108091684B (zh) 超结金属氧化物场效应晶体管
CN114300539A (zh) 一种辐射加固的ldmos器件结构及制备方法
CN111200025A (zh) 超结器件及其制造方法
CN108258052B (zh) 超级结器件的工艺方法
US10186573B2 (en) Lateral power MOSFET with non-horizontal RESURF structure
CN110416300B (zh) 超结n型mosfet及其制造方法
US10446640B2 (en) Termination implant enrichment for shielded gate MOSFETS
KR101985398B1 (ko) 반도체 장치 제조 방법
CN109616511B (zh) 一种纵向多重pn结的vdmos分压环的设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant